Solución de Ecuaciones Diferenciales y de Diferencias

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Solución de Ecuaciones Diferenciales y de Diferencias"

Transcripción

1 Solucón de cuacones Dferencales y de Dferencas UdeC - DI Problema Planear la solucón generalada de ecuacones dferencales y de dferencas. Formulacón general de ec. dferencales n m d y a d b du d Formulacón general de ec. de dferencas n ay( T T ) bu( T T ) m espuesa Toal espuesa forada espuesa Homogénea m m n ( ) ( ) bs bs u as y y u( n n n as as as ec. dferencal m m n b b u( T ) a y( T ) y( Z u n n Z n a a a ec. de dferencas Def.: Se defne el polnomo caracerísco de una ecuacón dferencal ordnara lneal como: n n n as s an s as a. Def.: Se defne el polnomo caracerísco de una ecuacón de dferencas como: n n n a an a a. Capíulo IV - Caraceracón Maemáca de 3 Ssemas neales Dnámcos

2 UdeC - DI espuesa Toal espuesa esaconara espuesa ransene Def.: espuesa esaconara es la pare de la respuesa oal que no se aproxma a cero cuando el empo ende a nfno. Se abreva y ss. Def.: espuesa ransora es la pare de la respuesa oal que se aproxma a cero cuando el empo ende a nfno. Se abreva y r. Capíulo IV - Caraceracón Maemáca de 3 Ssemas neales Dnámcos

3 cuacones Dferencales y de Dferencas UdeC - DI Problema cuacones Dferencales esolver ecuacones dferencales y de dferencas. Crcuo y fuene e() consane. Parámeros Modelo del crcuo. d :. :. : o : e d d d e() - () o: b o : Transformada de aplace s ( s ) o ( e( s( o espuesa Homogénea. o ( h ( ( h : o exp Φ espuesa Forada. s( ( e( f ( s s f ( s f : s espuesa Toal. : h f o exp Φ exp : Φ f : 6 n f : :,.99.. f h Correnes exp Φ f Capíulo IV - Caraceracón Maemáca 3 de 3 Ssemas neales Dnámcos

4 espuesa Toal. : o exp Φ exp Φ UdeC - DI espuesa saconara. ss ss : Φ( ) espuesa Transora. r : exp Correnes Φ o exp Φ y ss se obene hacendo las dervadas cero al ener enrada consane r Crcuo y fuene e() snusodal. Transformada de aplace s( o f ( f s : ( e( exp s espuesa Homogénea. s ( s ) o : ( s π s s sn aan : o f ( ( exp Φ e : sn h o exp : cos( ) Φ sn ω o espuesa Forada. s( Φ ( e( Capíulo IV - Caraceracón Maemáca 4 de 3 Ssemas neales Dnámcos

5 espuesa Toal. : h f : o exp h Φ Correnes exp sn aan Φ UdeC - DI f espuesa saconara. ss ss r espuesa Transora. ω o : sn ω o aan ω ω o Φ r : o o Correnes exp No srve hacer las dervadas cero para obener y ss Φ Capíulo IV - Caraceracón Maemáca de 3 Ssemas neales Dnámcos

6 cuacones de Dferencas y( ) aa o y u Parámeros Transformada Z y y o espuesa Forada. y espuesa Toal. T:. aa o y u aa o y u f ( y o : o aa o : exp a o T aa o u b o : aa o a o aa o u u: f f : T espuesa Homogénea. y y o aa o aa o aa o y aa o u :.. T f y h y o aa o ( aa o ) aa o f : h : y o aa o aa o u UdeC - DI aa o Φ Φ : h f h Varables aa o u f espuesa saconara. ss : aa o uφ espuesa Transora. r : aa o u T aa o Varables Φ y o aa o Φ y ss se obene hacendo y() y() aa o u ss r T Capíulo IV - Caraceracón Maemáca 6 de 3 Ssemas neales Dnámcos

7 Problema Aplcar la Transformada Z en la solucón de una ecuacón de dferencas (Poblacón de Conejo. Modelo y( y( T y( T C.I. sa es una ecuacón que endrá y( y( T y( T y y sólo respuesa homogénea. y( T y( T y( K y( y T UdeC - DI Transformada Z ( y y ( T ) y ( )) ( y ) ( y ) y y ( ) y y y Solucón en y A B Ab Ba Solucón en, omando Z nversa. y a b a b A B A B b a b a a respuesa es dsna de cero gracas a las C.I. y la dvergenca de la solucón. espuesa saconara. ss eso porque, ( A B) Ab A B ( A B) Ab a b ( a) ( b) ab espuesa Transora. : r : ab y : : y Capíulo IV - Caraceracón Maemáca 7 de 3 Ssemas neales Dnámcos

8 Solucón de cuacones de sado Dferencales UdeC - DI Problema Planear la solucón generalada de ecuacones de esado dferencales Homogénea en el Tempo u() cuacón Generalada x& Ax x& Ax& AAx A x M x ( ) A x dx()/d Ax() Bu(), y() Cx() Du() ( ) x x() x& x& x!! x Ax A x A x!! I A A A x!! Def.: a mar de ranscón de esados Φ() se defne por, A Φ e I A A A.!! Homogénea en aplace espuesa Toal sx( x() Ax( ( si A) x( x x( ( si A) x {( si A) } x A x( ) Φ( ) x e x y CΦ x Ce x A y Cx Ce x CΦ x C {( si A) } x x Φ x Φ( τ) Bu( τ) dτ A y CΦ x CΦ( τ) Bu( τ) dτ Du x Φ( ( si A) Φ I A A e {( s ) } x( Φ( x Φ( Bu( Forada en aplace y( CΦ( x CΦ( Bu( Du( dx()/d Ax() Bu(), y() Cx() Du() sx ( Ax( Bu(, y( Cx( Du( ( si A) x( Bu(, y( Cx( Du( x I A Bu Φ Bu ( ( s ) ( ( ( A( τ) x e Bu τdτ Φτ Bu τdτ y C I A Bu Du ( ( s ) ( ( y( ) Ce A( τ) Bu( τ) dτ Du( ) Capíulo IV - Caraceracón Maemáca 8 de 3 Ssemas neales Dnámcos

