Conceptos generales.
|
|
|
- Julio Farías Moreno
- hace 7 años
- Vistas:
Transcripción
1 Titulación: Ingeniero en Telecomunicación Asignatura: Cálculo Relación de problemas número Conceptos generales RECTA REAL Y PLANO COMPLEJO SUCESIONES Problema Supuesto que s t < x y, donde s,x R, t,y R+, probar que s t < s + x t + y < x y Problema Discutir la validez de las siguientes afirmaciones sobre números reales: x 3 x + < 3 x 5 < x + 3 x + y + z = x + y + z 4 x y = x y 5 x y + z = x z y Problema 3 Sea A R, A /0 Probar que : A está acotado M R + : x M x A Problema 4 Demuéstrese que para cada número natural n se verifica que n = n(n + )(n + ) n 3 = ( n) n = n Problema 5 Resuélvanse las siguientes ecuaciones entre números complejos: a) z z = + i; b) z + z = + i; c) z = z Problema 6 Encuentre los vértices de un polígono regular de n lados si su centro se encuentra en el punto z = 0 y uno de sus vértices z es conocido
2 Problema 7 Calcular las partes real e imaginaria de los números: 3i ; ( + i 3) 6 ; ( ) + i 5 i Problema 8 Simplificar las expresiones: + cosϕ + cosϕ + + cosnϕ; senϕ + senϕ + + sennϕ donde ϕ R y n N Sugerencia: Si llamamos A a la primera suma y B a la segunda, calcúlese A + ib haciendo uso de la fórmula de De Moivre Problema 9 Calcular las siguientes raíces (a) 4 6 (b) 6 + i (c) 3 7 Problema 0 Estudiar la convergencia de las siguientes sucesiones: 3 4 } sen n } cos n sen(n) n } cos(n +) e n } Problema Estudiar la posible convergencia de las siguientes sucesiones y calcular su ite cuando exista: n 4 } a) n 5 } + / + /3 + + /n b) n (n ) c) n + } n + k + k + 3 k + + n k } d) n k+ donde k es un número natural fijo + 5 Problema Estudiar la convergencia de la sucesión a n := n (n + ) (n + )(n + n)
3 CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES DE VARIABLE REAL Problema 3 Estudiar los siguientes ites funcionales: x 0 log( senx) log(cosx), senx x x logx x, x + x + x + x, x 4 x x x x x logx log( + 3e x ), + 3x x + (ex + x) /x, x(x /x ), logx x 0 x (e ( + x) x ), x arctgx x 0 sen 3, x x 0 x 4 6x senx x 5, cosx cosx, x 0 + x x 0 x, x 0 +(senx + cosx)/x, x 0 +( tgx) x, ( ) senx, tagx x 0 + x 0 +( + senx)cotgx, Problema 4 Sea f : R \ } R la función definida por: f (x) = arctg + x x x x 0 +(cosx + ) x, x Π x 0 + xsenx, ( tagx ) senx, ( + senx)cotgx x Π Estudiar la continuidad de f y su comportamiento en el punto, en + y en Problema 5 Sea f : R + \ e} R la función definida por Estudiar el comportamiento de f en 0,e,+ f (x) = x logx, x R + \ e} Problema 6 Pruébese que todo polinomio de grado impar admite al menos una raíz real Problema 7 Sea f : [0,] [0,] una función continua en [0,] Pruébese que f tiene un punto fijo: x [0,] : f (x) = x Problema 8 Suponiendo que la temperatura varía de manera continua a lo largo del ecuador, pruébese que, en cualquier instante, existen dos puntos antípodas (es decir, diametralmente opuestos) sobre el ecuador que se hallan a la misma temperatura 3
4 Problema 9 Un escalador comienza, desde su campamento base, a subir a una montaña el sábado a las 7 horas, alcanzando la cima a las 8 de la tarde A las 7 horas del domingo inicia el descenso hacia el campamento base tardando el mismo tiempo que le costó la subida Demostrar que existe una determinada hora a lo largo del domingo en la que el escalador se encuentra exactamente a la misma altura que a esa misma hora del sábado Problema 0 Sean f, g : R R las funciones definidas por f (x) = +e /x, si x 0 0, si x = 0 g(x) = e x x, si x < 0 x, si 0 x < 5 x, si x Estudiar la continuidad de f y g en todo punto de R y la existencia de ites de f y g en + y Problema Probar que existe un único número real positivo x tal que Problema Probar que la ecuación logx + x = 0 x + e x +arctgx = 0 tiene una sola raíz real Dar un intervalo de longitud uno en el que se encuentre dicha raíz Problema 3 Probar que la ecuación tg(x) = x tiene infinitas soluciones Problema 4 Calcular el número de soluciones de la ecuación 3logx x = 0 Problema 5 Calcular la imagen de f : R + R, f (x) = x /x Problema 6 Sean a,b,c R con a < 3b Probar que la ecuación tiene una solución real única x 3 + ax + bx + c = 0 Problema 7 Determinar el número de raíces reales de la ecuación x 3 3x x = m según el valor de m Problema 8 Demostrar que la desigualdad x < log( + x) < x se verifica para todo x > 0 + x 4
