CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA"

Transcripción

1 CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA Atoo Morllas A. Morllas: C. o paramétrcos (I 1

2 CONTRASTES NO PARAMÉTRICOS: BONDAD DE AJUSTE Y TABLAS DE CONTINGENCIA Ifereca realzada hasta ahora: Ua muestra aleatora ( las x so varables aleatoras depedetes e el muestreo estmador dstrbucó del estmador fereca Modelo de poblacó coocdo, salvo sus parámetros Queda por comprobar (para ua fereca correcta: S el modelo es cosstete co la muestra (ajuste S las observacoes (varables x so realmete depedetes (aleatoredad e depedeca S la poblacó camba o o etre dos muestras dsttas (homogeedad A. Morllas: C. o paramétrcos (I

3 CONTRASTES NO PARAMÉTRICOS: BONDAD DE AJUSTE Y TABLAS DE CONTINGENCIA 1. Cotrastes de bodad del ajuste a. χ de Pearso b. Kolmogorov-Smrov c. Cotrastes específcos de ormaldad a. Lllefors b. Jarque-Bera c. Shapro-Wlks. Cotraste de depedeca (asocacó. Tablas de cotgeca 3. Cotraste de homogeedad A. Morllas: C. o paramétrcos (I 3

4 CONTRASTE DE BONDAD DE AJUSTE χ f(x H 0 : f(x=f 0 (x X/H 0 p = L L 1 f 0 ( x dx p L -1 L X f f = / =f f L -1 L A. Morllas: C. o paramétrcos (I 4 X

5 ESTADÍSTICO DE PRUEBA 1. B(, p, margal de ua multomal: e =E( =p Bajo H 0 : e =p 0. S e =E( =p 5 y p es pequeña (Posso: 3. Para prescdr del sgo de ( e, se eleva al cuadrado: [N(0,1] ~ χ 1 4. Dscrepaca total e los k tervalos: Σ k χ 5. Bajo H 0 : k = p p 1 ( e = e e e N(01, A. Morllas: C. o paramétrcos (I 5 χ k 1, ya que k = 1 =

6 PROCESO DE CÁLCULO 1. Tabulacó de la muestra e clases (k 5ye 5. Cálculo de las probabldades teórcas (p, bajo H Obteer las frecuecas esperadas: e =p 4. Obteer la χ obs valor muestral de ( -e / e 5. S χ obs χ 1-α (cola derecha, rechazar H 0 la dscrepaca es sgfcatva Nota: S o se cooce los r parámetros poblacoales e H 0, se estma por máxma verosmltud y se reduce los grados de lbertad e r : k ( = 1 e e χ k r 1 A. Morllas: C. o paramétrcos (I 6

7 RESUMEN TEST χ Hpótess ula: Ho: f(x = f o (x H 0 : p = p 0, =1,,.,k Base del test: dscrepaca etre (muestra y e =p (Ho Itervalos Frecuecas observadas Probabldad tervalo Frecuecas esperadas Valor del estadístco p /H 0 e ( -e / e < L 1 1 p 1 e 1 = p 1 ( 1 -e 1 / e 1 L 1 L p e = p ( -e / e L -1 L L k-1 y más k p p k e = p e k = p k ( -e / e ( k -e k / e k = p = 1 e = χ obs. A. Morllas: C. o paramétrcos (I 7

8 COMENTARIOS SOBRE EL TEST χ 1. Aplcable a varables cotuas (agrupadas e tervalos y dscretas. Muestra y úmero tervalos grades (e = p 5 3. Estadístco, segú parámetros e H 0 : 1. Especfcados χ k-1. No especfcados (r χ k-r-1 (EMV o χ -mímos 4. Es u test astótco sesble al valor de Dstgur etre sgfcacó estadístca y sgfcacó real. Para c > 1: χ obs.( c. k ( c = = 1 cp cp = c χ A. Morllas: C. o paramétrcos (I 8 obs.

9 F 0 (x F (x F (x ( =1 F (x ( F 0 (x F (x (-1 TEST DE KOLMOGOROV-SMIRNOV Hpótess ula H 0 : F(x = F 0 (x D (x D 1 (x F (x F 0 (x F (x ( F (x (1 x (1 x ( x (-1 x (. x ( X Estadístco de prueba: D = max {D 1 (x D (x } A. Morllas: C. o paramétrcos (I 9

10 RESUMEN TEST K-S Hpótess ula: H 0 : F(x = F 0 (x, especfcada e forma y e parámetros. Estadístco de prueba: D =max D 1 (x ( D (x (, =1,,., Regó crítca: D obs. D, rechazar H 0 (el modelo propuesto o es váldo. Aplcable sólo a varables cotuas. Puede utlzarse para muestras pequeñas. A. Morllas: C. o paramétrcos (I 10

11 CÁLCULOS EN K-S x ( N F (x ( F 0 (x ( D 1 (x ( D (x ( x (1 x ( x ( x ( N 1 N N N F (x (1 F (x ( F (x ( F (x ( F 0 (x (1 F 0 (x ( F 0 (x ( F 0 (x ( D 1 (x (1 D 1 (x ( D 1 (x ( D 1 (x ( D (x (1 D (x ( D (x ( D (x ( D 1 (x ( = F (x (-1 - F 0 (x ( ; D (x ( = F (x ( - F 0 (x ( A. Morllas: C. o paramétrcos (I 11