9 cuacones de sado Crcuo C y fuene e(). : 4 : 4 3 C: 6 : UdeC - DI Varables de sado x v x Solucón Homogénea. A: C b: v o : o : Φ( s / / C s s / /( C) / s Smulacón. Aparece una ensón escalón en e() en con amplud. nvlaplace, s Φ : ( sdeny A), exp(. ) cos( 3. ).486exp(. ) sn( 3. ) floa, nvlaplace, s Φ : ( sdeny A), 4.86exp(. ) sn( 3. ) floa, e() - () v c () - C nvlaplace, s Φ : ( sdeny A), exp(. ) sn( 3. ) floa, nvlaplace, s Φ : ( sdeny A), exp(. ) cos( 3. ).486exp(. ) sn( 3. ) floa, Φ : Φ Φ Φ Φ x o : x h : Φ x o f : 3 f : f :,.. n f f Volaje capacor y correne x h x h Capíulo IV - Caraceracón Maemáca 9 de 3 Ssemas neales Dnámcos

10 Solucón Forada. UdeC - DI x f : Φ τ ( b ) Φ τ ( b ) dτ dτ Volaje capacor y correne x f x f espuesa Toal. x : x h x f Volaje capacor y correne oales () s / v / s s C / / x x s () y la ensón aplcada es gual a v, enonces la correne es sempre cero. v() s s( / /( vc )) / v v s s / /( C) s s () y la ensón aplcada es gual a v, enonces laensón es sempre. Capíulo IV - Caraceracón Maemáca de 3 Ssemas neales Dnámcos

11 Solucón de cuacones de sado de Dferencas UdeC - DI Problema Planear la solucón generalada de ecuacones de esado de dferencas cuacón Generalada x(t Ax( Bu(, y( Cx( Du( Homogénea en el Tempo, u( x( T ) Ax() Ax x( T ) Ax( T ) AAx A x M x( T ) A x Def.: a mar de ranscón de esados dscrea Φ( se defne por, Φ( T ) A. Homogénea en Z x x() Ax ( I A) x x x ( I A) x Z ( T ) x {( I A) } x x( T ) Φ( T ) x A x y( T ) CΦ( T ) x CA x Φ ( I A) Φ A I A ( T ) {( ) } y( T ) Cx( T ) CA x CΦ( T ) x C {( IA) } x Z Z Forada en Z x(t Ax( Bu(, y( Cx( Du( x Ax Bu, y Cx Du ( I A) x Bu, y Cx Du x I A Bu Φ Bu ( ) x( T ) Φ( TTT ) Bu( T ) y C I A Bu Du ( ) y( T ) C Φ( T T T ) Bu( T ) Du( espuesa Toal x( T ) Φ( T ) x Φ( T TT ) Bu( T ) y( T ) CΦ( T ) x CΦ( T T T ) Bu( T ) Du( T ) x Φ x Φ Bu y CΦ x C Φ Bu Du Capíulo IV - Caraceracón Maemáca de 3 Ssemas neales Dnámcos

12 cuacones de Dferencas Varables de sado x v x Solucón Homogénea. A: C b: Smulacón. Aparece una enrada escalón en u() en con amplud. UdeC - DI T m :. A d : Φ( T m ) x dh : f, x o, A d xo f : f T m A d.4.69 :.. f x(, x( homogéneos m b d : ( Φ( T m τ) b) dτ T T m ( Φ( T m τ) b) dτ T. b d Solucón Forada. x df : f,, j j A d bd espuesa Toal. x d : x dh x df x(, x( forados x(, x( oales Capíulo IV - Caraceracón Maemáca de 3 Ssemas neales Dnámcos

13 Problema Aplcar la Transformada Z en la solucón de ecuacones de esado de dferencas (Poblacón de Conejo. UdeC - DI Modelo y( y( T y( T C.I. sa es una ecuacón que endrá sólo respuesa y( y( T y( T y y homogénea. y( T y( T y( K y( y T cuacones de sado x ( y( x ( T y( T x ( x ( T x ( x ( y( T x ( T y( T y( y( T x ( x ( x ( T x ( x ( Solucón en A b c ( ) x Φ ( I A) a respuesa es, y cφ x ( ) y y ( ) a Mar de Transcón es, adj deny de deny ( ) ( ) smplfy a respuesa es dsna de cero gracas a las C.I. y la dvergenca de la solucón. espuesa saconara. ss r espuesa Transora. Capíulo IV - Caraceracón Maemáca 3 de 3 Ssemas neales Dnámcos

EJERCICIOS: Análisis de circuitos en el dominio del tiempo

EJERCICIOS: Análisis de circuitos en el dominio del tiempo EJEIIOS: Análss de crcuos en el domno del empo. égmen ransoro y permanene. En cada uno de los sguenes crcuos el nerrupor ha esado abero largo empo. Se cerra en. Deermnar o I, dbujar la onda correspondene

Más detalles

CARACTERISTICAS DE LAS FORMAS DE ONDA

CARACTERISTICAS DE LAS FORMAS DE ONDA AATISTIAS D LAS FOMAS D ONDA araceríscas de un pulso recangular: A 0.9A 0.1A r a r = rseme, empo de subda ó empo de respuesa f = fowardme, empo de caída a = ancho del pulso f 1 AATISTIAS D LAS FOMAS D