5 Problema 9 Cuál es la longitud de la escalera más larga que puede hacerse pasar a través de la esquina, en ángulo recto, que forman dos corredores de anchuras respectivas a y b? Problema 30 Una caja abierta está construida con un rectángulo de cartón, quitando cuadrados iguales en cada esquina y doblando hacia arriba los bordes Hallar las dimensiones de la caja de mayor volumen que puede construirse con ese procedimiento si el rectángulo tiene como lados (a) 0 y 0, (b) y 8 Problema 3 Se desea construir una ventana con forma de rectángulo coronado de un semicírculo de diámetro igual a la base del rectángulo Pondremos cristal blanco en la parte rectangular y cristal de color en el semicírculo Sabiendo que el cristal coloreado deja pasar la mitad de luz (por unidad de superficie) que el blanco, calcular las dimensiones de la ventana para conseguir la máxima luminosidad si se ha de mantener un perímetro constante dado Problema 3 Se traza la tangente en un punto de la elipse x /5+y /6 = de forma que el segmento (de dicha tangente) interceptado por los ejes sea mínimo Demostrar que la longitud de dicho segmento es 9 unidades Problema 33 Se inscribe un rectángulo en la elipse x /400 + y /5 = con sus lados paralelos a los ejes Hallar las dimensiones del rectángulo para que (a) el área sea máxima, (b) el perímetro sea máximo Problema 34 Se desea confeccionar una tienda de campaña cónica de un volumen determinado Calcular sus dimensiones para que la cantidad de lona necesaria sea mínima Problema 35 Demostrar que de todos los triángulos isósceles que se pueden circunscribir a una circunferencia de radio r, el de área mínima es el equilátero de altura 3r Problema 36 Atamos el extremo de una cuerda de longitud L a una columna de radio R mediante un nudo corredizo Calcular la máxima distancia posible del otro extremo al centro de la columna Problema 37 Demostrar que la suma de un número positivo y su inverso es mayor o igual a Problema 38 Hallar las dimensiones del cilindro de mayor volumen entre todos aquellos que tienen la superficie lateral total constante Problema 39 Se desea construir un silo, con un volumen V determinado, que tenga la forma de un cilindro rematado por una semiesfera El costo de construcción (por unidad de superficie) es doble para la semiesfera que para el cilindro (la base es gratis) Determínense las dimensiones óptimas para minimizar el costo de construcción Problema 40 Se proyecta un jardín de forma de sector circular de radio R y ángulo central θ El área del jardín ha de ser A fija Qué valores de R y θ hacen mínimo el perímetro que bordea el jardín? 5
6 Problema 4 Un triángulo rectángulo cuya hipotenusa tiene una longitud a se hace girar alrededor de uno de sus catetos Qué volumen máximo puede tener un cono engendrado de esta manera? Problema 4 Una persona desea cortar un pedazo de alambre de metro de largo en dos trozos Uno de ellos se va a doblar en forma de circunferencia, y el otro en forma de cuadrado Cómo debe cortar el alambre para que la suma de áreas sea mínima? Problema 43 Un muro de 4 metros de altura está a 3 metros de la fachada de una casa Hallar la escalera más corta que llegará desde el suelo hasta la casa por encima del muro Problema 44 Investigar la posibilidad de inscribir un cilindro circular recto de área total máxima en un cono circular recto de radio r y altura h Problema 45 Un cultivador de naranjas estima que, si planta 60 naranjos, obtendrá una cosecha media de 400 naranjas por árbol Este número bajará 4 unidades por cada árbol más que se plante en el mismo terreno Halle el número de árboles que hace máxima la cosecha Problema 46 Durante la tos, el diámetro de la tráquea disminuye La velocidad v del aire en la tráquea durante la tos se relaciona con el radio, r, mediante la ecuación v = Ar (r 0 r), donde A es una constante y r 0 es el radio en estado de relajación Determínese el radio de la tráquea cuando la velocidad es máxima, así como