CAPÍTULO VI CINÉTICA DEL RÍGIDO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPÍTULO VI CINÉTICA DEL RÍGIDO"

Transcripción

1 CÍULO CÉC DEL RÍDO

2 CEMÁC Un cuepo ígdo puede consdese coo un sste de ss puntules cuys dstncs se ntenen constntes dunte el oento. Coenceos detenndo el núeo de coodends ndependentes necess p especfc su confgucón en culque nstnte de tepo. Ddo un p culque de ptículs del ígdo de ls que sbeos que su dstnc penece constnte. Es dec, d j c j () donde ls c son constntes. Supongos que heos fjdo l poscón de puntos no colneles, y. S deseos fj ho l poscón de un punto culque del ígdo, bst con conoce su dstnc los puntos no colneles. d c d c d c () o consguente, conocd l poscón de los tes puntos, y, l poscón de culque oto punto que dst c, c y c de los tes puntos qued detend po l nteseccón de ls tes esfes de dos c, c y c centds espectente en, y. El núeo de gdos de lbetd que hy que fj p deten l confgucón del ígdo no supe nuee, tes gdos de lbetd p cd punto. eo ellos no son ndependentes y que están nculdos po ls ecucones (), lo que pete educ ses los gdos de lbetd equedos. En efecto, se necestn tes p fj el punto ; un ez fjdo éste, bstn dos coodends p fj sobe l esfe de do c y cento y fnlente hce flt un ángulo p fj l poscón de en l ccunfeenc que esult de ntesect l esfe de do c y cento con l esfe de do c y cento. o consguente, un cuepo ígdo qued ubcdo en el espco un ez conocdo el lo de ses coodends genelzds. Ot fo de ost est popedd es pt de un sste de coodends solds con el ígdo. L poscón de un punto del ígdo con especto este sste penece constnte, sus coodends no ín. o lo tnto bst con ubc el sste de coodends en el espco p conoce l poscón de culque punto del ígdo. ello se equeen tes coodends p fj el ogen del sste O y tes ángulos que peten fj l oentcón de los ejes coodendos especto un sste fjo.

3 o lo tnto, es neces l eolucón de ses bles p conoce el oento de un punto culque del ígdo. eeos que ls ses ecucones fundentles de un sste de ptículs son sufcentes p deten el oento de un sóldo ígdo. S el ígdo estb estngdo en su oento po lgún ínculo, el núeo de bles equedo p deten el oento dsnuye. Ls estntes ecucones fundentles petán deten el sste de fuezs neceso p que dcho ínculo se espetdo. o ejeplo, p un sóldo con un punto fjo hcen flt solo tes gdos de lbetd y es posble deten l fuez F que ejece el ínculo. En cetos pobles lldos hpednácos el conjunto de fuezs elzds po los ínculos no qued úncente detendo po ls ecucones fundentles. o defncón, l elocdd elt de un punto culque del ígdo especto un sste soldo con él es nul. o consguente, su elocdd especto un sste ΩXYZ está dd po ( ) O O Est elcón que heos obtendo tlente de ls ecucones del oento elto cctez l dstbucón de elocddes de un cuepo ígdo. L elocdd de un punto culque del ígdo está detend po l elocdd de un punto de uno de sus puntos O y l elocdd ngul del sste soldo. Ejeplo : Dd un b de longtud l que se uee de fo tl que los exteos penecen sobe los ejes de coodends (e fgu). Clcul l elocdd de un ϕ t. punto culque de l b en funcón del ángulo ( ) ϕk lsen O ϕ l cosϕ O O ϕ ( ) O

4 j, O l O ϕ k j l cos ϕϕ ϕ Es sencllo, s se dese, expes el esultdo en ténos de los esoes del sste fjo. Ejeplo : Clcul en funcón de ϕ l elocdd del cento de ss de un dsco etcl que ued sn deslz sobe un plno hozontl. o defncón de oddu, ϕk ϕ K. p o x p ( ) ϕ K RJ R ϕ o p x R ϕ

5 CÉC En est seccón os desoll étodos que nos petn clcul l cntdd de oento totl, el oentu ngul totl L y l enegí cnétc de un cuepo ígdo. osteoente, hcendo uso de ls ecucones fundentles de un sste de ptículs, deduceos ls ecucones del oento del cuepo ígdo llds ecucones cdnles. Un cuepo ígdo es un sste contnuo de ptículs, l genelzcón del concepto de cento de ss es nedt: expesón que en el líte en que l ptcón es ás y ás efnd y los olúenes tendendo ceo conduce d M que p constnte se educe d L cntdd de oento totl es d d l l l d dt dt M clcul el oentu ngul especto un punto coenceos consdendo peo el cso de un sste dsceto de ptículs ígdente unds y luego pseos l líte contnuo. o defncón, L ( ) Usndo l dstbucón de elocddes en un cuepo ígdo L ( ) ( ) ( ) p donde es l elocdd ngul del ígdo y l elocdd del punto del ígdo que concde con en el nstnte que estos consdendo. o ejeplo, en el cso de un dsco que ued sn deslz, s es el punto de contcto,.

6 odeos eescb est expesón en l fo: ( ) ( ) ( ) [ ] M L ( ) ( ) ( ) ( ) [ ] { } M. Recodndo que un poducto escl se escbe en coponentes B B el segundo téno de L se puede eescb en coponentes ( ) ( ) ( ) { } donde s s y ( ) ( ) ( ) { } es el lldo tenso de nec. o consguente, ( ) M L El oentu ngul del ígdo se expes en ténos de los dtos cneátcos y que dependen del oento del ígdo y los dtos dependentes de l dstbucón de ss del ígdo M, y. Exsten dos csos en que l expesón nteo se splfc., es dec que se ton oentos especto l cento de ss, L S es un punto del ígdo con elocdd nul L S suos que el ígdo tene un dstbucón contnu de te con densdd y toos un sste de coodends con ogen en el punto,

7 x y j z k El sste se supone soldo con el ígdo. En ese sste l tz de nec en coponentes to l fo: ( y z ) xyd xzd d xyd ( x z ) yzd d yzd ( x y ) d xzd y es nedto copob que l tz de nec es sétc. Ejeplo: Clcul el cento de ss y el tenso de nec de un secículo hoogéneo de s M y do R. x cos ϕ y sen ϕ z M πr x πr R π d dϕcos ϕ y πr R πr R d dϕsenϕ π R π Los coponentes xz, yz son nulos y zz xx yy. Debeos clcul xx, yy e xy. El cálculo es totlente nálogo l elzdo p clcul ls coodends del cento de ss y conduce MR xx yy xy po lo que l tz de nec especto l cento O es dgonl. eeos luego que po zones de setí e de espe est fo de l tz de nec. ntes de dscut ls popeddes de l tz de nec, pseos l cálculo de l enegí cnétc de un sóldo ígdo.