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

Función de Transferencia en Sistemas Continuos

Función de Transferencia en Sistemas Continuos Funcón e Transferenca en Ssteas Contnuos UeC DIE Problea Introucr la F. e T. e un sstea. a sala e un S..D. que está representao por una ecuacón ferencal está aa por, n ( ) ( ) bs bs u as y = = = = = u

Más detalles

Transiciones de sincronización en flujos caóticos

Transiciones de sincronización en flujos caóticos Posgrado en Físca Fundamenal Area de Caos y Ssemas Complejos Transcones de sncronzacón en flujos caócos M.Sc. Glbero Paredes hp://www.cens.ula.ve/cff/caocos Tuor: Dr. Maro Cosenza Condcones para el Caos

Más detalles

1. Modelos Expresados en Variables de Estado 1

1. Modelos Expresados en Variables de Estado 1 2 3 Modelo en Varables de Estado.doc 1 1. Modelos Exresados en Varables de Estado 1. Modelos Exresados en Varables de Estado 1 1.1. Introduccón 2 1.2. Defncón 2 1.3. Forma General 9 1.4. Solucón 1 1.5.

Más detalles

Tema 2 Circuitos Dinámicos de Primer Orden

Tema 2 Circuitos Dinámicos de Primer Orden Tema 2: Crcuos Dnámcos de Prmer Orden Tema 2 Crcuos Dnámcos de Prmer Orden A nade en su sano juco se le habría ocurrdo preparar enonces odos esos componenes (ranssores, ressores y condensadores a parr

Más detalles

Curso del Master de Física: Elementos de Física Biológica. Introducción a la Física de Macromoléculas Biológicas.

Curso del Master de Física: Elementos de Física Biológica. Introducción a la Física de Macromoléculas Biológicas. Curso del Maser de Físca: Elemenos de Físca Bológca. Inroduccón a la Físca de Macromoléculas Bológcas. - Breve Resumen de Mecánca Esadísca y procesos esocáscos. - Físca de olímeros. - ropedades Mecáncas.

Más detalles

Transformada de Laplace, aplicaciones

Transformada de Laplace, aplicaciones Tranformada de Laplace, aplcacone Ora eñale de excacón Señal mpulo f A 0 eñal Impulo deal La eñal mpulo real eórca e una eñal de amplud 0 de alura y de área gual a A Se mbolza de la guene forma fa.δ en

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

TECNOLOGÍA ELECTRÓNICA TEMA 8 (AMPLIFICADOR OPERACIONAL) EJEMPLOS RESUELTOS

TECNOLOGÍA ELECTRÓNICA TEMA 8 (AMPLIFICADOR OPERACIONAL) EJEMPLOS RESUELTOS TECNOLOGÍA ELECTRÓNICA TEMA 8 (AMPLIFICADOR OPERACIONAL) EJEMPLOS RESUELTOS JULIO BRÉGAINS, DANIEL IGLESIA, JOSÉ LAMAS DEPARTAMENTO DE ELECTRÓNICA E SISTEMAS FACULTADE DE INFORMÁTICA, UNIVERSIDADE DA CORUÑA

Más detalles

Circuitos Limitadores 1/8

Circuitos Limitadores 1/8 Crcuos Lmadores 1/8 1. Inroduccón Un crcuo lmador (recorador) es aquel crcuo que ene la capacdad de lmar pare de una señal de c.a. sn dsorsonar la pare resane de la señal. El crcuo lmador combna dodos

Más detalles

TEMA I: RESPUESTA TEMPORAL DE LOS CIRCUITOS LINEALES. x(t) < y(t) <

TEMA I: RESPUESTA TEMPORAL DE LOS CIRCUITOS LINEALES. x(t) < y(t) < TEMA I: ESPUESTA TEMPOA DE OS x() SISTEMA y() IUITOS INEAES. Ecuaciones de las redes generales, lineales e invarianes con parámeros concenrados Ejemplo x() < y() < ircuio esable as ecuaciones a que dan

Más detalles

Profesora Anna Patete, Dr. M.Sc. Ing. Escuela de Ingeniería de Sistemas. Universidad de Los Andes, Mérida, Venezuela.

Profesora Anna Patete, Dr. M.Sc. Ing. Escuela de Ingeniería de Sistemas. Universidad de Los Andes, Mérida, Venezuela. Modelado de Sisemas Físicos Profesora Anna Paee, Dr. M.Sc. Ing. Deparameno de Sisemas de Conrol. Escuela de Ingeniería de Sisemas., Mérida, Venezuela. Correo elecrónico: apaee@ula.ve Página web: hp://webdelprofesor.ula.ve/ingenieria/apaee/

Más detalles

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 27 Dr. Rodolfo Salinas abril 27 Control Moderno N abril 27 Dr. Rodolfo Salinas Respuesta en el tiempo

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller Unversdad Smón Bolívar Conversón de Energía Eléctrca Prof José anuel Aller 41 Defncones báscas En este capítulo se estuda el comportamento de los crcutos acoplados magnétcamente, fjos en el espaco El medo

Más detalles

PRÁCTICA 1: Identificación del modelo de un motor de C.C. con entrada en escalón de tensión

PRÁCTICA 1: Identificación del modelo de un motor de C.C. con entrada en escalón de tensión PÁCTICA 1: Idenfcacón del modelo de un moor de C.C. con enrada en escalón de ensón Ojevos: Guón: Caracerzar un moor de C.C. Deermnar las consanes y τ. Smulacón del funconameno de un moor de C.C. en Sm.