esta velocidad Problema 47 Las palomas domésticas no suelen volar sobre extensiones grandes de agua a menos que se vean forzadas a ello, posiblemente porque se requiera más energía para mantener la altitud sobre el agua fría Supongamos que se suelta una paloma desde un barco situado a 3 km de la costa, siendo A el punto costero más cercano El palomar se encuentra en un punto de la costa situado a 0 km de A Si la paloma gasta dos veces más energía volando sobre el agua que sobre la tierra firme y sigue un camino que hace mínima la energía gastada, determínese el punto dónde la paloma abandona el agua Problema 48 Se desea construir un envase cilíndrico de con un volumen fijo V 0 Calcular las dimensiones (radio y altura) que ha de tener el envase para que la cantidad de material invertido en construirlo, incluyendo las tapas, sea mínimo Problema 49 Estás diseñando una lata cilíndrica circular recta de volumen fijo V 0, cuyo costo considerará el desperdicio de material No se desperdicia nada al cortar el aluminio para la superficie lateral, pero las tapas de radio r se cortan de cuadrados de lado r Calcular las dimensiones que minimizan el coste de producción 6
Derivadas. Problemas de Optimización.
Departamento de Análisis Matemático Derivadas. Problemas de Optimización. Problema 1. Sea f : R + 0 R la función definida por: 2 si 0 < 4 2 E ( ) 6 si 4 Estudiar la continuidad y derivabilidad de f. Problema
RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA.
RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA. 1. Sea f : IR IR definida por f() = 2 + 1, IR. Probar, utilizando la definición, que f es derivable en cualquier punto de IR. Encontrar los
Funciones de una variable
Ejercicios de Análisis Matemático Funciones de una variable Ejercicio 1. Supuesto que s t < x y, donde s,x R, t,y R+, prueba que s t < s + x t + y < x y Ejercicio 2. Discute la validez de las siguientes
Cálculo Diferencial y Geometría Analítica Agosto 2016
Laboratorio # 1 Línea Recta I.- Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por los puntos
Cálculo Diferencial y Geometría Analítica Enero 2015
Laboratorio # 1 Línea Recta I.- Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por los puntos
Ejercicios de Matemáticas I Relación 1: Funciones reales de variable real. Continuidad y límite funcional
Ejercicios de Relación : Funciones reales de variable real. Continuidad y límite funcional. Estúdiese la continuidad y el comportamiento en + y en de la función f : R R definida por a) f (x) = x, x R.
SELECTIVIDAD APLICACIÓN DE LAS DERIVADAS
SELECTIVIDAD APLICACIÓN DE LAS DERIVADAS Septiembre 008: Calcula los valores del número real a sabiendo que punto) 0 a e a = 8. ( Septiembre 008: Hallar, de entre los puntos de la parábola de ecuación
1) ( ) 2 ( 1) 2) ( ) ( 2 )( ) 3) ( ) 4 4) ( ) = 8 5) ( ) = 4 6) ( ) = 4. 6 x
MATEMÁTICA II (MECÁNICA) EXAMEN II I PARTE: APLICAR EL CRITERIO DE LA PRIMERA DERIVADA A LAS SIGUIENTES FUNCIONES: Determinar: a.) Intervalos donde la función Crece b.) Intervalos donde la función Decrece.
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
ETSII Febrero Análisis Matemático.
Departamento de Análisis Matemático ETSII Febrero 2000. Análisis Matemático. Problema 1. (1 punto) Calcular los siguientes ites: e x e senx x 0 x senx x π/4 (tgx)tg2x Problema 2. (2 puntos) Considérese
Ejercicios de Matemáticas I - Relación 5
Ejercicios de Matemáticas - Relación 5. Calcula y simplifica todo lo que puedas las derivadas de las siguientes funciones: / f./d sen. C 3/ 2/f./D cos 2. 3 / 3/ f./d cos p 5/ f./d 2 C r C 4/ f./d 3p 6/
Boletín I. Cálculo diferencial de funciones de una variable
CÁLCULO Boletín I. Cálculo diferencial de funciones de una variable 1. Demuestra que la ecuación x + sin x = Ejercicios básicos 1 x + 3 tiene al menos una raíz en [0, π]. 2. Justifica la existencia de
CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas
CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(
Matemáticas 2 Agosto 2015
Laboratorio # 1 Línea recta I.-Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por y Pendiente
EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.
FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:
APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes
Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones:
Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 3. Hoja 1 Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones 1. Estudiar la acotación de las siguientes funciones: (a) y = 2x 1; (b) y =
Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA
Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA 54 Actualización Permanente en el Área Matemática 1. Cilindro Definiciones Se llama superficie cilíndrica la engendrada por una recta que
Interpretación. 1) De una función f:[0,4] R se sabe que f(1) = 3 y que la gráfica de su función derivada es la que aparece en el dibujo
Interpretación 1) De una función f:[0,4] R se sabe que f(1) = 3 y que la gráfica de su función derivada es la que aparece en el dibujo (a) [0'5 puntos] Halla la recta tangente a la gráfica de f en el punto
APLICACIONES DE LAS DERIVADAS. 1. Halla las rectas tangente y normal a las siguientes funciones en los puntos que se indican:
Matemáticas Aplicaciones de las derivadas APLICACIONES DE LAS DERIVADAS Halla las rectas tangente y normal a las siguientes funciones en los puntos que se indican: 5 a) f, c) f lntg, en en 8 b) f, en d)
APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN
APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN 1. Calcular, aplicando la definición de derivada: f (), siendo f (x) = 3x 1 1 f ( ), siendo f (x) = x 1 Solución: 1; 4. Determinar el dominio y la expresión de
EJERCICIOS PARA VERANO. MATEMÁTICAS I 1º BACH
Desarrollar los siguiente valores absolutos f(x) = x² + 5x 4 - x - 2 f(x) = x² -4x + 3 + x - 3 f(x) = x x f(x) = x / x Resolver las ecuaciones exponenciales: Resolver los sistemas de ecuaciones exponenciales:
Profesor: Fernando Ureña Portero
Optimización de funciones P a s o s p a r a l a r e s o l u c i ó n d e p ro b l e m a : 1. S e p l a n t e a l a f u n c i ón que hay que maximizar o minimizar. 2. S e p l a n t e a u n a e c u a c i
A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:
TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS
12. Una caja con base cuadrada y parte superior abierta debe tener un. 14. Un recipiente rectangular de almacenaje con la parte superior
328 CAPÍTULO 4 APLICACIONES DE LA DERIVACIÓN 4.7 EJERCICIOS 1. Considere el problema siguiente. Encuentre dos números cuya suma es 23 y cuyo producto es un máximo. (a) Formule una tabla de valores, como
Derivadas Parciales. Aplicaciones.
RELACIÓN DE PROBLEMAS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Curso 2004/2005 Escuela Universitaria de Ingeniería Técnica Agrícola Departamento de Matemática Aplicada I Tema 3. Derivadas Parciales. Aplicaciones.
Cálculo Diferencial Agosto 2015
Laboratorio # 1 Desigualdades I.- Determinar los valores de que satisfacen simultáneamente las dos ecuaciones dadas. 1) 2 3 x 3 < 4 6 y x 1 > 1 3 2) 5x 4 > 1 4 y x + 1 2 1 2 3) 7x 7 1 7 y 4x + 4 > 1 4
Boletín II. Cálculo diferencial de funciones de una variable
CÁLCULO Boletín II. Cálculo diferencial de funciones de una variable Ejercicios básicos 1. Sea f la función dada por 5x 2. a) Utiliza la definición de derivada para demostrar que f (x) = 10x. b) Calcula
Problemas Tema 4 Enunciados de problemas de Repaso y Ampliación de la primera evaluación
página 1/15 Problemas Tema 4 Enunciados de problemas de Repaso y Ampliación de la primera evaluación Hoja 1 1. Estudia y representa f ()=ln(tg ) 2. Estudia y representa f ()= 52 2+1 4 +6 3. Estudia y representa
RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN
1. En un concurso se da a cada participante un alambre de dos metros de longitud para que doblándolo convenientemente hagan con el mismo un cuadrilátero con los cuatro ángulos rectos. Aquellos que lo logren
Problemas Tema 3 Enunciados de problemas de Derivabilidad
página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la
EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable
EJERCICIOS DE CÁLCULO I Para Grados en Ingeniería Capítulo 2: Cálculo diferencial de una variable Domingo Pestana Galván José Manuel Rodríguez García Índice 2. Cálculo diferencial de una variable. 2..
Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº
TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los
MATEMÁTICAS 1º BAC Aplicaciones de las derivadas
. Queremos construir una caja abierta, de base cuadrada y volumen 56 litros. Halla las dimenones para que la superficie, y por tanto el coste, sea mínimo.. Entre todos los rectángulos de área 6 halla el
RELACIÓN EJERCICIOS ANÁLISIS SELECTIVIDAD MATEMÁTICAS II
1.- Sea f : R R la función definida como f() = e X.( ). (a) [1 punto] Calcula la asíntotas de f. (b) [1 punto] Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo
Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº
CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los pares de ángulos alternos
Funciones de varias variables: continuidad derivadas parciales y optimización
Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio
e x -1 2 e x [2013] [JUN] Dependiendo de los valores de a, estudia la continuidad de la función f(x) = . a si x = 0
. [204] [ET-A] Sea = (x)2 x-. i) Determina el dominio de f. ii) Halla sus asíntotas. iii) Determina los extremos relativos y estudia la monotonía de f. iv) Dibuja la gráfica de f destacando los elementos
IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS
Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas
APLICACIONES DE LAS DERIVADAS
10 APLICACIONES DE LAS DERIVADAS REFLEXIONA Y RESUELVE Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: Relación de la curvatura con el signo de la segunda derivada
Cálculo Diferencial Enero 2015
Laboratorio # 1 Desigualdades I.- Determinar los valores de que satisfacen simultáneamente las dos ecuaciones dadas. y y y y II. - Determina los valores de que satisfagan al menos una de las condiciones.
Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1
TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los
Más ejercicios y soluciones en fisicaymat.wordpress.com FUNCIONES
FUNCIONES 1- a) Dibuje el recinto plano limitado por la parábola y=4x-x 2 y las tangentes a la curva en los puntos de intersección con el eje de las abscisas. b) Halle el área del recinto dibujado en a).
c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto) 2
Junio 010 1A. a) Enuncia el teorema de Bolzano. (0,5 puntos) 1 b) Se puede aplicar dicho teorema a la función f ( x) 1 x en algún intervalo? (1 punto) c) Demuestra que la función f(x) anterior y g(x) =
ANÁLISIS MATEMÁTICO I (2012)
ANÁLISIS MATEMÁTICO I (2012) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio 1. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta. 1. El teorema
TEMA 2: CÁLCULO DIFERENCIAL DE UNA VARIABLE.
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingeniería Industrial (GITI/GITI+ADE) Ingeniería de Telecomunicación (GITT/GITT+ADE) CÁLCULO Curso 05-06 TEMA : CÁLCULO
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4
CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2
1. He escrito el No he escrito el He escrito el No he escrito el 4.
º Nivel. El número que está justamente entre 8 y 0 es 80 B) 0 C) 8 E) 80. Halla la suma de todos los primos comprendidos entre y 00 que verifiquen ser múltiplos de más y múltiplos de 5 menos. 8 B) 7 C)
Escuela Politécnica Superior de Málaga. CÁLCULO
Escuela Politécnica Superior de Málaga. CÁLCULO. Cálculo en una variable.. Prueba que y 3 no son números racionales. En los números que se describen a continuación, Cuáles son racionales y cuales no? Encontrar
f(x) = xe para x -1 y x 0, MATEMÁTICAS II PROBLEMAS DE FUNCIONES. Ejercicio 1. (Reserva 1 Septiembre 2013 Opción A) Sea f la función definida por
MATEMÁTICAS II PROBLEMAS DE FUNCIONES. Ejercicio. (Reserva Septiembre 0 Opción A) f() = para > 0, (donde ln denota el logaritmo neperiano). ln() a) [ 5 puntos] Estudia y determina las asíntotas de la gráfica
FORMULARIO (ÁREAS DE FIGURAS PLANAS)