8 ( ) ( ) p ( ) ( ) [ ] p M. Usndo que ( ) ( ).B B sen B B se puede escb el últo sundo coo ( ) [ ] ( ) ( ) ( ) [ ] y tondo en cuent que, y ( ) ( ) se obtene ( ) [ ] ( ) ( ) ( ) [ ],, o consguente, p un cuepo ígdo tene l fo ( ) M M En l expesón nteo es un punto culque y es l elocdd del punto del ígdo que en el nstnte consdedo concde con S se elge, cento de ss M S es un punto fjo del ígdo

9 opeddes del tenso de nec Heos sto que p el cálculo del oentu ngul y l enegí cnétc de un ígdo esult pescndble conoce el objeto, cuys coponentes especto ceto sste de efeenc soldo con el ígdo con ogen en heos ddo explíctente. Dchs coponentes fon un tz sétc en densón tes. os pob ás delnte que sepe exste un sste de ejes otogonles en tl que l tz de nec especto dcho sste es dgonl. o se Los ejes del sste ctesno en que l tz to est fo se lln ejes pncples y los coespondentes eleentos de l tz de nec dgonl,,,, se conocen coo los oentos pncples de nec. S l elocdd ngul del ígdo está oentd según uno de los ejes pncples, entonces tbén lo está. o ejeplo, s.. En este cso es un ecto popo de con utolo. Ello plc que p deten los oentos pncples de nec y los ejes pncples bst esole el poble de clcul los utoloes y utoectoes de un tz. Los utoloes son los oentos pncples y los utoectoes puntn en l deccón de los ejes pncples. L ecucón de utoloes que nos ntees esole es: donde es l tz de nec en ceto sste de efeenc e es uno de sus utoloes. Se tt de un sste hoogéneo de tes ecucones con tes ncógnts coespondentes ls coponentes de. Este sste dte solucones no tles sólo s el detennte de los coefcentes se nul. Es dec, xx - xy xz yy xy - yz zz xz yz

10 donde heos usdo l setí de l tz de nec. Se tt de un ecucón cúbc en, lld usulente ecucón secul. Un teoe ben conocdo en álgeb lnel estblece que l ecucón secul de un tz sétc sepe dte íces eles y sus coespondentes utoectoes son otogonles. cd un de ls íces de l ecucón secul se esuele l ecucón de utoectoes y se obtene l deccón coespondente uno de los ejes pncples. En genel en l yo pte de los pobles páctcos, el ígdo tene cets setís que peten deten los ejes pncples po nspeccón. o ejeplo, s el ígdo es de eolucón lededo del eje z, es fácl e que los poductos de nec zx e zy se nuln po setí, s uno elge el eje z coo el eje de setí. L tz de nec no puede cb, debdo l setí de eolucón l ot lededo de z los ejes x e y. Ello plc que l tz de nec especto culque sste de ejes otogonles que tengn l eje de setí po eje z ton l fo: x x z que coesponde l cso en que l ecucón secul tene un íz doble. y l tz to l fo En el cso de un ígdo que tene un plno de setí es nedto copob que l tz de nec especto un punto petenecente l plno tene l eje pependcul l plno po coo eje pncpl de nec. En efecto, es nedto copob que xz yz xx xy xy yy zz encont los tes ejes pncples bst con dgonlz l tz estngd l plno xy. Un cso ptcul con est setí es el de los ígdos plnos. El eje pependcul l plno del ígdo es eje pncpl de nec.

11 eoe de Stene Ls expesones obtends p clcul L y son álds culque se el punto que se to coo ogen del sste de coodends soldo l ígdo. Muchs eces conene to oentos especto ceto punto (un punto fjo del cuepo, po ejeplo) unque el cálculo del tenso de nec se ás sple en oto punto. El teoe de Stene pete elcon los tensoes de nec especto dos puntos. Supongos po ejeplo que teneos un cubo con un eje fjo que ps po un de sus sts. Es ás fácl clcul l tz de nec especto l cento de s, y que los ejes pependcules ls cs son obente pncples, y luego ps los ejes plelos po. pob el teoe, ecodeos que: { ( ) ( ) ( ) } y toos el ogen de coodends en, de odo que. y usndo que M { ( ) ( ) ( ) } M {( ) } ( ) que es l fo genel de l elcón de Stene ente los tensoes de nec especto culque y especto l cento de ss. Enftceos que est elcón sólo le s bos sstes tenen sus ejes plelos. Ejeplo: Se dese tsld lo lgo del eje Ox

12 ( ) M po lo tnto xx xx, yy yy M y penecen nntes. zz zz M, y todos los poductos de nec Rotcones Heos sto cóo elcon dos tensoes de nec especto ejes plelos tslddos. Supongos que queeos elcon el tenso de nec especto dos sstes otdos uno con elcón l oto. o ejeplo, en l fgu consdeos el cso de un otcón pln. Llos ls coodends de Q especto xyz y sus coodends especto x y z. Bjo un cbo de bse ls coodends de Q se tnsfon lnelente. Es dec, donde es l tz coespondente l otcón consded. Ls otcones dejn nntes ls dstncs de Q l ogen. Q γ γ γ γ,, γ γ, γ γ donde es l tz tspuest de. Coo l elcón se cuple p todo punto Q, esult γ γ elcón que esct en fo tcl to l fo γ