Más detalles

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por:

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por: 7 Consdere los ejerccos.b.c a Encuenre un nueo modelo en arable de esados consderando la ransformacón dada por: x x x x b Para.d halle la ransformacón por auoalores Resoleremos el ncso a para el ejercco.c

Más detalles

Capítulo 3 Metodología.

Capítulo 3 Metodología. Capíulo 3 Meodología. 3.1. Represenacón paramérca de la relacón enre el ngreso per cápa de los hogares y las caraceríscas soco-demográfcas de sus membros. La meodología ulzada en ese rabajo se basa en

Más detalles

Cuestión 1 (2 puntos)

Cuestión 1 (2 puntos) Unversdad Carlos III de Madrd Deparameno de ecnología Elecrónca COOCAORIA EXRAORDIARIA CURSO 007/08: de Sepembre de 008 Elecrónca de Poenca 3º Ingenería écnca Indusral: Elecrónca Indusral Cuesón ( punos)

Más detalles

Redes de Comunicaciones

Redes de Comunicaciones Redes de Comuncacones Tema 3. Teleráfco. Dmensonado de semas Ramón güero Calvo Lus Muñoz GuCérrez (conrbucón) Deparameno de Ingenería de Comuncacones Ese ema se publca bajo Lcenca: Crea:ve Commons BY-

Más detalles

Semana 12: Tema 9 Movimiento Rotacional

Semana 12: Tema 9 Movimiento Rotacional Semana : Tema 9 Movmeno Roaconal 9. Velocdad y Aceleracón angular 9. Roacón con aceleracón angular consane 9.3 Energía cnéca roaconal 9.4 Cálculo de momeno de nerca y el eorema de los ejes paralelos Capíulo

Más detalles

Cálculo Estocástico Variación Cuadrática para Martingalas Continuas y Acotadas

Cálculo Estocástico Variación Cuadrática para Martingalas Continuas y Acotadas 1 Cálculo Esocásco Varacón Cuadráca para Marngalas Connuas y Acoadas Gullermo Garro Defncón Varacón fna. Un proceso X es de varacón fna o acoada s sus rayecoras son de varacón fna, c.s. Es decr, s exse

Más detalles

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff Concepos fundamenales Índce CONCEPOS FUNDMENLES Magnudes elécrcas y undades Componenes, dsposos y crcuos 3 Señales 4 Leyes de Krchhoff Concepos fundamenales Magnudes elécrcas y undades Magnud es una propedad

Más detalles

2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales

2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales ... Méodo de Euler Haca Adelane Anexo -4. Méodos Numércos Aplcados a Ecuacones Dferencales Párase del más smple po de ecuacón dferencal ordnara, que la de po lneal de prmer orden, el clásco Problema de

Más detalles

Interpretación dinámica de la Mecánica Estadística.

Interpretación dinámica de la Mecánica Estadística. Inerpreacón dnámca de la Mecánca Esadísca. Evolucón de un ssema: Proceso esocásco Ω 1 Ω Ω 3...Ω n... Sea P 1 Ω 1 ; Ω ; 3 Ω 3 ;...; n Ω n ;... la probabldad de la secuenca de confguracones a empos dscreos.

Más detalles

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D.

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D. CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 0 Ing. Dego A. Patño G. M.Sc, Ph.D. Solucón de la Ecuacón de Estado Solucón de Ecuacones de Estado Estaconaras: Para el caso estaconaro (nvarante en el tempo),

Más detalles

Solución de la ecuación homogénea

Solución de la ecuación homogénea Solución de la ecuación de esado en modelos lineales Solución de la ecuación homogénea Mariz de ransición Propiedades de la mariz de ransición Solución de la ecuación complea Cálculo de la mariz de ransición

Más detalles

TEORÍA DE CIRCUITOS - 2 LEYES DE KIRCHHOFF. - Variables relacionadas. v(t) = v 1 (t) - v 2 (t) i(t) = i 1 (t) = i 2 (t) v(t)

TEORÍA DE CIRCUITOS - 2 LEYES DE KIRCHHOFF. - Variables relacionadas. v(t) = v 1 (t) - v 2 (t) i(t) = i 1 (t) = i 2 (t) v(t) TOÍ D UTOS /24 TOÍ D UTOS 2/24 UTO LÉTO DSPOSTOS LÉTOS Y LTÓNOS UTO LÉTO L LS ONDUTOS DSPOSTOS LÉTOS O LTÓNOS UTO LÉTO: DFNONS M NUDOS NO NUDO (ONXÓN N S) 2 3 N 4 ONXÓN N PLLO N2 5 6 MODLO D UTO LÉTO L

Más detalles

Transformada de Laplace

Transformada de Laplace ransformaa e Laplace Problema Estuar la Aplcabla e la ransformaa e Laplace en Sstemas e Ingenería. Defncones ransformaa e Laplace problema transformacón recta problema Sea la señal f(t), entonces la ransformaa

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

Tema 4. Filtros Analógicos

Tema 4. Filtros Analógicos Tema 4. Filros Analógicos Caracerización Temporal Francisco J. González, UC3M 29 Sisemas y Circuios 4. Definición x() Filro y ( ) = T x( ) x[ n ] ak, bk yn [ ] = T{ xn [ ]} Filro analógico: Sisema en Tiempo

Más detalles

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente.