12 TEST DE NORMALIDAD DE LILLIEFORS Adaptacó de K-S al caso de ua ormal co parámetros descoocdos. Hpótess ula: H 0 : F(x = Normal ; parámetros descoocdos. µ y σ se estma de la muestra, medate x y ŝ. Estadístco de prueba: D =max D 1 (x ( D (x (,el msmo que el de K-S, pero los valores crítcos camba. Hay que mrarlos e la tabla obteda por Lllefors. La poteca de este test para u tamaño muestral o muy grade es baja. Por tato, ecesta muestras grades ( 100. A. Morllas: C. o paramétrcos (I 1

13 TEST DE NORMALIDAD DE JARQUE-BERA Cotrastes de asmetría y aputameto: H 0 : X es smétrca Estadístco de asmetría: α = 1 3 ( x x = 1 3 s ~ N( µ = 0, σ = H 0 : X es mesocúrtca Estadístco de aputameto: 6 α 1 6 ~ Z, para 50 4 ( x x α 3 1 α = = ~ N( µ = 3, σ = 4 Z, 00 4 s 4/ ~ Regó crítca de colas: Z obs Z α/ o Z obs Z 1- α/ A. Morllas: C. o paramétrcos (I 13

14 TEST DE NORMALIDAD DE JARQUE-BERA Cotraste de ormaldad: H 0 : X es ormal Estadístco de prueba: α α χ / 4/ α1 6 + ( α 3 4 χ Regó crítca: s α 1 =0 y α =3 χ =0 (aceptaríamos H 0. Por tato, la RCO estará a la derecha: obs Se trata de u test para muestras grades χ χ ;1 α A. Morllas: C. o paramétrcos (I 14

15 TEST DE NORMALIDAD DE SHAPIRO-WILKS RECTA PROBABILÍSTICO NORMAL E( x = µ + σ c (, (c 1,7 (c,7 =q 1 (c 4,7 = Me (c 5,7 (c S H 0 es certa: 3,7 E[(x ( - µ /σ ] = c, (c 6,7 =q 3 (c 7,7 Z (c,7 X x (1 x ( x (3 x (4 x (5 x (6 x (7 Muestra 1 x (1 x ( x (3 x (4 x (5 x (6 x (7 Muestra A. Morllas: C. o paramétrcos (I 15

16 ESTADÍSTICO DE SHAPIRO-WILKS GRÁFICO Q-Q x ( x (4 x (6 x (7 x(5 x (1 x ( σ x (3 E[x ( ]= µ + c, σ µ w = r = R = s s x x ( (, c s, c, c, S ω obs < ω α Rechazar H 0 A. Morllas: C. o paramétrcos (I 16

17 TEST DE NORMALIDAD DE SHAPIRO-WILKS S H 0 : X ~N(µ,σ, el valor esperado de la observacó muestral -ésma (cuatl, tpfcada, vedrá dado por u cuatl e Z: x( µ E = c E ( x, ( = µ + c, σ σ Los datos muestrales debería estar próxmos a esta recta El test mde esa proxmdad, estudado la bodad del ajuste, gráfco q-q, etre los cuatles x ( y los cuatles c, (w = r : w 1 q = s j= 1 a ( x x ( j, ( j+ 1 ( j = Muestras pequeñas ( < 30. Potete. Los a (j, está tabulados A s par q=/ mpar q=(-1/ RCO w obs w α A. Morllas: C. o paramétrcos (I 17

18 RESUMEN BONDAD DE AJUSTE TEST TIPO DE VARIABLE HIPÓTESIS NULA TAMAÑO MUESTRA Ch-cuadrado Cot. o dsc. No especf.(r Grade Kolmo.-Smr. Cotua Especfcada Pequeño K-S-Lllefors Cotua (N No especf. Grade Jarque-Bera Cotua (N No especf. Grade Shapro-Wlks Cotua (N No especf. Pequeño A. Morllas: C. o paramétrcos (I 18

19 TABLAS DE CONTINGENCIA Característca A 1 r Total TABLA DE CONTINGENCIA Característca B 1 j s Total r1 r.1. r s 1j j j rj.j j =. =. j = = 1 j = 1 = 1 j = 1 r s 1s s s rs.s r. A. Morllas: C. o paramétrcos (I

20 CONTRASTE DE INDEPENDENCIA H 0 : depedeca H 0 : p j = p.. p.j, =1,,.,r ; j=1,,.,s Aplcado el crtero de la χ de Pearso (frecuecas observadas-esperadas: r s ( j ej χ ; e rs j = pj e 1 = 1 j= 1 S H 0 es certa p j = p.. p.j, la expresó ateror queda como: r s ( j p p = 1 j= 1.. j. p. j p Desdades coocdas χ rs 1 pˆ =.. r j s = 1 j= 1.. j A. Morllas: C. o paramétrcos (I 0 j.. j χ ( r 1( s 1 rs-1-(r-1-(s-1 Desdades descoocdas