13 o se y Ls tces que efcn est elcón se lln otogonles. Recodndo l fo explíct del tenso de nec esult { } γ γ γ,, γ γ γ γ γ γ γ γ γ Es dec, Los objetos que tnsfon de este odo son lldos tensoes de ngo dos. Ejeplo: Clcul el tenso de nec de un cubo especto los ejes Ox y z que se uestn en l fgu. Coenceos clculándolo especto Oxyz y luego oteos un ángulo π especto l eje Oz. ( ) yy xx zz M y x dxdydz y x 5 yz xz xy M y x xydxdydz po lo que especto Oxyz l tz de nec to l fo M O

14 Clculos ho l tz de otcón lededo del eje Oz con ángulo ϕ : ( ϕ) x x cos ϕ y sen ϕ y xsen ϕ y cos ϕ z z j cos ϕ sen ϕ que es un tz otogonl. En sen ϕ cos ϕ ( ϕ) cos ϕ sen ϕ sen ϕ cos ϕ.. π ϕ, π y sólo qued po clcul o π o π Concluyos es cpítulo con un obsecón potnte. Usulente se clculn ls coponentes del tenso de nec especto ejes soldos con el ígdo. S uno dese clcul, po ejeplo, el oento ngul especto l cento de ss, bst con clcul ls coponentes de l elocdd ngul en el sste soldo. Luego. w nos dá el ecto oento ngul expesdo en los ejes soldos. S ben sepe es posble tbj en los ejes soldos con el ígdo, hy csos en que puede conen us otos sstes de efeenc, lldos ejes nteedos, donde ls coponentes del tenso de nec son tbén constntes.

15 Ejeplo: Un cono ued sn deslz sobe un plno hozontl con su étce fjo un ltu R, gul l do de l bse, del eje z. El cono tene ltu h, ángulo l étce, y s M. Se dese clcul l enegí cnétc del cono en funcón de θ. h Es fácl e que l dstnc de l étce es. Elegos ho un sste de ejes pncples po. El eje de setí del cono es obente un eje pncpl, po lo que elegos el eje z según. Coo el cono es de eolucón lededo del eje, culque p de ejes pependcules son pncples. Elegos y según l hozontl y x según l etcl. Respecto estos ejes el tenso de nec tene l fo deten l elocdd ngul del cono coenceos obsendo que C, y que es fjo., y que el cono ued sn deslz. o lo tnto C C C ( ) ( ) es colnel con C cos. k sen. L elocdd del cento de ss es { h. k h θ j θ sen o se θ ctg. k θ.

16 clcul bst ecod que: M M θ ctg θ x z (,, ) x z Los oentos de nec l punto del cono son x z Mh tg Mh ( tg ) y susttuyendo se obtene ( ) tg Mh 6 θ

Campos Eléctricos estáticos

Campos Eléctricos estáticos Cpos éctcos estátcos cucones de Mxwe p e cso estátco. S os cpos son estátcos s funcones ue os descben no dependen de be tepo t ueo se efc en todos os csos ue s cones de os sos seán nus es dec ue t ntoducendo

Más detalles

Se le define como toda situación física producidapor una masa men el espacio que lo rodeay que es perceptible debido a la fuerza que ejerce sobre una

Se le define como toda situación física producidapor una masa men el espacio que lo rodeay que es perceptible debido a la fuerza que ejerce sobre una Cpo vtconl Se le defne coo tod stucón físc poducdpo un s en el espco que lo ode que es peceptble debdo l fuez que ejece sobe un s colocd en dco espco. Dd un s en el espco un s en dfeentes poscones lededo

Más detalles

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores 1 Físc Genel I Plelos 5. Pofeso RodgoVeg R 11) Repso de Vectoes 1) Repso de Opecones Vectoles Us l sum ectol, usndo l egl del tángulo l del plelogmo. Clcul l mgntud deccón de l sum usndo teoem del seno

Más detalles

CAPÍTULO 7. DINÁMICA DEL ROBOT PARALELO

CAPÍTULO 7. DINÁMICA DEL ROBOT PARALELO 2 CAPÍLO 7. DNÁMCA DEL ROBO PARALELO En est seccón se descbe el nálss dnáco del obot plelo: Se descben ls popeddes de s de los eleentos que lo confon; específcente, se obtene l s totl, el cento de s y

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA 1 MAGNITUDES ESCALARES Y VECTRIALES D. CARLS MSQUERA 2 Mgntudes escles y vectoles Defncones; popeddes y opecones En los conceptos de mecánc que desollemos, nos encontemos con dos dfeentes tpos de mgntudes:

Más detalles

TEORÍA (3 p). (a) Calcular el momento de inercia de una esfera homogénea de masa M y radio R

TEORÍA (3 p). (a) Calcular el momento de inercia de una esfera homogénea de masa M y radio R EM 1 ( p) Un b delgd de longtud está tculd en el punto fo mednte un psdo lededo del cul g en sentdo nthoo con elocdd ngul (ése fgu 1). En el punto está und ot b delgd de longtud cuyo extemo se deslz lo

Más detalles

CINEMÁTICA Y DINÁMICA DE ROTACIÓN

CINEMÁTICA Y DINÁMICA DE ROTACIÓN Uel Fcult e Cencs Cuso e Físc I p/lc. Físc y Mtemátc Cuso CINEMÁTICA Y DINÁMICA DE OTACIÓN. Momento e otcón- Un cuepo ígo se muee en otcón pu s c punto el cuepo se muee en tyecto ccul. Los centos e estos

Más detalles

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL 8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO VECTORES: MAGNITUDES ESCALARES Y VECTORIALES VECTORES

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO VECTORES: MAGNITUDES ESCALARES Y VECTORIALES VECTORES TALLER VERTICAL DE MATEMÁTICA VECTORES Cets mgntudes, que quedn pefectmente defnds po un solo númeo el su medd o módulo) se denomnn MAGNITUDES ESCALARES pudendo epesentse po segmentos tomdos soe un ect.