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente. AUTO-INDUCTANCIA: Una bobna puede nducr una fem en s msma.s la correne de una bobna camba, el flujo a ravés de ella, debdo a la correne, ambén se modfca. Así como resulado del cambo de la correne de la

Más detalles

En este capítulo se presenta a detalle el esquema de relajación Lagrangeana utilizado para

En este capítulo se presenta a detalle el esquema de relajación Lagrangeana utilizado para CAPITULO 4 Descrpcón del algormo propueso En ese capíulo se presena a dealle el esquema de relaacón Lagrangeana ulzado para la obencón de coas nferores; así como ambén, la descrpcón de la heurísca prmal

Más detalles

EL MÉTODO DE LOS ELEMENTOS FINITOS

EL MÉTODO DE LOS ELEMENTOS FINITOS 3 El Méodo de los Elemenos Fnos 95 EL MÉTODO DE LOS ELEMENTOS FINITOS CAPÍTULO TRES 3. INTRODUCCIÓN En ese capíulo nroducmos las herramenas báscas para la resolucón de las ecuacones dferencales de Phlp

Más detalles

DE LAS ECUACIONES DE MAXWELL A LAS ONDAS ELECTROMAGNETICAS

DE LAS ECUACIONES DE MAXWELL A LAS ONDAS ELECTROMAGNETICAS D LAS CUACIONS D MAXWLL A LAS ONDAS LCTROMAGNTICAS. Inroduccón. cuacones de Mawell.. Correccón de Mawell. Correnes de desplaameno. 3. Ondas elecromagnécas. 4. l especro elecromagnéco. Ondas wf. Inroduccón

Más detalles

Sistemas lineales con ruido blanco

Sistemas lineales con ruido blanco Capíulo 3 Sisemas lineales con ruido blanco 3.1. Ruido Blanco En la prácica se encuenra procesos esocásicos escalares u con media cero y la propiedad de que w( 1 ) y w( 2 ) no esán correlacionados aún

Más detalles

Control Óptimo y Optimización Dinámica

Control Óptimo y Optimización Dinámica Conrol Ópmo y Opmzacón námca Problemas de Conrol Ópmo Proceso de solucón consse en enconrar los perfles de la varable de conrol vs empo de modo que se opmce un índce parcular de medda de desempeño del

Más detalles

MODELOS DE SERIES DE TIEMPO. porque su esperanza (condicional) depende de su valor en el período pasado:

MODELOS DE SERIES DE TIEMPO. porque su esperanza (condicional) depende de su valor en el período pasado: Apunes de Teoría Economérca I. Profesor: Vvana Fernández MODELOS DE SERIES DE TIEMPO I CONCEPTOS PRELIMINARES. Procesos Auorregresvos y de Promedo Móvl Se dce que sgue un proceso auorregresvo: es rudo

Más detalles

ESCUELA INTERNACIONAL DE IDIOMAS Avenida Pedro de Heredia, Calle 49a #31-45, barrio el Libano 6600671

ESCUELA INTERNACIONAL DE IDIOMAS Avenida Pedro de Heredia, Calle 49a #31-45, barrio el Libano 6600671 Página: Pág: 1 HORARIOS DE CLASES IDIOMAS Jornada: M Sem:01 Curso:01 A.1.1 AA A.1.1 AA A.1.1 AA 11:00AM-12:00PM VIONIS VIONIS Jornada: M Sem:01 Curso:02 A.1.1 AB A.1.1 AB A.1.1 AB VIONIS VIONIS Jornada:

Más detalles

TRANSITORIOS EN SISTEMAS ELECTRICOS

TRANSITORIOS EN SISTEMAS ELECTRICOS TRANSTOROS EN SSTEMAS EETROS Dr. Armando lama Dr. Federco ramone Febrero 7 de 3 Agenda Solucón de la area. Problema. Solucón de la area. Problema. Manobra con banco de capacore. orrene de energzacón en

Más detalles

EMTP = Electromagnetic Transients Program

EMTP = Electromagnetic Transients Program EMTP Elecromagneic Transiens Program Algorimo de Dommel i eq v i eq v V J eq Equivalenes discreos para cada elemeno Mariz de conducancias admiancias Análisis Nodal Paso de cálculo consanes Semiconducores

Más detalles

SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN SOLUCION NUMERICA Una solucón de esta ecuacón ncal con CI es una funcón ϕ : ( x ε, x + ε ) R tal que 0 0 ϕ '( x) = f ( x, ϕ( x)),

Más detalles

Tiempos de relajación T 1 y T 2

Tiempos de relajación T 1 y T 2 empos de relajacón y Levtt,;Haacke, 7/4/ RI - Lus Agulles Pedrós Relajacón y dnámca: Supongamos un sstema de espnes alnados cuyo campo vertcal es estátco. d dt Supongamos el campo horzontal por acople

Más detalles

Una Ecuación Lineal de Movimiento

Una Ecuación Lineal de Movimiento Una Ecuacón Lneal de Movmento Antono A. Blatter Lcenca Creatve Commons Atrbucón 3.0 (2015) Buenos Ares Argentna Este trabajo presenta una ecuacón lneal de movmento que es nvarante bajo transformacones

Más detalles

Resolviendo la Ecuación Diferencial de 1 er Orden

Resolviendo la Ecuación Diferencial de 1 er Orden Resolviendo la Ecuación Diferencial de er Orden J.I. Huircán Universidad de La Fronera February 6, 200 bsrac El siguiene documeno planea disinos méodos para resolver una ecuación diferencial de primer

Más detalles

Comportamiento Transitorio de Sistemas de Primer Orden

Comportamiento Transitorio de Sistemas de Primer Orden Comporamieno Transiorio de Sisemas de Primer Orden Problema Parámeros Sisemas de Primer con un polo y/o cero exra. k p n f f f n f f Sisema de Primer Orden gs () = k p s ys () = k p s s k p e y p ().5

Más detalles

TEMA 6: RESPOSTA TRANSITÒRIA CIRCUITS DE SEGON ORDRE. Resposta homogénea (resposta a entrada nul.la) Resposta homogénea (resposta a entrada nul.