21 CONTRASTE DE HOMOGENEIDAD Característca A 1 r Total Muestras o expermetos 1 j s Total r1 r.1. 1j j j rj.j 1s s s rs.s 1... r. A. Morllas: C. o paramétrcos (I 1

22 OBJETO E HIPÓTESIS NULA Objeto: Comprobar s las muestras provee de la msma poblacó (poblacoes homogéeas para varable A Repetcó de u expermeto multomal (s veces Igual proporcó de observacoes e cada categoría de la característca A H 0 : La probabldad de éxto e cada categoría es la msma: H 0 : p 1 = p =. = p j =. = p s = p., =1,,.,r A. Morllas: C. o paramétrcos (I

23 ESTADÍSTICO DE PRUEBA H 0 es compuesta Test de la RV Se demuestra que la χ del test de la RV (- l λ, cocde co el test de depedeca Dscrepaca etre valores observados y esperados. Los valores esperados so: e j = E( j =.j p. s se cooce las p teórcas e j =. j (. / s se estma de la muestra por MV Estadístco prueba (RCO derecha: (r-1s co las p coocdas r s = 1 j= 1.. j A. Morllas: C. o paramétrcos (I 3 j.. j χ ( r 1( s 1 (r-1s-(r-1

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

PRÁCTICA 13: PRUEBA DE HIPÓTESIS DE BONDAD DE AJUSTE E INDEPENDENCIA

PRÁCTICA 13: PRUEBA DE HIPÓTESIS DE BONDAD DE AJUSTE E INDEPENDENCIA PRÁCTICA 3: PRUEBA DE HIPÓTESIS DE BONDAD DE AJUSTE E INDEPENDENCIA E ocasoes ocurre que el ecargado de hacer u trabajo estadístco o está seguro de la dstrbucó de ua determada varable aleatora. Para solucoar

Más detalles

9.3. Contrastes para comparar dos distribuciones

9.3. Contrastes para comparar dos distribuciones TEM 9: CONTRSTES NO PRMÉTRICOS 9.. Cotrastes de bodad de ajuste 9... Cotraste Ch-cuadrado 9... Cotraste de Kolmogorov-Smrov 9.. Cotraste de depedeca para tablas de cotgeca 9.3. Cotrastes para comparar

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejerccos de Selectvdad sobre Ifereca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Fracsco Roldá López de Herro * Covocatora de 006 Las sguetes págas cotee las solucoes

Más detalles

3. La distribución normal multivariada

3. La distribución normal multivariada 3. La dstrbucó ormal multvarada Por qué es mportate la dstrbucó ormal multvarada? o Muchas de las téccas multvaradas supoe que los datos fuero geerados de ua dstrbucó ormal multvarada. o E la vda real

Más detalles

CONTRASTES NO PARAMÉTRICOS (I) Antonio Morillas

CONTRASTES NO PARAMÉTRICOS (I) Antonio Morillas CONTRASTES NO PARAMÉTRICOS (I) Atoo Morllas. Itroduccó. Cotrastes de ajuste. Cotraste χ. Cotraste de Kolmogorov-Smrov 3. Cotrastes específcos de ormaldad 3. Cotraste de ormaldad de Lllefors 3. Cotraste

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

Especialista en Estadística y Docencia Universitaria PRUEBAS DE NORMALIDAD MÉTODO DE KOLMOGOROV SMIRNOV

Especialista en Estadística y Docencia Universitaria PRUEBAS DE NORMALIDAD MÉTODO DE KOLMOGOROV SMIRNOV Especalsta e Estadístca y Doceca Uverstara PRUEBAS DE NORMALIDAD MÉTODO DE KOLMOGOROV SMIRNOV Tal vez el método más recomedable para el caso e que F(x) es ua dstrbucó cotua es el método para ua muestra

Más detalles

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el CAPÍTULO 3 METODOLOGÍA El objetvo del capítulo 3 es coocer la metodología, por lo cual os apoyaremos e el lbro de Smulato modelg ad Aalyss (Law, 000), para estudar alguas pruebas de bodad de ajuste. També

Más detalles

Métodos de Predicción Inferencia. Curso María Jesús Sánchez Naranjo y Carolina García-Martos

Métodos de Predicción Inferencia. Curso María Jesús Sánchez Naranjo y Carolina García-Martos Métodos de Predccó Ifereca Curso - María Jesús Sáchez Narajo y Carola García-Martos Dstrbucó Normal Camaa de Gauss x f x ex, x R π Ifereca Ifereca 3 Meddas Característcas 3 3 4 4 3 3 4 4 3 Curtoss CA Asmetría

Más detalles

Regresión lineal simple

Regresión lineal simple Descrpcó breve del tema Regresó leal smple Tema. Itroduccó. El modelo de regresó smple 3. Hpótess del modelo Lealdad, homogeedad, homocedastcdad, depedeca ormaldad 4. Estmacó de los parámetros Mímos cuadrados,

Más detalles

02 ) 2 0 en el resto. Tiempo (meses) Ventilador adicional No No Si No Si Si Si Si No Si Tipo carcasa A C B A B A B C B C