Más detalles

X X 1. MECÁNICA GENERAL 1.4. FUNDAMENTOS DE ANÁLISIS TENSORIAL. 1.4.1. Introducción

X X 1. MECÁNICA GENERAL 1.4. FUNDAMENTOS DE ANÁLISIS TENSORIAL. 1.4.1. Introducción Fndmentos y eoís Físcs ES Aqtect. MECÁNCA GENERAL.4. FUNDAMENOS DE ANÁLSS ENSORAL.4.. ntodccón L myoí de ls mgntdes físcs y elcones mtemátcs ente ls msms qedn pefectmente defnds tbjndo con escles y ectoes.

Más detalles

Unidad I - Electroestática

Unidad I - Electroestática Undd I - Electoestátc Intoduccón ues de nteccón: ccones dstnc ues Electomgnétcs ues Eléctcs Un poco de hsto El témno eléctco, tene su ogen en ls expeencs elds en l ntgüedd donde se obsevo ue cundo se fotd

Más detalles

NÚMEROS COMPLEJOS. El vector así representado define un número complejo, y a dicha representación se le llama afijo de un número complejo.

NÚMEROS COMPLEJOS. El vector así representado define un número complejo, y a dicha representación se le llama afijo de un número complejo. educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (, ). Los númeos eles y se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC MECÁNIC NEWTNIN Cuso 009 áctco I Cnemátc de l tícul y Movmento eltvo NT: Los sguentes eeccos están odendos po tem y, dento de cd tem, en un oden cecente de dfcultd lgunos eeccos se encuentn

Más detalles

Distribuciones de corriente axiales con simetría de revolución.

Distribuciones de corriente axiales con simetría de revolución. Electc Mgnetsmo 1/11 Mgnetostátc Defncón. El potencl vecto mgnétco. Meos nefnos. Popees. Le e ot vt. Le e Ampèe. mpo en puntos lejos. Momento mgnétco. ompotmento en el nfnto. oentes lgs. Enegí Mgnétc.

Más detalles

Distribuciones de corriente axiales con simetría de revolución.

Distribuciones de corriente axiales con simetría de revolución. Electc Mgnetsmo 1/11 Mgnetostátc Defncón. El potencl vecto mgnétco. Meos nefnos. Popees. Le e ot vt. Le e Ampèe. mpo en puntos lejos. Momento mgnétco. ompotmento en el nfnto. oentes lgs. Enegí Mgnétc.

Más detalles

TEMA IV PLANO VECTORIAL. PRODUCTO ESCALAR. APLICACIONES. Un vector fijo es un segmento cuyos extremos vienen dados en un cierto orden.

TEMA IV PLANO VECTORIAL. PRODUCTO ESCALAR. APLICACIONES. Un vector fijo es un segmento cuyos extremos vienen dados en un cierto orden. VECTOR FIJO TEM IV PLNO VECTORIL. PRODUCTO ESCLR. PLICCIONES. Un vecto fijo es un segento cuyos exteos vienen ddos en un cieto oden. Ejeplo: El segento de exteos y (en este oden). Se not con (, ) ó con.

Más detalles

ANEXO 4.1: Centro de masa y de gravedad

ANEXO 4.1: Centro de masa y de gravedad Cuso l Físca I Auto l Loenzo Ipaague ANEXO 4.: Cento de asa de gavedad El punto que poeda la ubcacón de la asa se denona cento de asa (), dado que la accón de la gavedad es popoconal a la asa, es natual

Más detalles

NÚMEROS COMPLEJOS. r φ. (0,0) a

NÚMEROS COMPLEJOS. r φ. (0,0) a Educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (,b). Los númeos eles y b se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente

Más detalles

CAPÍTULO V SISTEMAS DE PARTÍCULAS

CAPÍTULO V SISTEMAS DE PARTÍCULAS CAPÍTULO V SISTEAS DE PARTÍCULAS 3 SISTEAS DE PARTÍCULAS La mayo pate de los objetos físcos no pueden po lo geneal tatase como patículas. En mecánca clásca, un objeto enddo se consdea como un sstema compuesto

Más detalles

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión). Exmen de Físc-1, 1 Ingenerí Químc Enero de 211 Cuestones (Un punto por cuestón). Cuestón 1: Supong que conocemos l poscón ncl x y l velocdd ncl v de un oscldor rmónco cuy frecuenc ngulr es tmén conocd;

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,

Más detalles

Sistemas de Conductores.

Sistemas de Conductores. Electcdd y Mgnetsmo uso 009/00 stems de onductoes - ondensdoes Eym E- stems de onductoes. Los sstems de conductoes epesentn l páctc myoí de los polems ue se pueden encont en los sstems de telecomunccón.

Más detalles

Sistemas de Conductores.

Sistemas de Conductores. Electcdd y gnetsmo uso 005/006 stems de onductoes. os sstems de conductoes epesentn l páctc myoí de los polems ue se pueden encont en los sstems de telecomunccón. e cctezn po: Un númeo de de conductoes

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

=-2.8 µc, se mantiene en una posición fija por medio de soportes aislantes. Se proyecta hacia q 1

=-2.8 µc, se mantiene en una posición fija por medio de soportes aislantes. Se proyecta hacia q 1 . n esfe etálic peueñ, con un cg net de -.8 µ, se ntiene en un posición fij po edio de sopotes islntes. Se poyect hci un segund esfe etálic peueñ, con un cg net de -7.8 µ y un s de.5 g. undo ls dos esfes

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

TEMA 5: VECTORES 1. VECTOR FIJO

TEMA 5: VECTORES 1. VECTOR FIJO TEMA 5: 1. VECTOR FIJO Hy gnitudes que no quedn ien definids edinte un núeo el, necesitos deás conoce su diección y su sentido. Ests gnitudes se lln gnitudes vectoiles y ls epesentos edinte. P detein un

Más detalles

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB Cuso: FISICA II CB 3U Ley de Coulomb (1736-186). Si ls cgs se ten o epelen signific que hy un fuez ente ells. LEY DE COULOMB L fuez ejecid po un cg puntul sobe ot Está diigid lo lgo de l líne que los une.

Más detalles

1) CURVAS DE PAR-VELOCIDAD DE UN MOTOR DE CORRIENTE CONTINUA DE IMANES PERMANENTES. CRITERIOS DE SELECCIÓN.