TEMA 6: RESPOSTA TRANSITÒRIA CIRCUITS DE SEGON ORDRE. Resposta homogénea (resposta a entrada nul.la) Resposta homogénea (resposta a entrada nul. TEMA 6: RESPOSTA TRANSTÒRA RUTS DE SEGON ORDRE rcu R ère Repoa homogénea (repoa a enrada nul.la) rcu R paral.lel Repoa homogénea (repoa a enrada nul.la) Repoa del crcu de egon ordre a un eglaó Repoa nuoïdal

Más detalles

Método de Runge-Kutta para Ecuaciones Diferenciales

Método de Runge-Kutta para Ecuaciones Diferenciales Análss Numérco Carlos Armando De Casro Paares Méodo de Runge-Kua para Ecuacones Derencales Uno de los méodos más ulzados para resolver numércamene problemas de ecuacones derencales ordnaras con condcones

Más detalles

IV. Vibración bajo condiciones forzadas generales

IV. Vibración bajo condiciones forzadas generales Objetivos: 1. Reconocer que existen excitaciones periódicas no harmónicas y no periódicas.. Analizar la respuesta de un sistema de primer y de segundo orden bajo una fuerza periódica general. 3. Analizar

Más detalles

Sistemas y Señales I. Ecuaciones de Estado. Autor: Dr. Juan Carlos Gómez

Sistemas y Señales I. Ecuaciones de Estado. Autor: Dr. Juan Carlos Gómez Sisemas y Señales I Ecuaciones de Esado Auor: Dr. Juan Carlos Gómez Variables de Esado Definición: Las Variables de Esado son variables inernas del sisema, cuyo conocimieno para odo iempo, juno con el

Más detalles

Una Ecuación Lineal de Movimiento

Una Ecuación Lineal de Movimiento Una Ecuacón Lneal de Movmento Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una ecuacón lneal de movmento que es nvarante bajo transformacones entre

Más detalles

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos 4o. Encuenro. Maemácas en odo y para odos. Uso de las dsrbucones de probabldad en la smulacón de ssemas producvos Leopoldo Eduardo Cárdenas Barrón lecarden@esm.mx Deparameno de Ingenería Indusral y de

Más detalles

Movimiento Rectilíneo Uniformemente Acelerado (MRUA)

Movimiento Rectilíneo Uniformemente Acelerado (MRUA) 7. Movmeno Reclíneo Unorme Acelerado Movmeno Reclíneo Unormemene Acelerado (MRUA) elocdad Meda o elocdad promedo: La velocdad meda represena la relacón enre el desplazameno oal hecho por un móvl y el empo

Más detalles

CONTROL MODERNO CAPÍTULO 4 CONTROLABILIDAD DE SISTEMAS LINEALES

CONTROL MODERNO CAPÍTULO 4 CONTROLABILIDAD DE SISTEMAS LINEALES CONROL MODERNO Sesón n 0 # Obevo: El aluno reconocerá la caracerísca de conrolabldad de sseas dnácos expresados por edo de varables de esado, la uldad de d esa propedad para llevar al ssea desde su esado

Más detalles

Integracion Numerica en el Tiempo

Integracion Numerica en el Tiempo 4. Inegracón Numérca en el Tempo Inegracon Numerca en el Tempo 4 4. Inroduccón Anes de planear el problema con múlples grados de lberad, en esa seccón esudaremos la solucón numérca de ecuacones dferencales

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

Apéndice A. Principio de Mínima Acción y Energía Mecánica total.

Apéndice A. Principio de Mínima Acción y Energía Mecánica total. Apéndce A Prncpo de Mína Accón y Energía Mecánca total. E l prncpo de ína accón es equvalente a decr que la tayectora que sgue una partícula en el espaco de conguracón es aquella para la cual la dferenca

Más detalles

Consideraciones generales sobre dinámica estructural

Consideraciones generales sobre dinámica estructural Capíulo Consderacones generales sobre dnámca esrucural Inroduccón El obeo de la dnámca esrucural es el análss de esrucuras bao cargas dnámcas, es decr cargas que varían en el empo. Aunque la mayoría de

Más detalles

LUGAR DE LAS RAÍCES. Lugar de las raíces.

LUGAR DE LAS RAÍCES. Lugar de las raíces. Unversdad Carlos III de Madrd Señales y Sstemas LUGAR DE LAS RAÍCES Lugar de las raíces. 1. Introduccón. Crteros del módulo y argumento. 2. Gráfcas del lugar de las raíces. 3. Reglas para construr el lugar

Más detalles

SISTEMAS DE MODULACION

SISTEMAS DE MODULACION SISTEMS DE MODULCION Modulacón de es Connuas Es el proceso medane el cual un parámero (amplud o ángulo) de una poradora snusodal se hace varar en forma nsanánea proporconalmene a una señal mensaje de aja

Más detalles

Los esquemas de la reproduccio n de Marx

Los esquemas de la reproduccio n de Marx Los esquemas de la reproducco n de Marx Alejandro Valle Baeza Los esquemas de la reproduccón smple y amplada consuyen sólo una pare del análss del proceso de crculacón del capal. Fueron presenados en la

Más detalles

APLICACIONES TÍPICAS DEL AO

APLICACIONES TÍPICAS DEL AO 3 PLIIONES TÍPIS DEL O 3.. INTODUIÓN Exsen nnumerables aplcacnes para ls O, an lneales cm n lneales, muchas de las cuales pueden ser mejradas medane pequeñas aracnes. El gran prblema, es sn duda saber

Más detalles

T8 T9. Capítulo. Dinámica de los sistemas libres de un grado de libertad

T8 T9. Capítulo. Dinámica de los sistemas libres de un grado de libertad Capíulo T8 T9 Dnáca de los sseas lbres de un grado de lberad 9. INTODUCCIÓN A lo largo de ese capíulo, se va a planear la respuesa de los sseas dnácos resolvendo analícaene las ecuacones que aparecen.