02 ) 2 0 en el resto. Tiempo (meses) Ventilador adicional No No Si No Si Si Si Si No Si Tipo carcasa A C B A B A B C B C Ua empresa motadora de equpos electrócos está realzado u estudo sobre aluos de los compoetes que utlza. E partcular mde el tempo de vda e meses reales de los procesadores que mota, dode a aluos de ellos

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

ESTADÍSTICA. Tercera Prueba de Evaluación continua 30 de noviembre de 2015

ESTADÍSTICA. Tercera Prueba de Evaluación continua 30 de noviembre de 2015 Tercera Prueba de Evaluacó cotua 30 de ovembre de 05.- Se ha tomado valores de ua varable físca X, que se supoe ormal, resultado: 30,; 30,8; 9,3; 9; 30,9; 30,8; 9,7; 8,9; 30,5; 3,; 3,3; 8,5. a) Costrur

Más detalles

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún:

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún: A. Morllas - p. - MUESTREO E POBLACIOES FIITAS () Dos aspectos báscos de la fereca estadístca, o vstos aú: Proceso de seleccó de la muestra Métodos de muestreo Tamaño adecuado e poblacoes ftas Fabldad

Más detalles

2. Muestreo Aleatorio Simple. 2. Muestreo Aleatorio Simple

2. Muestreo Aleatorio Simple. 2. Muestreo Aleatorio Simple . Muestreo Aleatoro mple. Muestreo aleatoro smple e poblacoes ftas... Meda, varaza proporcó muestrales: Propedades. Error de estmacó. Poblacó Y (, ). E V Muestra aleatora smple Y,..., Y (..d.) E V ( )

Más detalles

Test de Hipótesis. Error de tipo I: Rechazar H 0 siendo H 0 Verdadera. Error de tipo II: No rechazar H 0 siendo H 0 Falsa

Test de Hipótesis. Error de tipo I: Rechazar H 0 siendo H 0 Verdadera. Error de tipo II: No rechazar H 0 siendo H 0 Falsa Error tpo I: Rechazar H sedo H Verdara Test Hpótess Error tpo II: No rechazar H sedo H Falsa Nvel Sgfcacó: = P(error tpo I = P(Rechazar H sedo H Verdara Probabldad error tpo II: = P(error tpo II = P(No

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 28 de mayo, 2013 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas.

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas. Estadístca (Q) Dra. Daa M. Kelmasky 99. Teoremas límte Frecueca Relatva 0.5 0.6 0.7 0.8 0.9.0 0 00 00 300 400 Orde de la trada Fgura : Frecueca relatva de cara para ua sucesó de 400 tradas. La fgura muestra

Más detalles

Nociones de Estadística

Nociones de Estadística Químca Aalítca Prof. Aa Galao Jméez Nocoes de Estadístca Las medcoes tee sempre asocadas u error expermetal (herete a la resolucó del equpameto empleado, a errores aleatoros y/o a errores sstemátcos).

Más detalles

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad. Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO C

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO C Febrero 010 EAMEN MODELO C Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 6011037 FEBRERO 010 EAMEN MODELO C 1 80 5 3 8 4 1 5 6 6 7 1,0 1,47 38-40 18 35-37 36 3-34 5 9-31 46 6-8

Más detalles

PyE_ EF1_TIPO2_

PyE_ EF1_TIPO2_ SEMESTRE 9- TIPO DURACIÓN MÁIMA.5 HORAS JUNIO DE 9 NOMBRE. "Scram" es el térmo que utlza los geeros ucleares para descrbr u rápdo cerre de emergeca de u reactor uclear. La dustra uclear ha hecho esuerzos

Más detalles

Tema 16: Modelos de distribución de probabilidad: Variables Continuas

Tema 16: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema 6 Tema 6: Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(μ, σ) 3. MODELO CHI-CUADRADO DE PEARSON, χ k 4. MODELO t DE STUDENT,

Más detalles

Análisis de Regresión

Análisis de Regresión Aálss de Regresó Ig. César Augusto Zapata Urqujo Ig. José Alejadro Marí Del Río Facultad de Igeería Idustral Uversdad Tecológca de Perera 0-05 Modelo de Regresó Leal Smple Y Dados A (, ) =,,. Gráfco o

Más detalles

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI TESIS DESARROLLO REIONAL C URVA DE L ORENZ C OEFICIENTE DE D ESIUALDAD DE INI D OCUMENTO A UXILIAR N DANIEL CAUAS - 5 JUN 203 LA CURVA DE LORENZ La curva de Lorez (Corado Lorez 905), es u recurso gráfco

Más detalles

SIMULACION. Departament d'eio / Notes Curs MEIO/FIB 33

SIMULACION. Departament d'eio / Notes Curs MEIO/FIB 33 SIMULACION TECNICA PARA IMITAR EN UN COMPUTADOR LAS OPERACIONES DE LOS SISTEMAS DEL MUNDO REAL A MEDIDA QUE EVOLUCIONAN EN EL TIEMPO, MEDIANTE MODELOS QUE LOS REPRESENTAN DE FORMA REALISTA Deartamet d'eio

Más detalles

Estimación de Parámetros. Estimación Puntual. Universidad Técnica Federico Santa María. Estimación de Parámetros. Estimación de Parámetros.