1) CURVAS DE PAR-VELOCIDAD DE UN MOTOR DE CORRIENTE CONTINUA DE IMANES PERMANENTES. CRITERIOS DE SELECCIÓN. ) CUAS D A-LOCDAD D U MOO D CO COUA D MAS MAS. COS D SLCCÓ. ) Cuvs de p-velocdd. Ls cuvs de p-velocdd de un oo de coene connu descben l cpcdd de poduccón de un p esáco del oo especo l volje plcdo y l velocdd

Más detalles

dq de x r CAMPO DE UN ANILLO CON CARGA UNIFORME r α P de y de x

dq de x r CAMPO DE UN ANILLO CON CARGA UNIFORME r α P de y de x y a dsdq AMPO D UN ANILLO ON AGA UNIFOM P d y l campo d debdo a dq es: d dq dq a d d Un segmento en la pate nfeo del anllo cea un capo eléctco d con componente d y gual y opuesta, así que sólo contbuyen

Más detalles

Problemas de Dinámica del Sólido Rígido

Problemas de Dinámica del Sólido Rígido E.T.S... T Deprtento de ísc e ngenerí ucler robles de Dnác del Sóldo ígdo 1 étodo de ls celercones étodo de los oentos 3 étodo de l energí ro. J. rtín 3 1 étodo de ls celercones 1.1 Un plc rectngulr unore

Más detalles

Examen de Física I. 1.- Explique como se puede reducir el siguiente sistema de vectores deslizantes

Examen de Física I. 1.- Explique como se puede reducir el siguiente sistema de vectores deslizantes Eaen de Físca ngeneía ecánca. ngeneía de Oganzacón ndustal: Gupo.- Eplque coo se puede educ el sguente sstea de vectoes deslzantes.- Defna y elacone ente ellos, los conceptos de oento lneal, pulso y oento

Más detalles

Se le define como toda situación física producida por una masa m en el espacio que lo rodea y que es perceptible debido a la fuerza que ejerce sobre

Se le define como toda situación física producida por una masa m en el espacio que lo rodea y que es perceptible debido a la fuerza que ejerce sobre Cpo vitcionl Se le define coo tod situción físic poducid po un s en el espcio que lo ode y que es peceptible debido l fuez que ejece sobe un s colocd en dicho espcio. Dd un s en el espcio y un s en difeentes

Más detalles

Sistemas de partículas

Sistemas de partículas Ssteas de patículas Hasta aquí heos aplcado las leyes de ewton tatando a los objetos coo s fuean patículas puntuales que tenen asa peo no taaño, aunque uchas de las aplcacones se extendían a objetos coo

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

TEMA 3: Dinámica II Capitulo 1. Trabajo y energía

TEMA 3: Dinámica II Capitulo 1. Trabajo y energía TMA 3: Dnáca II Captulo. Trabajo y energía Bran Cox sts the world's bggest acuu chaber (BBC Two) https://www.youtube.co/watch?43-cfukgs TMA 3: Dnáca II. Captulo : trabajo y energía Concepto de trabajo.

Más detalles

Electromagnetismo II

Electromagnetismo II Electomgnetismo II Semeste: 215-1 EXAMEN PARCIAL 2: Solución D. A. Reyes-Coondo Poblem 1 (2 pts.) Po: Jesús Cstejón Figueo ) Escibe ls cuto ecuciones de Mxwell en fom difeencil, escibiendo el nombe de

Más detalles

CURSO CERO DE FÍSICA CINEMÁTICA DEL PUNTO

CURSO CERO DE FÍSICA CINEMÁTICA DEL PUNTO CURSO CERO DE FÍSICA Ángel Muño Csellnos Depmeno de Físc CONTENIDO Momeno undmensonl Poscón, elocdd, celecón Momeno eclíneo unfome Momeno eclíneo unfomemene celedo Momeno en el espco Vecoes poscón, elocdd

Más detalles

CAPÍTULO 2. MARCO TEÓRICO

CAPÍTULO 2. MARCO TEÓRICO 8 CÍULO. MRCO EÓRCO.. Robótc L obótc es l cenc o estudo de ls tecnologís báscs socds con los obots. El estudo nclue tnto l nvestgcón teóc como l plcd, dvdéndose en el dseño del obot, su mecánc, l plnecón

Más detalles

11.1. CAMBIO DE COORDENADAS RECTANGULARES A POLARES.

11.1. CAMBIO DE COORDENADAS RECTANGULARES A POLARES. Integcón ol lccones CÁLCUL DIFEENCIL E INTEGL I.. CMBI DE CDENDS ECTNGULES LES. Cooens oles El lno Euclno tene socs os ects eencules un hozontleje e ls scss X ot vetcleje e ls oens Y con nteseccón en un

Más detalles

Sistemas de Reacciones Múltiples

Sistemas de Reacciones Múltiples stems de eccones Múltples eccones Químcs mples Un sol ecucón cnétc Múltples En ee En Plelo EJEMPLO. Poduccón de nhíddo ftálco pt de o-xleno: o toluldehdo O, O o xleno ftld nhíddo ftálco Esto se puede epesent

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Deptmento de Físic, UTFSM Físic Genel II / of: A. Bunel. FIS10: FÍSICA GENERAL II GUÍA #3: otencil Eléctico. Objetivos de pendizje Est guí es un hemient que usted debe us p log los siguientes objetivos:

Más detalles

Problema 4 del primer parcial de FT1-2do cuatri 2014

Problema 4 del primer parcial de FT1-2do cuatri 2014 Poblem 4 del pime pcil de FT - 2do cuti 204 Solución po imágenes Usulmente cundo nos plnten lgun geometí de conductoes tie, lo más común es pens en el método de imágenes, más que nd cundo se tt de lgun

Más detalles

Cantidad de Momento, Conservación, Choques, Centro de Masa

Cantidad de Momento, Conservación, Choques, Centro de Masa Cantdad de Moento, Conseracón, Choques, Centro de Masa Moentu líneal Las fuerzas aplcadas en una dreccón que no pasa por el centro de graedad de un objeto producen un gro en éste objeto. Para edr la agntud