Más detalles

Señales en los sistemas electrónicos. Parte 2. Equivalentes Thevenin y Norton. Impedancia de entrada y salida

Señales en los sistemas electrónicos. Parte 2. Equivalentes Thevenin y Norton. Impedancia de entrada y salida 07//04 ema Conepos básos Pare. Señales en los ssemas elerónos Pare. Equvalenes hevenn y Noron. Impedana de enrada y salda e@upm.es Pare 3. Componenes pasvos Inroduón PE Señales en los ssemas elerónos Señales

Más detalles

Problemas de Condiciones de Contorno para Ecuaciones Diferenciales Ordinarias

Problemas de Condiciones de Contorno para Ecuaciones Diferenciales Ordinarias Problemas de Condcones de Contorno para Ecuacones Dferencales Ordnaras Segundo curso Grado en Físca Índce Introduccón Métodos de dsparo Método de dsparo para resolver problemas de ODE con condcones de

Más detalles

Sistemas Lineales de Masas-Resortes 2D

Sistemas Lineales de Masas-Resortes 2D Sstemas neales de Masas-Resortes D José Cortés Pareo. Novembre 7 Un Sstema neal de Masas-Resortes está consttudo por una sucesón de puntos (de ahí lo de lneal undos cada uno con el sguente por un resorte

Más detalles

Control por Modos Deslizantes y Planitud Diferencial de un Convertidor de CD/CD Boost: Resultados Experimentales

Control por Modos Deslizantes y Planitud Diferencial de un Convertidor de CD/CD Boost: Resultados Experimentales hp://www.revsa-ra.org Conrol por Modos Deslzanes y Planud Dferencal de un Converdor de CD/CD Boos: Resulados Expermenales R. Slva-Orgoza, H. Sra-Ramírez y V. M. Hernández-Guzmán CIDETEC-IPN. Deparameno

Más detalles

7. CAPACITANCIA E INDUCTANCIA

7. CAPACITANCIA E INDUCTANCIA 7. APAITANIA E INDUTANIA 7.. INTRODUIÓN El elemeno paso e os ermnales que hemos so hasa el momeno, eso es la Ressenca, presena un comporameno lneal enre su olaje y correne. Eso prouce ecuacones algebracas

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

Nélida Diaz, Francisco Jiménez y Mauricio López División de Tiempo y Frecuencia. Resumen

Nélida Diaz, Francisco Jiménez y Mauricio López División de Tiempo y Frecuencia. Resumen Nuevo esquemade generacón de laescalade empo UTCCNM Nélda Daz, Francsco Jménez y Maurco López Dvsón de Tempo y Frecuenca Resumen La escala de Tempo Unversal Coordnado del CENAM, UTCCNM, se genera desde

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

( ) 2 3 a ( ) % τ ia. Solución:

( ) 2 3 a ( ) % τ ia. Solución: Problema 1: El clndro unforme de rado a de la fgura pesaba en un prncpo 80 N. Después de taladrársele un agujero clíndrco de eje paralelo al anteror su peso es de 75 N. Suponendo que el clndro no deslza

Más detalles

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE ESTUDIOS PROFESIONALES EN INGENIERIA Y CIENCIAS FISICO MATEMATICAS

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE ESTUDIOS PROFESIONALES EN INGENIERIA Y CIENCIAS FISICO MATEMATICAS ESCUELA: CARRERA: ESPECALDAD: COORDNACON: DEPARTAMENTO: UPCSA NGENERA EN TRANSPORTE ACADEMAS DE MATEMATCAS CENCAS BASCAS ASGNATURA: MATEMATCAS APLCADAS : TMMA SEMESTRE: 4 CREDTOS: 8 VGENTE: ENERO 2000

Más detalles

Figura 1.1 Definición de componentes de tensiones internas.

Figura 1.1 Definición de componentes de tensiones internas. . ELEMENTOS DE TENSORES CARTESIANOS. Inroduccón: Para descrbr endades o varables físcas se requere de valores o componenes. El número de componenes necesaras deermna la nauraleza ensoral de la varable.

Más detalles

FASCÍCULO: MATRICES Y DETERMINANTES

FASCÍCULO: MATRICES Y DETERMINANTES FSÍULO: MRIES Y DEERMINNES on el avance de la ecnología en especal con el uso de compuadoras personales, la aplcacón de los concepos de marz deermnane ha cobrado alcances sn precedenes en nuesros días.

Más detalles

Inversión de Datos de Concentración de Contaminantes Atmosféricos para Estimar la Tasa de Emisión de una Fuente Puntual: Aplicación del Método Adjunto

Inversión de Datos de Concentración de Contaminantes Atmosféricos para Estimar la Tasa de Emisión de una Fuente Puntual: Aplicación del Método Adjunto Inversón de Daos de Concenracón de Conamnanes Amosfércos para Esmar la Tasa de Emsón de una Fuene Punual: Aplcacón del Méodo Aduno Davd Parra 1, Yur N. Sba 1 (1) Cenro de Cencas de la Amósfera, Unversdad

Más detalles

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO Sabes cuáles son las caraceríscas del momeno reclíneo unormemene acelerado? INTRODUCCION Prmero debemos saber que denro de la cnemáca exsen derenes pos de

Más detalles

MMII_L1_c2: Ecuaciones casi lineales de primer orden: Método de las características

MMII_L1_c2: Ecuaciones casi lineales de primer orden: Método de las características MMII_L_c: Ecacone ca lneale de prmer orden: Méodo de la caraceríca Gón de la clae: En ea clae e dearrolla la búqeda de olcone paramérca del problema de Cach defndo por ecacone ca lneale de prmer orden.