FORMULARIO (ÁREAS DE FIGURAS PLANAS) Rectángulo Triángulo Paralelogramo Cuadrado Cuadrilátero cuyos lados forman ángulos de 90º. Es la porción de plano limitada por tres segmentos de recta. Cuadrilátero
PROBLEMAS DE RECTA TANGENTE. 6 en el punto de abscisa 2. Halla la ecuación de la recta tangente a. ( en el punto de abscisa. x 3x
PROBLEMAS DE RECTA TANGENTE º Bachillerato CCSS Halla la ecuación de la recta tangente a ( ) 6 en el punto de abscisa Halla la ecuación de la recta tangente a Halla la ecuación de la recta tangente a (
S = x y = x(500 2x) = 500x 2x 2
.7. OPTIMIZACIÓN 09.7. Optimización Problema 4 Tenemos 500 metros de alambre para vallar un campo rectangular, uno de cuyos lados da a un río. Calcular la longitud que deben tener estos lados para que
f (x) = 3(1 + x2 cos x)(x sin x 1) 2 x ( x + 7x) 2/3 cos 4 (tan x) ) 1/5 f (x) = 3x4 + 6x 3 9x 2 + 3x + 3 x(x 3 + 3x 1)
1. Derivar las siguientes funciones: ( ) 3 1 a. f(x) = x sin x f (x) = 3(1 + x cos x)(x sin x 1) x 4 b. f(x) = ( ln[(x cos x) 4 ] ) 7 7 (ln(x cos x)) 6 sec x (cos x x sin x) x 1 + tan x c. f(x) = f (x)
2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.
cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es
UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas
UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas a t e a t i c a s PROBLEMAS, CÁLCULO I, er CURSO 2. CÁLCULO DIFERENCIAL DE UNA VARIABLE GRADO EN INGENIERÍA EN:
1 Ángulos en las figuras planas
Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis
Optimización de funciones
Optimización de funciones Pasos para la resolución de problemas de optimización 1. Se plantea la función que hay que maximizar o minimizar. 2. Se plantea una ecuación que relacione las distintas variables
Funciones reales. Números complejos
Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica
Escuela Politécnica Superior de Málaga. CÁLCULO
Escuela Politécnica Superior de Málaga. CÁLCULO. Cálculo en una variable.. En los números que se describen a continuación, Cuáles son racionales y cuales no? Encontrar la fracción generatriz para aquellos
Construye la gráfica de las funciones propuestas a continuación, y estudia el signo de las mismas: (h)
Construye la gráfica de las funciones propuestas a continuación, y estudia el signo de las mismas: (a) y 6 ; (b) y ( )( ) + ; (c) (e) y + 6 ; + 4; (d) y ( ) 9 + 5 5; (f) 4 y y 9 ; ; (h) y ( + ) ; 4 (g)
APLICACIONES DE MÁXIMOS Y MÍNIMOS
APLICACIONES DE MÁXIMOS Y MÍNIMOS 1. Una ventana tiene la forma de un rectángulo coronado por un triángulo equilátero. Encuentre las dimensiones del rectángulo para el cual el área de la ventana es máxima,
Tema 2. Derivadas. Aplicaciones de las derivadas Aplicación 2ºA Bach
1.- Dada la función y = x 3 3x 2 9x + 5 : a) Dónde crece? b) Dónde decrece? Tema 2. Derivadas. Aplicaciones de las derivadas x 3 2.- Comprueba que la función f (x) = tiene solo dos puntos singulares, en
CÁLCULO I (2006/2007). Problemas Encontrar todos los reales x para los que: a) x 2 e) 1
CÁLCULO I (26/27). Problemas -6.. Encontrar todos los reales para los que: a) 2 +2 b) 3 < 5 c) 5π 4π d) 4 7 = 4 2 e) 2 f) 3 + 2 > 2 g) 2 < h) + 3 5 2. Precisar si los siguientes subconjuntos de R tienen
DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER 2009_II PRECALCULO. PRIMERA PARTE: Preguntas Tipo Ecaes.
DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER 009_II PRECALCULO PRIMERA PARTE: Preguntas Tipo Ecaes. 1. La ecuación de la circunferencia con radio r= 7 y centro C(4, -10) es: a) (X - 4) + (Y 10) = 49 b) (X +
2.2.1 Límites y continuidad
. Listas de ejercicios de Cálculo Diferencial. Listas de ejercicios de Cálculo Diferencial.. Límites y continuidad 3. Hallar el dominio de las funciones reales de variable real dadas por: a) f () = b)
x = 1 y que la recta tangente a la gráfica de la función en el punto de abcisa x=0 tiene la a)estudia y calcula las asístontas de la gráfica de f.