Más detalles

Fuerza de una masa de fluido en movimiento

Fuerza de una masa de fluido en movimiento Fuez de un ms de fluido en movimiento e un ms m de fluido en movimiento que choc cont un supeficie, pependicul l diección del movimiento del fluido. P obtene l fuez que est ms de fluido ejece sobe l supeficie,

Más detalles

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO DOCENTE EL SABINO DEPARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II PROFESORA CARMEN ADRIANA CONCEPCIÓN 1. Un potón (q potón

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario MECANICA TEORÍA Moento Entonces Sistea Par o Cupla de Vectores Es un sistea de dos vectores deslizables de la isa agnitud que están en distintas rectas sostén con la isa dirección pero sentido contrario

Más detalles

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( )

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( ) Te de Estdo Sólido 5/Septiembe/008 Min Eugeni Fís Anguino. Pob que, b b, b π π π Donde los vectoes b i cumplen l siguiente elción: b πδ i j ij Po constucción geométic, los dos conjuntos de vectoes y b

Más detalles

2πR π =

2πR π = PÁGIN 11 Pág. 1 oodends geogáfi cs 19 os ciuddes tienen l mism longitud, 15 E, y sus ltitudes son 7 5' N y 5' S. uál es l distnci ente ells? R b 7 5' b 5' Tenemos que ll l longitud del co coespondiente

Más detalles

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que Tem 8: Integl de iemnn Monotonídelintegl Si f y g son funciones integbles en [, b] tles que f(x) g(x) x [, b] entonces b b f Como cso pticul p g =se obtiene que si f es un función integble en [, b] tl

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

Capítulo. Cinemática del Sólido Rígido

Capítulo. Cinemática del Sólido Rígido Cpítulo 1 Cinemátic del Sólido Rígido Contenido Intoducción Tslción Rotción lededo de un Eje Fijo. elocidd Rotción lededo de un Eje Fijo: celeción Rotción lededo de un Eje Fijo: Sección epesentti Ecución

Más detalles

Tema 2. DINÁMICA DE SISTEMAS DE PARTÍCULAS

Tema 2. DINÁMICA DE SISTEMAS DE PARTÍCULAS Tea. DIÁMICA DE SISTEMAS DE PARTÍCULAS. Intoduccón. Cento de asas.. Movento del cento de asas.. Masa educda..3 Consevacón del oento lneal..4 Consevacón del oento angula.3 Enegía de un sstea de patículas.3.

Más detalles

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v Escles cmpos escles nálisis Vectoil Teoí Electomgnétic 1 Dipl.-Ing. noldo Rojs oto Escl: ntidd cuo lo puede se epesentdo po un simple númeo el positio o negtio mpos escles: Función mtemátic del ecto que

Más detalles

CAPÍTULO VII LEY DE AMPERE Y LEY DE BIOT-SAVART

CAPÍTULO VII LEY DE AMPERE Y LEY DE BIOT-SAVART Tócos de Electcdd y Mgnetsmo J.Pozo y R.M. Chobdjn. CAPÍTULO VII LEY DE AMPERE Y LEY DE IOT-SAVART 7.. Ley de Amee Oested en 8 fue quen descubó eementlmente, que un coente que ccul en un lmbe oduce efectos

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios

Más detalles

Bibliografía. Bibliografía. Fundamentos Físicos de la Ingeniería. Tema 3 Mc Graw Hill. - Tipler. "Física". Cap. 23. Reverté.

Bibliografía. Bibliografía. Fundamentos Físicos de la Ingeniería. Tema 3 Mc Graw Hill. - Tipler. Física. Cap. 23. Reverté. Tema.- POTENCIAL ELÉCTRICO. Potencal eléctco. (3.).. Potencal eléctco debdo a un sstema de cagas puntuales. (3.).. Potencal eléctco debdo a dstbucones contnuas de caga. (3.4)..3 Detemnacón del campo eléctco

Más detalles

Así, si la medida del arco AB es r, entonces:

Así, si la medida del arco AB es r, entonces: INSTITUTO EDUAIONAL ARAGUA MARAAY VMOL GUIA DE MATEMATIA, s. TRIGONOMETRÍA Nº Medid de Ángulos: (Siste Rdián y Sexgesil) B O α A Not: En est guí cundo se define l edid del ángulo centl α se lá indistintente

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA. Problema Teórico 1

REAL SOCIEDAD ESPAÑOLA DE FÍSICA. Problema Teórico 1 REAL SOCIEDAD ESPAÑOLA DE FÍSICA Poblem Teóico 1 Poblem 1. Un intoducción l te de nveg. Alicnte es un bell ciudd mediteáne que vive de c l m. Su mgnífico pueto es un hevideo de bcos de eceo, tes espectcules

Más detalles

.-. La dencón de choque ontal totalente nelástco es aquel en el que los cuepos que colsonan se acoplan y se ueven con la velocdad del cento de asas..- D. La tecea ley de Newton dce que las uezas ejecdas

Más detalles

TEMA 3. ENERGÍA MAGNÉTICA.

TEMA 3. ENERGÍA MAGNÉTICA. TEMA 3. ENEGÍA MAGNÉTIA. POLEMA. ENEGÍA MAGNÉTIA EN UN ILO ONDUTO. POLEMA. ENEGÍA MAGNÉTIA EN UN INDUTO. POLEMA 3. INDUTANIA TOOIDE. POLEMA 4. ENEGÍA ALMAENADA EN EL AMPO MAGNÉTIO DE UN TOOIDE. POLEMA

Más detalles

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vris Vriles 08- Ingenierí Mtemátic Universidd de Chile Guí Semn 4 Grdiente. Sen Ω Ê N un ierto, f

Más detalles

4πε. r 1. r 2. E rˆ La carga puntual q 1

4πε. r 1. r 2. E rˆ La carga puntual q 1 .3 L cg puntul q -5. nc está en el oigen l cg puntul q 3 nc está sobe el eje de ls en 3 cm. l punto P está en 4 cm. ) Clcule los cmpos elécticos debidos ls dos cgs en P. b) Obteng el cmpo eléctico esultnte

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nombe: Cuso: Fec: Se llm lug geomético l conjunto de todos los puntos que cumplen un detemind popiedd geométic. EJEMPLO Cuál es el lug geomético

Más detalles

Tema 1.- INTERACCIÓN ELÉCTRICA ( RESUMEN)

Tema 1.- INTERACCIÓN ELÉCTRICA ( RESUMEN) Te.- NTAÓN LÉTA ( SUMN). gs puntules g eléctc L cg eléctc es un pope funentl e l te, esteno os tpos e cg: postv y negtv. Dos cuepos con el so tpo e cg se epelen, ents ue s tenen stnto tpo e cg, se ten

Más detalles

la integral de línea de B alrededor de un trayecto cerrado

la integral de línea de B alrededor de un trayecto cerrado LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En

Más detalles

1 Inductancia interna de conductores

1 Inductancia interna de conductores Cmpos y Onds nductnci inten de conductoes Pág. nductnci inten de conductoes En est sección se efectún ls deducciones de l inductnci inten de distints geometís de conductoes, que conducen un coiente estcioni

Más detalles

5. MODELO BÁSICO: CONDICIÓN DE COLINEALIDAD

5. MODELO BÁSICO: CONDICIÓN DE COLINEALIDAD UNIVERIDD DE LMNC MTER DE EOTECNOLOÍ CRTORÁIC EN INENIERÍ RQUITECTUR 5. MODELO BÁICO: CONDICIÓN DE COLINELIDD Je óez Lhoz Detento de Ingeneí Ctogác del Teeno Escuel Poltécnc ueo de Ál 5. Modelo básco:

Más detalles

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO.

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. CONTENIDOS: 3.1 Intoduccón 3. Cnemátca de la otacón alededo de un eje fjo. 3.3 Momento de una fueza y de un sstema de fuezas. 3.4 Momento angula del sóldo ígdo. 3.5

Más detalles

Gráficamente se representan mediante un punto en una escala (de ahí el nombre).

Gráficamente se representan mediante un punto en una escala (de ahí el nombre). 1.- Intoducción. L Cinemátic es l pte de l ísic que descibe los movimientos de los cuepos sin bod ls cuss que los poducen, ls cules son objeto de ot pte de l ísic: l Dinámic. L Cinemátic esponde l necesidd

Más detalles

Lección 4: Dinámica de los sistemas de partículas y del sólido rígido

Lección 4: Dinámica de los sistemas de partículas y del sólido rígido Leccón 4: Dnámca de ls sstemas de patículas y del sóld ígd.-intduccón..- Mvment del cent de masa de un sstema de patículas. 3.- Mment angula de un sstema de patículas. 4.- Mment angula de un sóld ígd.

Más detalles

r V CINEMÁTICA DEL SÓLIDO RÍGIDO

r V CINEMÁTICA DEL SÓLIDO RÍGIDO 1 d j m j Fg.1 dm dm Fg.2 m INEMÁTI DEL SÓLID RÍGID Un sóldo ígdo se consdea como un conjunto de patículas numeables: m 1,...m...m n cuyas dstancas mutuas pemanecen nvaables, en las condcones habtuales

Más detalles

- 1 - PLANO INCLINADO

- 1 - PLANO INCLINADO - 1 - PLNO INCLINDO DESCOMPOSICIÓN DE L FUERZ PESO Suponé que tengo un cuerpo que está poydo en un plno que está inclindo un ángulo. L fuerz peso punt pr bjo de est ner: UN CUERPO POYDO EN UN PLNO INCLINDO.

Más detalles

Análisis Dinámico de Sistemas Multicuerpo

Análisis Dinámico de Sistemas Multicuerpo Cpíítuo T5 Anáss Dnáco de Sstes utcuepo En este cpítuo ntoduceos os conceptos teó en os que se bs e náss dnáco de sstes utcuepo, tnto betos coo cedos, con estccones cneátcs o sn es. A gu que en e cpítuo

Más detalles

Capítulo ANALISIS FACTORIAL GENERAL 1.- INTRODUCCIÓN

Capítulo ANALISIS FACTORIAL GENERAL 1.- INTRODUCCIÓN ANALISIS FACTORIAL GENERAL Cítulo ANALISIS FACTORIAL GENERAL.- INTRODUCCIÓN Coo decíos en l ntoduccón del ctulo nos ece nteesnte elz un beve estudo del nálss fctol genel, y que nos uede d un vsón s globl

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA P hll l ecución de un ect en el espcio necesito: Dos puntos Un punto su vecto diecto Not: Nosotos utiliemos siempe un punto A(,, ) un vecto v (,b,c).

Más detalles

No entraremos en detalle ni en definiciones demasiado formales sino que veremos únicamente aquellos conceptos que necesitaremos durante el curso.

No entraremos en detalle ni en definiciones demasiado formales sino que veremos únicamente aquellos conceptos que necesitaremos durante el curso. Técncs Computconles, Cuso 007-008. Pedo Sldo.- Álgeb lnel o entemos en detlle n en defncones demsdo fomles sno que eemos úncmente quellos conceptos que necestemos dunte el cuso.. Espcos ectoles Un espco

Más detalles

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y Un mgntud es culquer cos que puede ser medd medr no es más que comprr un mgntud con otr de l msm espece que se tom como referenc. Ls mgntudes se epresn con un número uns unddes. En lguns ocsones el número

Más detalles

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial Elemetos tos bdmesoles. U vsó pelm A Se cosde el poblem de cotoo bdmesol costtdo po l eccó deecl (, e el domo, smplemete coeo ls codcoes de cotoo: (, coocd e α coocd e Recédese qe qe, s se deom l ccdte

Más detalles

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y E F G I J H M K M L N N Q P R S Ejecicio 1. Medi con un egl estos segmentos y not, encim de cd uno de ellos, el esultdo en milímetos. T Ejecicio 2. on l yud del compás, tz: +, pti del punto M, -, pti del

Más detalles

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1 .6 Ls 3 esfes peueñs ue se muestn en l figu tienen cgs 4 n, -7.8 n y 3.4 n. Hlle el flujo eléctico neto tvés de cd un de ls supeficies ceds S, S, S3, S4 y S5. S S S3 S5 3 S4 4 m S 9 3 Φ.45 m 8.85 9 7.8

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reles y Complejos C.. Los números reles Suponemos conocdo el conjunto de los números reles. Vmos defnr y estudr en lgunos conceptos como relcones de orden, ntervlos, cots y vlor bsoluto.