Más detalles

SISTEMAS DE CONTROL AVANZADO

SISTEMAS DE CONTROL AVANZADO SISTEMAS DE CONTROL AVANZADO LUIS EDO GARCÍA JAIMES POLITÉCNICO COLOMBIANO J.I.C PRIMERA PARTE ANÁLISIS DE SISTEMAS DE CONTROL EN EL ESPACIO DE ESTADO Este método tiene como objetivo la descripción de

Más detalles

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR En esta práctca se llevará a cabo un estudo de modelado y smulacón tomando como base el ntercambador de calor que se ha analzado en el módulo de teoría.

Más detalles

SERIE DE ECUACIONES DIFERENCIALES

SERIE DE ECUACIONES DIFERENCIALES SERIE DE ECUACIONES DIFERENCIALES PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) Clasifique cada una de las ecuaciones diferenciales siguienes indicando orden (O), grado (G) y si es lineal (L) o no (NL). a) ( y)

Más detalles

LA MODELIZACIÓN DE PROCESOS

LA MODELIZACIÓN DE PROCESOS L MODELIZIÓN DE ROESOS En ese capíulo, se presena una meodología en desarrollo para modelos dnámcos de procesos químcos. Después de esudar ese capíulo, el esudane debería ser capaz de: Escrbr las ecuacones

Más detalles

1. Sistemas Físicos 1

1. Sistemas Físicos 1 1. Sstemas Físcos 1. Sstemas Físcos 1 1.1. Introduccón 1.. Sstemas Mecáncos 3 1.3. Sstemas Eléctrcos 5 1.4. Sstemas Hdráulcos 7 1.5. Sstemas Múltples 11 1 1.1. Introduccón Sstemas lneales y no lneales.

Más detalles

Tema 1. Introducción a las señales y los sistemas

Tema 1. Introducción a las señales y los sistemas SISTEMAS LINEALES Tema. Introducción a las señales y los sistemas de septiembre de F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Definiciones. Clasificación de señales. Transformaciones de la

Más detalles

Pronóstico con Modelos Econométricos

Pronóstico con Modelos Econométricos Pronósco con Modelos conomércos Hldegar A. Ahumada UD A common complan (n he UK): When weaher forecass go awr, meeorologss ge a new supercompuer When economs ms-forecas, we ge our budges cu (Hendr, 200)

Más detalles

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan

Más detalles

Propiedades efectivas de medios periódicos magneto-electroelásticos a través de funciones de Green

Propiedades efectivas de medios periódicos magneto-electroelásticos a través de funciones de Green Propedades efectvas de medos peródcos magneto-electroelástcos a través de funcones de Green utores: Lázaro Makel Sto Camacho Julán Bravo Castllero LOGO Renaldo Rodríguez Ramos Raúl Gunovart Díaz Introduccón

Más detalles

Tema 3 Sistemas lineales.

Tema 3 Sistemas lineales. Tema 3 Sisemas lineales. Podemos definir un sisema como un grupo o combinación de elemenos inerrelacionados o íner-acuanes que forman una enidad coleciva. En el conexo de los sisemas de comunicación los

Más detalles

Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada

Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada CONTROL MODERNO Y ÓPTIMO (MT 7C) Clase3- Elizabeth Villota Cerna Semestre II - UNI /9/

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

Capítulo 2: Introducción al método de los Elementos Finitos 2. CAPÍTULO 2 INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS

Capítulo 2: Introducción al método de los Elementos Finitos 2. CAPÍTULO 2 INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS Capítulo 2: Introduccón al método de los Elementos Fntos 2. CAPÍTULO 2 ITRODUCCIÓ AL MÉTODO DE LOS ELEMETOS FIITOS 2.. ITRODUCCIÓ Vrtualmente cada fenómeno en la naturaleza, sea bológco, geológco o mecánco

Más detalles

Tema 4. Condensadores y Bobinas

Tema 4. Condensadores y Bobinas Tema 4. ondensadores y Bobnas 4. Inroduccón 4. ondensadores 4.3 Energía almacenada en un condensador 4.4 Asocacón de condensadores 4.5 Bobnas 4.6 Energía almacenada en una bobna 4.7 Asocacón de bobnas

Más detalles

1. El producto financiero y el modelo matemático

1. El producto financiero y el modelo matemático XXI Congreso de Ecuacones Dferencales y Aplcacones XI Congreso de Matemátca Aplcada Cudad Real, -5 septembre 009 (pp. 8) Modelado con Black-Scholes y resolucón numérca para valorar un contrato tpo Ratchet-Cap

Más detalles

Reglamento de D i v er s i ones y E s p ec tá c u los P ú b li c os Ayuntamiento Constitucional de Zapotlanejo 2007-2009 e n t e M u n i c i Z a t n e j o, J a o, a h a t a n t e m u n i c i o h a g o

Más detalles

Tema 4. Condensadores y Bobinas

Tema 4. Condensadores y Bobinas Tema 4. ondensadores y obnas 4. Inroduccón 4. ondensadores 4. Energía almacenada en un condensador 4.4 socacón de condensadores 4. obnas 4.6 Energía almacenada en una bobna 4.7 socacón de bobnas ( E r

Más detalles