Estimación de Parámetros. Estimación Puntual. Universidad Técnica Federico Santa María. Estimación de Parámetros. Estimación de Parámetros. Uversdad Técca Federco ata María Estmacó de Parámetros Capítulo 7 Estmacó de Parámetros Estadístca Computacoal II emestre 007 Prof. Carlos Valle Pága : www.f.utfsm.cl/~cvalle e-mal : cvalle@f.utfsm.cl

Más detalles

Inferencia Estadística

Inferencia Estadística Ifereca Estadístca Poblacó y muestra Coceptos y defcoes Muestra Aleatora Smple (MAS) Cosderemos ua poblacó, cuya fucó de dstrbucó esta dada por F(), la cual está costtuda por u úmero fto de posbles valores,

Más detalles

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy Unversdad Autónoma de Madrd 1 Regresón y correlacón Tema 8 1. Regresón lneal smple 1.1 Contraste sobre β 1. Regresón en formato ANOVA. Correlacón. Contraste sobre ρ xy Análss de Datos en Pscología II Tema

Más detalles

Tema 12: Modelos de distribución de probabilidad: Variables Continuas

Tema 12: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema Tema : Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(; ) 3. MODELO CHI-CUADRADO DE PEARSON, k 4. MODELO t DE STUDENT, t

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 31 de mayo, 2011 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

No debe entregar los enunciados

No debe entregar los enunciados Curso 01-13 EAMEN MODELO A ág. 1 INTRODUCCIÓN AL ANÁLII DE DATO ETIEMBRE 013 Códgo asgatura: 6011037 EAMEN TIO TET MODELO A DURACION: HORA Materal: Addeda (Formularo y Tablas) y calculadora (cualquer modelo)

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Parcalmete facado a través del PIE-04 (UMA). Promedos y meddas de poscó. Meddas de dspersó. Meddas de asmetría. Valores atípcos..4 Meddas de desgualdad..5 Valores atípcos: Dagrama

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

Análisis de la Varianza

Análisis de la Varianza Descrpcó breve del tema Aálss de la Varaza Tema. troduccó al dseño de expermetos. El modelo. Estmacó de los parámetros. Propedades de los estmadores 5. Descomposcó de la varabldad 6. Estmacó de la dfereca

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

1 Estadística. Profesora María Durbán

1 Estadística. Profesora María Durbán Tema 5: Estmacó de Parámetros Tema 5: Estmacó de Parámetros 5. Itroduccó y coceptos báscos 5. Propedades de los estmadores 5.4 Dstrbucó de u estmador e el muestreo Objetvos del tema: Al fal del tema el

Más detalles

Métodos indirectos de estimación: razón, regresión y diferencia

Métodos indirectos de estimación: razón, regresión y diferencia Métodos drectos de estmacó: razó, regresó dfereca Cotedo. Itroduccó, defcó de estmadores drectos. Estmador de razó, propedades varazas. Límtes de cofaza. 3. Tamaño de la muestra e los estmadores de razó

Más detalles

AGRO Examen Parcial 1

AGRO Examen Parcial 1 AGRO 5005 009 Exame Parcal Nombre: Istruccoes: Por favor lea los eucados y las pregutas cudadosamete. Se puede usar el lbro las tablas de dstrbucó ormal la hoja de fórmulas provsta y la calculadora. Para

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

Test de Kolmogorov Smirnov Patricia Kisbye El test chi-cuadrado en el caso continuo

Test de Kolmogorov Smirnov Patricia Kisbye El test chi-cuadrado en el caso continuo Test de Kolmogorov Smirov Técicas de validació estadística Bodad de auste Kolmogorov-Smirov Patricia Kisbye FaMAF 29 de mayo, 2008 Icoveiete: No es secillo costruir los itervalos a partir de las probabilidades.

Más detalles

ÍNDICE 1. INTRODUCCIÓN A LA PROBABILIDAD... 11

ÍNDICE 1. INTRODUCCIÓN A LA PROBABILIDAD... 11 ÍNDICE 1. INTRODUCCIÓN A LA PROBABILIDAD... 11 1.1. Probabldad, espaco muestral y sucesos... 11 1.1.1. Espaco muestral y sucesos... 11 1.1.. Probabldad... 14 1.1.3. Varable aleatora y fucó de dstrbucó...

Más detalles

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados TEMA 7. ETIMACIÓN 7.1. Itroducció y defiicioes 7.. Estimació putual. Propiedades deseables de los estimadores 7..1. Itroducció y defiicioes 7... Estimadores Isegados 7.3. Estimació por itervalos de cofiaza

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Tema 6: Introducción al muestreo. Estimadores

Tema 6: Introducción al muestreo. Estimadores Facultad de Ecoomía y Empresa Práctcas ema 6.- Itroduccó al muestreo. Estmadores ema 6: Itroduccó al muestreo. Estmadores VARIABLE Certa varable aleatora X se dstrbuye segú la fucó de desdad: sedo E(X)

Más detalles

al nivel de significación α P6: Conclusión: Se debe interpretar la decisión tomada en Paso 5.