Jueves 9 de noviembre de 17 Ejercicio 1. Problema de optimización. Se considera una ventana rectangular en la que el lado de arriba se ha sustituido por un triángulo equilátero. Calcula la longitud de
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,
PROBLEMAS DE MÁXIMOS Y MÍNIMOS.
PROBLEMAS DE MÁXIMOS Y MÍNIMOS. Los métodos para determinar los máximos y mínimos de las funciones se pueden aplicar a la solución de problemas prácticos, para resolverlos tenemos que transformar sus enunciados
Problemas de optimización de funciones
Problemas de optimización de funciones 1Obtener el triángulo isósceles de área máxima inscrito en un círculo de radio 12 cm. 2Un triángulo isósceles de perímetro 30 cm, gira alrededor de su altura engendrando
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x
Ejercicios propuestos
Ejercicios propuestos 1. Encuentre el área total y el volumen de un cubo si la diagonal de una de sus caras mide 6 cm. 2. Encuentre el volumen de un cubo si la longitud de su diagonal mayor mide 8 cm.
PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.
PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos
MATEMÁTICAS I Modalidad Ciencias y Tecnología
CUADERNO DE ACTIVIDADES CURSO 016/017 MATEMÁTICAS I Modalidad Ciencias y Tecnología 1º curso de Bachillerato I.E.S. Victoria Kent (Marbella) Departamento de Matemáticas Bloque de Aritmética y álgebra Ejercicio
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- [2 5 puntos] Halla las dimensiones del rectángulo de área máxima inscrito en un triángulo isósceles de 6 metros de base (el lado desigual) y 4 metros de alto. Ejercicio 2.- Sean
UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I
UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N CÁLCULO I Profesor: Carlos Ruz Leiva MÁXIMOS Y MÍNIMOS Criterio de la segunda derivada Supongamos que
TEMA 10. CÁLCULO DIFERENCIAL
TEMA 0. CÁLCULO DIFERENCIAL Problemas que dieron lugar al cálculo diferencial. (Estos dos problemas los resolveremos más adelante) a) Consideremos la ecuación de movimiento de un móvil en caída libre en
x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.
. [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos
VERSIÓN 31 1, 1. 12y 24 0 es: MATEMÁTICAS V. 1.- La gráfica de la ecuación. 3.- El dominio de la función f x. es: A) B) B), 1 A) 1, E) 1, C) D)
1.- La gráfica de la ecuación MATEMÁTICAS V B) 1y 4 0 es:.- El dominio de la función f 1, B), 1 4 es: 1 1, 1 VERSIÓN 1 C), 1 1, C) 4.- Determina el rango de la función y. y B) y C) 1 y y y 0, 0.- Para
1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0
Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a
RADIANES. CÍRCULO Y CIRCUNFERENCIA. 2. La siguiente figura muestra un círculo de centro O y radio r cm, a) Halle la longitud del arco ABC.
C URSO: º BACHILLERATO RADIANES. CÍRCULO Y CIRCUNFERENCIA. 1. La siguiente figura muestra un círculo de centro O y radio 40 cm, Los puntos A, B y C pertenecen a la circunferencia del círculo y AOC = 1,9
PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA
CURSO PRE FACULTATIVO II-01 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del
ALGUNOS EJERCICIOS DE C. DIF.
1 ALGUNOS EJERCICIOS DE C. DIF. 1.-Concepto de función Algunos ejercicios 1.1==En una circunferencia de radio 10 m, se inscribe un rectangulo. Expresar el area del rectangulo en funcion del lado x de la
2) Estudia crecimiento, decrecimiento y existencia de extremos relativos. x 4x
EJERCICIOS DE ANÄLISIS 1) Estudia el dominio, ceros y signo, continuidad, límites en caso que tienda a + y -, máimos y mínimos relativos de las siguientes funciones. Realiza en cada caso el bosquejo correspondiente.
tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo.
Selectividad CCNN 006. [ANDA] [SEP-A] Sea f: la función definida por f() = -. a) Estudia la derivabilidad de f. b) Determina los intervalos de crecimiento y decrecimiento de f. c) Calcula los etremos relativos
APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES.
APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES. 001 Hallar 2 números cuya suma es 20, sabiendo que su producto es 002 003 004 005 Halla dos números cuya suma sea 25, tales que el doble