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Mgnitudes vectoiles 1 de 8 MAGNITUDES VECTORIALES: Índice 1 Mgnitudes escles vectoiles Sum de vectoes lies Poducto de un escl po un vecto 3 Sistem de coodends vectoiles. Vectoes unitios 3 Módulo de un

Más detalles

CAMPO MAGNÉTICO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRIENTE y. sin

CAMPO MAGNÉTICO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRIENTE y. sin CAMPO MAGNÉTCO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRENTE dl - P X d φ φ sin sin φ φ 3/ sin d d φ Cundo l longitud del conducto es mu gnde en compción con, l ecución se conviete en: >> 8. Un lmbe ecto

Más detalles

SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO

SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO SCCIÓN ADVRSA Y RACIONAMINTO D CRDITO Biliofí Básic: Wlsh (003 º d.) Monety Theoy nd Policy. MIT ess. Citulo 7. SCCIÓN ADVRSA Cundo hy ieso de insolvenci l fijción del tio de inteés dee conteml tl osiilidd

Más detalles

Colegio Villa María la Planicie ÁREA DE MATEMÁTICA

Colegio Villa María la Planicie ÁREA DE MATEMÁTICA oleio Vill Mí l Plnicie ÁRE DE MEMÁI MERI N 10 Pofeso: S. los lmeid ellido Quinto de Secundi oodindo de áe: S. Gby Sáncez Fec: ctube de 2016 1. U ó HEXEDR REGUR SÓIDS GEMÉRIS Áe del cubo: = 6 2 Volumen

Más detalles

5.- Ajuste de curvas. para M = 2 un ajuste parabólico, etc..

5.- Ajuste de curvas. para M = 2 un ajuste parabólico, etc.. écncs Computconles Cuso 7-8. Pedo lvdo 5.- juste de cuvs El juste de cuvs es un poceso mednte el cul ddo un conjunto de pes de puntos { } sendo l vble ndependente e l dependente se detemn un uncón mtemátc

Más detalles

Estructura de la materia 3 Serie 2 Modelo de Thomas-Fermi y Sistemas Atómicos Cátedra: Jorge Miraglia. Segundo cuatrimestre de 2013

Estructura de la materia 3 Serie 2 Modelo de Thomas-Fermi y Sistemas Atómicos Cátedra: Jorge Miraglia. Segundo cuatrimestre de 2013 Estuctua de la matea See Modelo de homas-fem y Sstemas Atómcos Cáteda: Joge Magla Segundo cuatmeste de Modelo de homas-fem en átomos En el modelo de homas-fem, la enegía potencal de un electón lgado a

Más detalles

TEMA 10: INTEGRALES DOBLES Y TRIPLES.

TEMA 10: INTEGRALES DOBLES Y TRIPLES. ESCUELA TÉCNICA SUPERIOR E INGENIERÍA EPARTAMENTO E MATEMÁTICA APLICAA TITULACIONES Ingenieí Industil GITIGITI+AE Ingenieí de Telecomunicción GITTGITT+AE CÁLCULO Cuso 5-6 TEMA : INTEGRALES OBLES Y TRIPLES.

Más detalles

Unidad 3 Sistemas de Ecuaciones Lineales

Unidad 3 Sistemas de Ecuaciones Lineales Unidd 3 Sistems de Ecuciones Lineles Popedéutico 8 D. Ruth M. Aguil Ponce Fcultd de Ciencis Deptmento de Electónic Popedéutico 8 Fcultd de Ciencis Popedéutico 8 Fcultd de Ciencis Sistem de Ecuciones Lineles

Más detalles

5. Aplicación de la Integral de Riemann

5. Aplicación de la Integral de Riemann Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 8-2 Ingenierí Mtemátic Universidd de Chile SEMANA 9: APLICACIONES DE LA INTEGRAL 5. Aplicción

Más detalles

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA UNIERSIDD NCION DE SN CRISTÓ DE HUMNG FCUTD DE INGENIERÍ DE MINS, GEOOGÍ Y CII Ecuel de Focón Pofeonl De Ingeneí Cvl TRJO ENCRGDO Nº DESRROO DE EJERCICIOS DE CINEMÁTIC DE PRTÍCU Y CUERPO RÍGIDO IRO MECÁNIC

Más detalles

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria.

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria. Númeos Complejos Un Defnón Llmemos númeo omplejo un númeo z que se ese e l fom, one y son númeos eles, e vef:. Al númeo se lo enomn pte el e z y l númeo, pte mgn e z. pte } pte } mgn Se esgn on Re ( z)

Más detalles

Dinámica de las rotaciones

Dinámica de las rotaciones Dinámic de ls otciones Octube 009 Ve clses en: http://video.google.com./videoply?docid48804863890 486&eiX87oSp4NnYpAoq3ucA&qmomento+ngul +clses+video&hles# Físic de ls Tslciones Tiempo t neci m s Posición

Más detalles

La Carga Eléctrica Puntual, es una partícula cuya masa se supone está concentrada en un punto, y en el mismo se concentra su carga eléctrica.

La Carga Eléctrica Puntual, es una partícula cuya masa se supone está concentrada en un punto, y en el mismo se concentra su carga eléctrica. LEY DE COULOMB La Ley de Coulomb es la pmea ue se estuda en Electcdad ella consttuye una LEY UNIVERSAL poue es posble deducla del expemento y s ese expemento se ealza bajo las msmas condcones físcas cualuea

Más detalles

LABORATORIO DE PROGRAMACIÓN EN LENGUAJE ENSAMBLADOR x86-16bits

LABORATORIO DE PROGRAMACIÓN EN LENGUAJE ENSAMBLADOR x86-16bits LBORTORIO DE PROGRMCIÓN EN LENGUJE ENSMBLDOR x86-6ts Covesó o-scii Ojetvo El ojetvo de est páctc es l pogcó del códgo eceso p covet u úeo eteo o lcedo e eo l cde SCII coespodete su codfccó e u vedd de

Más detalles