al nivel de significación α P6: Conclusión: Se debe interpretar la decisión tomada en Paso 5. 5. NÁLISIS DE VRINZ CONTENIDOS: OBJETIVOS: 5... Prueba de aálss de varaza. 5.. Comparacoes múltples. Determar los pasos a segur al realzar ua prueba de aálss de varaza Platear hpótess para la prueba de

Más detalles

ESTADÍSTICA. UNIDAD 3 Características de variables aleatorias. Ingeniería Informática TEORÍA

ESTADÍSTICA. UNIDAD 3 Características de variables aleatorias. Ingeniería Informática TEORÍA Uversdad Nacoal del Ltoral Facultad de Igeería y Cecas Hídrcas ESTADÍSTICA Igeería Iformátca TEORÍA Mg.Ig. Susaa Valesberg Profesor Ttular UNIDAD Característcas de varables aleatoras Estadístca - Igeería

Más detalles

ANalysis Of VAriance ANOVA Análisis de la Varianza. Teresa Villagarcía

ANalysis Of VAriance ANOVA Análisis de la Varianza. Teresa Villagarcía ANalyss Of VArace ANOVA Aálss de la Varaza Teresa Vllagarcía El objetvo del dseño de expermetos Estudar s determados factores fluye sobre ua varable de uestro terés. Por ejemplo: Redmeto de u proceso dustral.

Más detalles

CONCEPTOS FUNDAMENTALES

CONCEPTOS FUNDAMENTALES TEMA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICAS PRIMERA PARTE: Conceptos fundamentales 8.1. Hipótesis estadística. Tipos de hipótesis 8.2. Región crítica y región de aceptación 8.3. Errores tipo I y tipo

Más detalles

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste Técnicas de Inferencia Estadística II Tema 3. Contrastes de bondad de ajuste M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2014/15 Contenidos 1. Introducción

Más detalles

TEMA 9. Contrastes no paramétricos y bondad de ajuste

TEMA 9. Contrastes no paramétricos y bondad de ajuste TEMA 9. Cotrastes o paramétrcos y bodad de ajuste 9. Al falzar el tema el alumo debe coocer... fereca etre u cotraste parámetrco y uo o paramétrco Característcas de la estmacó utlzado los cotrastes o test

Más detalles

Contraste de Hipótesis

Contraste de Hipótesis Cotraste de Hpótess 1. Se quere comprobar s ua muestra de tamaño co meda 1 procede de ua poblacó N(14,3) co el vel de sgfcacó,5..- E ua propagada se auca que uas determadas plas proporcoa más horas de

Más detalles

TEMA 5: ANÁLISIS CONJUNTO DE VARIABLES ALEATORIAS Y DISTRIBUCIÓN DE AGREGADOS

TEMA 5: ANÁLISIS CONJUNTO DE VARIABLES ALEATORIAS Y DISTRIBUCIÓN DE AGREGADOS MÉTODOS ESTADÍSTICOS PARA LA EMPRESA TEMA 5: ANÁLISIS CONJUNTO DE VARIABLES ALEATORIAS DISTRIBUCIÓN DE AGREGADOS 5..- Dstrbucoes -dmesoales. Aálss margal y codcoado 5..- Varables aleatoras depedetes. Propedades

Más detalles

TEMA 4: CONTRASTES DE HIPÓTESIS. CONCEPTOS BÁSICOS

TEMA 4: CONTRASTES DE HIPÓTESIS. CONCEPTOS BÁSICOS ASIGNATURA: ESTADÍSTICA II (Grado ADE,MIM,FBS) TEMA 4: CONTRASTES DE HIPÓTESIS. CONCEPTOS BÁSICOS 4.1. Hipótesis estadística. Tipos de hipótesis 4.2. Región crítica y región de aceptación 4.3. Errores

Más detalles

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión Estadístca I Capítulo. Meddas de poscó y dspersó Carme Trueba Salas Lorea Remuzgo Pérez Vaesa Jordá Gl José María Saraba Alegría DPTO. DE ECOOMÍA Este tema se publca bajo Lceca: Creatve Commos BY-C-SA

Más detalles

UNIDAD TEMÁTICA 9 REGRESIÓN LINEAL Y CORRELACIÓN ENUNCIADO 1

UNIDAD TEMÁTICA 9 REGRESIÓN LINEAL Y CORRELACIÓN ENUNCIADO 1 ESCUELA UNIVERSITARIA DE TÉCNICA INDUSTRIAL UNIDAD TEMÁTICA 9 REGRESIÓN LINEAL Y CORRELACIÓN ENUNCIADO La sguete tabla muestra la ota fal e los exámees de estadístca (E) e vestgacó operatva (IO) de ua

Más detalles

EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos

EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos Ua vez expuesta la lógica de u Cotraste de Hipótesis y tras haber defiido los térmios y coceptos ivolucrados, hay que decir que esa lógica geeral se cocreta

Más detalles

Pruebas de bondad de ajuste

Pruebas de bondad de ajuste Pruebas de bondad de ajuste Existen pruebas cuantitativas formales para determinar si el ajuste de una distribución paramétrica a un conjunto de datos es buena en algún sentido probabilístico. Objetivo:

Más detalles

4 Contrastes del Chi 2 de bondad del ajuste

4 Contrastes del Chi 2 de bondad del ajuste 4 Cotrastes del Chi de bodad del ajuste U cotraste de bodad del ajuste es de la forma o H 0 : P = P 0 frete a H 1 : P P 0 H 0 : P {P θ } θ Θ frete a H 1 : P / {P θ } θ Θ 4.1 Cotraste del χ para modelos

Más detalles

TEMA 3: ESTIMACIÓN PUNTUAL.

TEMA 3: ESTIMACIÓN PUNTUAL. TEMA 3: ESTIMACIÓN PUNTUAL. 3..- FUNDAMENTOS. La fereca estadístca proporcoa u método objetvo que establece reglas base para crtcar, rechazar y aceptar "tems" de formacó cetífca cuado prevalece codcoes

Más detalles

10 MUESTREO. n 1 9/ / σ σ 1

10 MUESTREO. n 1 9/ / σ σ 1 10 MUESTREO 1 Cómo varará la desvacó típca muestral s se multplca por cuatro el tamaño de la muestra? Y s se aumeta el tamaño de la muestra de 16 a 144? S µ y so la meda y la desvacó típca poblacoales,

Más detalles

Contraste de Hipótesis

Contraste de Hipótesis CONTRASTE DE HIPÓTESIS 1. Itroduccó. Cotraste de ua hpótess estadístca 3. Test ulateral y blateral 4. Test relacoados co ua sola meda (varaza coocda) 5. Relacó co la estmacó del tervalo de cofaza 6. Test

Más detalles

NOMBRE Apellido Paterno Apellido Materno Nombre(s)

NOMBRE Apellido Paterno Apellido Materno Nombre(s) UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Contraste de Hipótesis

Contraste de Hipótesis Cotraste de Hpótess 1. Se quere comprobar s ua muestra de tamaño 0 co meda 10 procede de ua poblacó N(14,3) co el vel de sgfcacó 0,05..- E ua propagada se auca que uas determadas plas proporcoa más horas

Más detalles

Estadística aplicada al Periodismo

Estadística aplicada al Periodismo Estadístca aplcada al Perodsmo Temaro de la asgatura Itroduccó. Aálss de datos uvarates. Aálss de datos bvarates. Seres temporales y úmeros ídce. Probabldad y Modelos probablístcos. Itroduccó a la fereca

Más detalles

Técnicas experimentales de Física General 1/11

Técnicas experimentales de Física General 1/11 La distribució de Itroducció. Ejemplo. Defiició geeral de. Grados de libertad. reducido. La distribució de. Probabilidades de. Ejemplos: 1. Distribució de Poisso.. Bodad de u ajuste. Técicas eperimetales

Más detalles

RELACIÓN ENTRE DOS VARIABLES NUMÉRICAS REGRESIÓN LINEAL SIMPLE. CORRELACIÓN. realizar el calibrado en análisis instrumental.

RELACIÓN ENTRE DOS VARIABLES NUMÉRICAS REGRESIÓN LINEAL SIMPLE. CORRELACIÓN. realizar el calibrado en análisis instrumental. RELACIÓN ENTRE DOS VARIABLES NUMÉRICAS REGRESIÓN LINEAL SIMPLE. CORRELACIÓN Los métodos de regresó se usa para estudar la relacó etre dos varables umércas. Este tpo de problemas aparece co frecueca e el

Más detalles

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Coceptos áscos Capítulo 5: Modelos de Probabldad Estadístca Computacoal º Semestre 00 Profesor :Héctor llede Pága : www.f.utfsm.cl/~hallede

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

MÓDULO 1 LEYES DE DISTRIBUCIÓN DE PROCESOS HIDROLÓGICOS

MÓDULO 1 LEYES DE DISTRIBUCIÓN DE PROCESOS HIDROLÓGICOS MÓDULO 1 LEYES DE DISTRIBUCIÓN DE PROCESOS HIDROLÓGICOS Autores: Dr. Ig. Roberto Pzarro T. Ig. Jua Pablo Flores V. Ig. Clauda Sagüesa P. Ig. Ezo Martíez A. 1. INTRODUCCIÓN El presete documeto fue extraído

Más detalles

Aplicación de Boostrapping en Regresión I

Aplicación de Boostrapping en Regresión I Aplcacó de Boostrappg e Regresó I U modelo de regresó leal basado e observacoes (x,y ) es de la forma y =x β+e (=,,..) dode y so los valores observados de la varable de respuesta y, y los x so vectores

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

Test de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar

Más detalles

UN MÉTODO PARA CONTRASTAR LA BONDAD DE UN EXPERTO EN LA METODOLOGÍA PERT

UN MÉTODO PARA CONTRASTAR LA BONDAD DE UN EXPERTO EN LA METODOLOGÍA PERT UN MÉTODO PARA CONTRASTAR LA BONDAD DE UN EXPERTO EN LA METODOLOGÍA PERT RAFAEL HERRERÍAS PLEGUEZUELO FEDERICO PALACIOS GONZÁLEZ JOSÉ CALLEJÓN CÉSPEDES EDUARDO PÉREZ RODRÍGUEZ Departameto. de Ecoomía Aplcada.

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN Feradez Departameto de Matemátcas Uversdad de Puerto Rco Recto Uverstaro de Mayagüez REGRESIÓN LINEAL SIMPLE Regresó: cojuto de téccas que so usadas para establecer ua relacó etre

Más detalles

Consideraciones Previas

Consideraciones Previas Uversdad Técca Federco Sata María Capítulo 7 Estmacó de arámetros Estadístca Computacoal II Semestre 005 rof. Héctor Allede ága : www.f.utfsm.cl/~hallede e-mal : hallede@f.utfsm.cl Cosderacoes revas Coceptos

Más detalles

Distribuciones Muestrales

Distribuciones Muestrales Estadístca II / Fucoes Varables Aleatoras. Ig. Dey Gozález Dstrbucoes Muestrales Muestreo Aleatoro Poblacó Muestra Herrametas Estadístcas Medaa Muestral ) ) / (( ) / ( ) / ( ; es mpar ; es par = = Meda

Más detalles

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C Los axomas de la probabldad obabldad El prmer paso para descrbr la certdumbre es cosderar el cojuto de posbles resultados obtedos a partr de u expermeto aleatoro. Este cojuto es llamado espaco muestral

Más detalles

Identificación de Valores Atípicos

Identificación de Valores Atípicos STATGRAPHICS Rev. 4/5/007 Idetfcacó de Valores Atípcos Resume El procedmeto Idetfcacó de Valores Atípcos está dseñado para ayudar a determar s ua muestra de observacoes umércas cotee o o valores atípcos.

Más detalles

Qué es ESTADISTICA? OBJETIVO. Variabilidad de las respuestas. Las mismas condiciones no conducen a resultados exactamente similares PROBLEMA SOLUCIÓN

Qué es ESTADISTICA? OBJETIVO. Variabilidad de las respuestas. Las mismas condiciones no conducen a resultados exactamente similares PROBLEMA SOLUCIÓN Qué es ESADISICA? Es u couto de la rama de las Matemátcas Es algo aburrdo que mplca u motó de cuetas 3 Es u couto de téccas que se puede usar para probar cualquer cosa 4 Es u couto de coocmetos téccas

Más detalles

Modelos de Regresión Simple

Modelos de Regresión Simple Itroduccó a la Ifereca Estadístca Dept. of Mare cece ad Appled Bology Jose Jacobo Zubcoff Modelos de Regresó mple Que tpo de relacó exste etre varables Predccó de valores a partr de ua de ellas Varable

Más detalles

GENERALIDADES ESTADISTICA DESCRIPTIVA

GENERALIDADES ESTADISTICA DESCRIPTIVA MOD MEDIDS DE TEDECI CETRL MEDI MEDI RITMETIC MOD MEDIDS DE TEDECI CETRL MEDI MEDI RITMETIC MEDIDS DE TEDECI CETRL MEDI RITMETIC Defcó: Es la suma de todos los datos de ua sere dvdda por su úmero Cálculo:

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Tema 3. 3. Correlación. Correlación. Introducción

Tema 3. 3. Correlación. Correlación. Introducción 3-1 Introducción Tema 3 Correlación Coeficiente de correlación lineal de Pearson Coeficiente de correlación poblacional Contraste paramétrico clásico Transformación de Fisher Correlación bayesiana Test

Más detalles

Supongamos que hemos aplicado el test F y hemos rechazado la H0.

Supongamos que hemos aplicado el test F y hemos rechazado la H0. Comparacó de medas tomadas de a pares CONDICION Meda s --------- ---------- ------ ---------- 0.00 3.0000 0.00 3.73 3 97.00 3.0000 4 93.00.44 TOTAL 98.73.6036 Supogamos que hemos aplcado el test F y hemos

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

NOMBRE. para los nuevos datos, incrementando 5 unidades cada calificación. entonces la media sumando 5 unidades a cada calificación es

NOMBRE. para los nuevos datos, incrementando 5 unidades cada calificación. entonces la media sumando 5 unidades a cada calificación es UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

web: http://www.uv.es/friasnav/

web: http://www.uv.es/friasnav/ LAS PRUEBAS PARAMÉTRICAS 1. Se conoce el modelo de distribución de la población objeto de estudio y se desconoce un número finito de parámetros de dicha distribución que hay que estimar con los datos de

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual ESTIMACIÓN TEMA 5: Estimació putual I. Propiedades de los estimadores TEMA 6: Estimació putual II. Métodos de estimació putual TEMA 7: Estimació por itervalos CONTRASTES DE HIPÓTESIS TEMA 8: Cotrastes

Más detalles

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto:

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto: Curso: Estadístca Iferecal (ICO 8306) Profesores: Esteba Calvo, Pablo Huechapa y Omar Ramos Ayudates: José T. Meda, Fabo Salas y Daela Vlches PROBLEMA Cosdere que Ud. es dueño de u campo que produce mazaas,

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TMA D MATMÁTICA (Oposcoes de ecudara) TMA 58 POBLACIO Y MUTRA. CODICIO D RPRTATIVIDAD D UA MUTRA. TIPO D MUTRO. TAMAÑO D UA MUTRA.. Itroduccó.. Tpos de Muestreo. 3. stmacó. 3.. Propedades de u Bue stmador.

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles