CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D."

Transcripción

1 CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 0 Ing. Dego A. Patño G. M.Sc, Ph.D.

2 Solucón de la Ecuacón de Estado Solucón de Ecuacones de Estado Estaconaras: Para el caso estaconaro (nvarante en el tempo), es decr: A, B, C, D constantes se debe determnar la solucón x(t) de la ecuacón para un estado ncal x(0) y entrada u(t), t 0 dados. Empleando el procedmento del factor ntegrante:

3 Solucón de la Ecuacón de Estado de la ntegracón de esta últma ecuacón entre 0 y t se obtene o lo que es lo msmo Como la nversa de e At es e At y e 0 I, la solucón es 3

4 Solucón de la Ecuacón de Estado La ecuacón anteror es la solucón general de la ecuacón de estado. Se conoce como la fórmula de varacón de los parámetros. La substtucón de dcha solucón en la ecuacón de salda (y Cx + Du) genera y(t): que evdenca la superposcón de la respuesta a entrada cero, debda a las condcones ncales, y la respuesta en estado cero, debda a la entrada externa úncamente. 4

5 Solucón de la Ecuacón de Estado La respuesta homogénea, para entrada cero es: X& AX Y CX y( t ) Ce X(0) La respuesta la determna la matrz de transcón de estados. El efecto de la matrz sobre la respuesta se vsualza empleando los retratos de fase. At 5

6 Solucón de la Ecuacón de Estado Retrato de fase: grafo de varas respuestas a entrada cero en el plano de fase: x &( t) x( t) Se elge un conjunto de condcones ncales en un área de nterés en el plano x vs x Se grafca la solucón homogénea como una curva drgda en el sentdo postvo del tempo. 6

7 7 Retratos de fase. λ < 0. Jordan Para la ecuacón: La solucón es de la forma: El sstema es desacoplado X X & (0) (0) x x e e x x t t

8 Retratos de fase. λ < 0. Jordan x 4 Dagrama de fase x 8

9 Retratos de fase. λ < 0. Jordan Valores propos: - y -4 Vectores propos: [0 ] y [ 0]. S una condcón ncal concde con una de estas dreccones, tambén lo hará la solucón: es el subespaco nvarante. Independente de la condcón ncal las trayectoras tenden al orgen [0 0]. Orgen: punto de equlbro estable Es la tangente a la curva para todo t x & Ax 9

10 Respuesta paso. λ < 0 Respuesta paso x y S B ( 4) y C ( ) Transfer functon: 5 s x s^ + 5 s

11 Retratos de fase. λ < 0. Qué representa un cambo de base? Los vectores propos: [ -] y [ ] La matrz A nueva: 4 ; ; 3 λ X λ X & 3 M y M ˆ AM M A

12 Retratos de fase. λ < 0. 4 Dagrama de fase

13 Retratos de fase. λ < 0. Valores propos: - y -4 Vectores propos: [ -] y [ ]. S una condcón ncal concde con una de estas dreccones, tambén lo hará la solucón: es el subespaco nvarante. Solamente se han rotado los ejes Independente de la condcón ncal las trayectoras tenden al orgen [0 0]. Orgen: punto de equlbro estable Es la tangente a la curva para todo t x & Ax 3

14 4 Retratos de fase. λ < 0. B y C nuevas son: La funcón de transferenca: La descrpcón entrada salda es nvarante bajo transformacones smlares. ( ) ( ) 0 3 ˆ ˆ C B 4) )( ( 8 5 ) ( s s s s H

15 Respuesta paso Respuesta paso Respuesta paso X, y Ampltude x Tme (sec) La respuesta paso es nvarante bajo una transformacón smlar 5

16 Retratos de fase λ repetdos, < 0 Para valores propos repetdos: λ, - A 3 Solo hay un vector propo: (- ) Las trayectoras tenden al orgen. No se cortan. Las trayectoras no pueden rotar mas de 80 Para la forma canónca es necesaro defnr vector propo generalzado 6

17 Retratos de fase λ repetdos, < 0 4 Dagrama de fase

18 Retratos de fase λ repetdos, <0. Respuesta entrada cero

19 Retratos de fase λ repetdos. Jordan Para valores propos repetdos: λ, - A 0 Solo hay un vector propo: ( 0) Para la forma canónca es necesaro defnr vector propo generalzado 9

20 Retratos de fase λ repetdos. Jordan 4 Dagrama de fase

21 Retratos de fase. λ > 0 Sstema con valores propos en la parte derecha del plano complejo: Vectores propos: Solucones: 0 A ; λ ; λ 0 ( 0) y (0 ) x x t e e t x x (0) (0)

22 Retratos de fase. λ > 0 30 Dagrama de fase

23 Retratos de fase. λ > 0 La dreccón e (0 ) dverge: toda solucón en esa dreccón es crecente. La dreccón e ( 0) tende haca el orgen. Para sstemas LIT las solucones sólo se cruzan en el orgen. Para un sstema LIT no puede haber dos solucones LI en el msmo punto, excepto el orgen. Las solucones son suaves: sólo exste una tangente en cada punto 3

24 Retratos de fase. λ > 0 A 3 Los msmos valores propos del caso anteror. Vectores propos: ( ) ( ) El msmo retrato de fase rotado 4

25 Retratos de fase. λ > 0 0 Dagrama de fase

26 Retratos de fase. λ complejo Valores propos complejos: A Los λ: y Los vectores propos: ( ) ( ) 6

27 Retratos de fase. λ complejo 8 Dagrama de fase

28 Retratos de fase. λ complejo No hay dreccón nvarante. Los vectores propos complejos no tenen sgnfcado geométrco. Las esprales rotan alrededor del orgen Como el sstema es estable, parte real de los valores propos negatva, las esprales son haca adentro. La respuesta a entrada cero en el tempo es sub - amortguada 8

29 Respuesta entrada cero. λ complejo 4 Respuesta entrada cero 3 x x

30 Retratos de fase. λ magnaro Valores propos magnaros: A 5 Los λ: y Los vectores propos: ( ) ( ) 30

31 Retratos de fase. λ magnaro 8 Dagrama de fase

32 Retratos de fase. λ magnaro Los ejes de las elpses están a lo largo de los vectores sngulares de la matrz A: U S V

33 Solucón de la Ecuacón de Estado Para el sstema LIT la solucón de la ecuacón de estado tambén se puede calcular en el domno de la frecuenca empleando la transformada de Laplace: La matrz de transcón de estados: Ejemplo: Consderemos la ecuacón 33

34 Solucón de la Ecuacón de Estado Ejemplo: Dada la ecuacón La solucón está dada por la ecuacón Para calcular e At, se evalúa la nversa de si - A 34

35 Solucón de la Ecuacón de Estado Empleando la expansón en fraccones smples y usando una tabla de transformada Laplace. Tambén se puede drectamente por la fórmula de varacón de los parámetros 35

36 Solucón de la Ecuacón de Estado Comportamento Asntótco de la Respuesta a Entrada Nula De la forma de e Jt donde J está en forma de Jordan se puede deducr el comportamento asntótco de la respuesta del sstema a condcones ncales. Dado un sstema cuya matrz J Q AQ es 36

37 Solucón de la Ecuacón de Estado La respuesta a entrada nula de La expresón para e At es: es Cada elemento de e At será una combnacón lneal de los térmnos asocados con los valores propos de A y sus multplcdades. 37

38 Solucón de la Ecuacón de Estado De los casos analzados se puede deducr que S todos los valores propos de A, repetdos o no, tenen parte real negatva, e At 0 cuando t. S algún valor propo de A tene parte real postva, e At cuando t. S nngún valor propo de A tene parte real postva, y los autovalores con parte real cero son de multplcdad, e At α cuando t. S A tene autovalores con parte real cero de multplcdad o mayor, e At cuando t. 38

39 Solucón de la Ecuacón de Estado Ejemplo: Para un osclador armónco, donde obtenemos de donde Entonces la respuesta a una entrada nula será osclatora. 39

40 Solucón de la Ecuacón de Estado Forma Canónca Modal: La solucón de la ecuacón de estado pertenece a un espaco vectoral. Los vectores propos de A se pueden emplear como base de dcho espaco vectoral. Esta es la descomposcón modal del sstema. Sea {e } el conjunto de n vectores propos LI, ncluyendo vectores propos generalzados. En térmnos de esta base las solucones se pueden representar como: n x( t) ξ ( ) e Los ξ son los modos del sstema, y son funcones del tempo t 40

41 4 Solucón de la Ecuacón de Estado n t t ) ( ) ( e Bu β El térmno Bu(t) tambén se puede descomponer como: Reemplazando en la ecuacón orgnal: [ ] 0 ) ( ) ( ) ( ) ( ) ( ) ( + + n n n n t t t t t t e I A I e Ae e Bu Ax x β ξ ξ β ξ ξ & & &

42 4 Solucón de la Ecuacón de Estado [ ] 0 ) ( ) ( ) ( 0 ) ( ) ( ) (,.., t t t t t t n β λ ξ ξ β λ ξ ξ λ & & n e e Ae Como {e } es un conjunto de vectores propos Lnealmente ndependentes: Conjunto de n ecuacones lneales, escalares, ndependentes e nvarantes: n t t t,..., ) ( ) ( ) ( + β λ ξ ξ &

43 Solucón de la Ecuacón de Estado Los modos son equvalentes a una nueva varable de estado: x Mξ Mξ& AMξ + Bu ξ& M AMξ + M Y CMξ + Du La nueva matrz M - AM es dagonal y para valores propos dferentes es desacoplada Bu 43

44 Solucón de la Ecuacón de Estado La solucón modal: ˆ At ξ( t) e ξ(0) + e ξ(0) M X(0) t 0 Aˆ ( t τ ) M Bu( τ ) dτ La solucón es senclla de obtener debdo a la forma desacoplada de las ecuacones. Para regresar a la representacón orgnal: X Mξ 44

45 Solucón de la Ecuacón de Estado Descomposcón modal permte evaluar : Controlabldad Observabldad Establdad S se retenen los modos domnantes el sstema se puede aproxmar por uno de más bajo orden 45

46 REFERENCIAS. CHEN C.T. Lnear Systems Theory and Desgn. 3rd Edton. New York: Oxford Unversty Press BAY J.S. Fundamentals of Lnear State Space Systems, New York: McGraw Hll Internatonal Edton,

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

CAPITULO 2 VALORES, VECTORES PROPIOS y SVD. Ing. Diego A. Patiño M.Sc., Ph.D.

CAPITULO 2 VALORES, VECTORES PROPIOS y SVD. Ing. Diego A. Patiño M.Sc., Ph.D. CAPITULO VALORES, VECTORES PROPIOS y SVD Ing. Dego A. Patño M.Sc., Ph.D. Valores y Vectores Propos Muchas de las transformacones que se necestan en el dseño de sstemas de control se realzan sobre vectores

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller Unversdad Smón Bolívar Conversón de Energía Eléctrca Prof José anuel Aller 41 Defncones báscas En este capítulo se estuda el comportamento de los crcutos acoplados magnétcamente, fjos en el espaco El medo

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles

La representación Denavit-Hartenberg

La representación Denavit-Hartenberg La representacón Denavt-Hartenberg José Cortés Parejo. Marzo 8 Se trata de un procedmeto sstemátco para descrbr la estructura cnemátca de una cadena artculada consttuda por artculacones con. un solo grado

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule,

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule, Mecánca Cambo de Coordenadas En coordenadas Cartesanas estamos acostumbrados a pensar a los vectores base como versores (vectores de norma 1 o untaros) drgdos a lo largo de los correspondentes ejes, en

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

Ejercicios Resueltos de Vectores

Ejercicios Resueltos de Vectores Departamento de Matemátca y C C Coordnacón: Calculo II para Ingenería Semestre Eerccos Resueltos de Vectores Sean los vectores en IR : v,,, u,, 4, a,, y b,, 4 : a) Determne los vectores: UV y AB UV AB

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Tiempos de relajación T 1 y T 2

Tiempos de relajación T 1 y T 2 empos de relajacón y Levtt,;Haacke, 7/4/ RI - Lus Agulles Pedrós Relajacón y dnámca: Supongamos un sstema de espnes alnados cuyo campo vertcal es estátco. d dt Supongamos el campo horzontal por acople

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

8. Espacio vectorial con producto escalar

8. Espacio vectorial con producto escalar Depto de Álgebra, curso 7-8 8 Espaco vectoral con producto escalar Productos escalares Ejercco 8 Demuestre que s P es una matrz nvertble n n sobre C y P es su matrz traspuesta conjugada entonces la aplcacón

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

Modelos lineales Regresión simple y múl3ple

Modelos lineales Regresión simple y múl3ple Modelos lneales Regresón smple y múl3ple Dept. of Marne Scence and Appled Bology Jose Jacobo Zubcoff Modelos de Regresón Smple Que tpo de relacón exste entre varables Predccón de valores a partr de una

Más detalles

UdelaR Facultad de Ciencias Curso de Física I p/lic. Física y Matemática Curso 2011 CINEMÁTICA

UdelaR Facultad de Ciencias Curso de Física I p/lic. Física y Matemática Curso 2011 CINEMÁTICA UdelaR Facultad de Cencas Curso de Físca I p/lc. Físca y Matemátca Curso 011 1.- CINEMÁTICA UNIDIMENSIONAL CINEMÁTICA Partícula- Modelo de punto materal, de dmensones desprecables. Ley horara x (t) Funcón

Más detalles

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente en el análss y dseño de sstemas de control. Otro procedmento alternatvo

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

LUGAR DE LAS RAÍCES. Lugar de las raíces.

LUGAR DE LAS RAÍCES. Lugar de las raíces. Unversdad Carlos III de Madrd Señales y Sstemas LUGAR DE LAS RAÍCES Lugar de las raíces. 1. Introduccón. Crteros del módulo y argumento. 2. Gráfcas del lugar de las raíces. 3. Reglas para construr el lugar

Más detalles

Unidad 6-. Números complejos 1

Unidad 6-. Números complejos 1 Undad -. Números complejos ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Efectúa las sguentes operacones: aa (-(-(- aa (-(-(- cc ( -(-( bb ( ( - - (- 7 dd ( - - (- / ( - ( ( (. ( Sumamos algebracamente por

Más detalles

Fuerzas ficticias Referencial uniformemente acelerado

Fuerzas ficticias Referencial uniformemente acelerado Capítulo 10 Fuerzas fctcas Las fuerzas fctcas son fuerzas que deben nclurse en la descrpcón de un sstema físco cuando la observacón se realza desde un sstema de referenca no nercal, a pesar de ello, se

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES

SISTEMAS DE ECUACIONES DIFERENCIALES DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS AROXIMADOS EN ING. QUÍMICA TF-33 SISTEMAS DE ECUACIONES DIFERENCIALES Esta guía fue elaborada por: rof.

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta.

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta. Rentas Fnanceras. Renta fracconada 6. RETA FRACCIOADA Una renta fracconada se caracterza porque su frecuenca no concde con la frecuenca de varacón del térmno de dcha renta. Las característcas de la renta

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO.

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. Dado un numero n de puntos del plano ( a, b ) es posble encontrar una funcón polnómca

Más detalles

6.9 El trazador cúbico

6.9 El trazador cúbico 4.9 El trazador cúbco El polnomo de nterpolacón es útl s se usan pocos datos y que además tengan un comportamento polnomal, así su representacón es un polnomo de grado bajo y adecuado. S no se cumplen

Más detalles

MECANISMO DE INTERACCIÓN DEL AGUA Y DEL AIRE PERFILES Condiciones en un deshumidificador

MECANISMO DE INTERACCIÓN DEL AGUA Y DEL AIRE PERFILES Condiciones en un deshumidificador MECANIMO DE INTERACCIÓN DE AUA DE AIRE PERFIE Condcones en un humdfcador constante del líqudo adabátco. Temperatura Agua T Temperatura Temperatura Constante T = T T Calor latente Calor atente Ovapor Are

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

Tema 6 El mercado de bienes y la función IS

Tema 6 El mercado de bienes y la función IS Tema 6 El mercado de benes y la funcón IS Macroeconomía I Prof. Anhoa Herrarte Sánchez Curso 2007-08 Bblografía para preparar este tema Apuntes de clase Capítulo 3, Macroeconomía, O. Blanchard Prof. Anhoa

Más detalles

9. Autovalores y Autovectores

9. Autovalores y Autovectores 9. Autovalores y Autovectores Sea V un espaco vectoral sobre el cuerpo K y sea F : V V un operador lneal. Un escalar λ K es un autovalor de F s exste v V, con v 0, tal que F(v = λv (v 0 En tal caso v es

Más detalles

Sistemas Lineales de Masas-Resortes 2D

Sistemas Lineales de Masas-Resortes 2D Sstemas neales de Masas-Resortes D José Cortés Pareo. Novembre 7 Un Sstema neal de Masas-Resortes está consttudo por una sucesón de puntos (de ahí lo de lneal undos cada uno con el sguente por un resorte

Más detalles

1. Modelos Expresados en Variables de Estado 1

1. Modelos Expresados en Variables de Estado 1 2 3 Modelo en Varables de Estado.doc 1 1. Modelos Exresados en Varables de Estado 1. Modelos Exresados en Varables de Estado 1 1.1. Introduccón 2 1.2. Defncón 2 1.3. Forma General 9 1.4. Solucón 1 1.5.

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

Oferta de Trabajo Parte 2. Economía Laboral Julio J. Elías LIE - UCEMA

Oferta de Trabajo Parte 2. Economía Laboral Julio J. Elías LIE - UCEMA Oferta de Trabajo Parte 2 Economía Laboral Julo J. Elías LIE - UCEMA Curva de oferta de trabajo ndvdual Consumo Salaro por hora ($) G w=$20 F w=$25 25 Curva de Oferta de Trabajo Indvdual w=$14 20 14 w

Más detalles

Robótica Tema 4. Modelo Cinemático Directo

Robótica Tema 4. Modelo Cinemático Directo UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de

Más detalles

Usando geometría proyectiva para corregir una cámara. Parte II

Usando geometría proyectiva para corregir una cámara. Parte II Usando geometría proyectva para corregr una cámara. Parte II No hay nada partcularmente profundo en este problema o en su solucón, pero espero que muestre el placer que se puede encontrar cuando usamos

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Programa de Doctorado en Ingeniería Aeronáutica Capítulo III Tensor deformación. El Tensor de Deformación A A'

Programa de Doctorado en Ingeniería Aeronáutica Capítulo III Tensor deformación. El Tensor de Deformación A A' Programa de Doctorado en Ingenería Aeronátca Capítlo III Tensor deformacón Comportamento Mecánco de Materales - Dr. Alberto Monsalve González - El Tensor de Deformacón Introdccón Además de descrbr los

Más detalles

El Tensor de Deformación

El Tensor de Deformación Comportamento Mecánco de Sóldos Capítlo IV Tensor de deformacón 4.. Introdccón El Tensor de Deformacón Además de descrbr los esferzos de n cerpo, la mecánca de los sóldos contnos aborda tambén la descrpcón

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

Tema II : Mecánica Hamiltoniana

Tema II : Mecánica Hamiltoniana Tema II : Mecánca Hamltonana Como en Termodnámca, pueden aplcarse transformacones de Legendre para tener funcones con varables ndependentes dstntas: Em. F es transformada de Legendre de la energía nterna

Más detalles

Introducción a la Química Computacional. Reservados todos los derechos de reproducción. Luis A. Montero Cabrera, Universidad de La Habana, Cuba, 2006.

Introducción a la Química Computacional. Reservados todos los derechos de reproducción. Luis A. Montero Cabrera, Universidad de La Habana, Cuba, 2006. TEORÍA SIMPLE DE ORBITALES MOLECULARES DE ÜCKEL (MO) En 93 Erck ückel planteó que la combnacón lneal de orbtales atómcos (LCAO) tomados como funcones hdrogenodes del tpo p z permte calcular los estados

Más detalles

FISICOQUÍMICA FARMACÉUTICA (0108) UNIDAD 1. CONCEPTOS BÁSICOS DE CINÉTICA QUÍMICA

FISICOQUÍMICA FARMACÉUTICA (0108) UNIDAD 1. CONCEPTOS BÁSICOS DE CINÉTICA QUÍMICA FISICOQUÍMICA FARMACÉUTICA (008) UNIDAD. CONCEPTOS BÁSICOS DE CINÉTICA QUÍMICA Mtra. Josefna Vades Trejo 06 de agosto de 0 Revsón de térmnos Cnétca Químca Estuda la rapdez de reaccón, los factores que

Más detalles

Si consideramos un sistema PVT con N especies químicas π fases en equilibrio se caracteriza por: P v =P L = =P π

Si consideramos un sistema PVT con N especies químicas π fases en equilibrio se caracteriza por: P v =P L = =P π EQUILIBRIO DE FASES Reglas de las fases. Teorema de Duhem S consderamos un sstema PVT con N especes químcas π fases en equlbro se caracterza por: P, T y (N-1) fraccones mol tal que Σx=1 para cada fase.

Más detalles

Facultad de Ciencias Básicas

Facultad de Ciencias Básicas Facultad de Cencas Báscas ANÁLISIS GRÁFICO DE DATOS EXPERIMENTALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos expermentales. Establecer un crtero para el análss de grafcas

Más detalles

Problemas resueltos. Problema 6.1. E e1 R4 B R3. D Figura P6.1. Para la red de la figura P6.1:

Problemas resueltos. Problema 6.1. E e1 R4 B R3. D Figura P6.1. Para la red de la figura P6.1: 1 Problemas resueltos. Problema 6.1 Para la red de la fgura P6.1: j R e Fgura P6.1. a) etermnar la red pasa Norton entre y, sta por la resstenca. b) etermnar la fuente equalente Théenn entre y, sta por

Más detalles

(4 3 i)(4 3 i)

(4 3 i)(4 3 i) E.T.S.I. Industrales y Telecomuncacón Curso 00-0 Grados E.T.S.I. Industrales y Telecomuncacón Asgnatura: Cálculo I Ejerccos resueltos Calcular el valor de a y b para que b a 4 sea real y de módulo undad

Más detalles

5 Métodos iterativos para la resolución de ecuaciones algebraicas lineales Método de Gauss-Jacobi Método de Gauss-Seidel...

5 Métodos iterativos para la resolución de ecuaciones algebraicas lineales Método de Gauss-Jacobi Método de Gauss-Seidel... CONTENIDO 5 Métodos teratvos para la resolucón de ecuacones algebracas lneales 95 5.1 Método de Gauss-Jacob................................ 95 5.2 Método de Gauss-Sedel................................

Más detalles

Propiedades Asintóticas

Propiedades Asintóticas Capítulo 3 Propedades Asntótcas 3.. Dstrbucones Estaconaras Defncón 3. Sea X n, n, una cadena de Markov con espaco de estados E y matrz de transcón P. Sea π(), E, una dstrbucón de probabldad, es decr,

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

Optimización no lineal

Optimización no lineal Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de

Más detalles

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño EDO: Ecuacón Dferencal Ordnara Solucones numércas Jorge Eduardo Ortz Trvño Organzacón general Errores en los cálculos numércos Raíces de ecuacones no-lneales Sstemas de ecuacones lneales Interpolacón ajuste

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

Estimación no lineal del estado y los parámetros

Estimación no lineal del estado y los parámetros Parte III Estmacón no lneal del estado y los parámetros 1. Estmacón recursva El ltro de Kalman extenddo 12 es una técnca muy utlzada para la la estmacón recursva del estado de sstemas no lneales en presenca

Más detalles

ANEXO A: Método de Interpolación de Cokriging Colocado

ANEXO A: Método de Interpolación de Cokriging Colocado ANEXO A: Método de Interpolacón de Corgng Colocado A. Conceptos Báscos de Geoestadístca Multvarada La estmacón conunta de varables aleatoras regonalzadas, más comúnmente conocda como Corgng (Krgng Conunto),

Más detalles

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Examen Fnal Pregunta ( punto) Responda brevemente a las sguentes preguntas: a) Cuál es el obetvo en el aprendzae del Perceptron

Más detalles

17/02/2015. Ángel Serrano Sánchez de León

17/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León 1 Índce Introduccón Varables estadístcas Dstrbucones esde frecuencas c Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca,

Más detalles

3.1. Características del comportamiento estratégico Características del comportamiento estratégico

3.1. Características del comportamiento estratégico Características del comportamiento estratégico 3.1. Característcas del Matlde Machado 1 3.1. Característcas del El análss formal de una stuacón de empeza por la formulacón de un juego. Componentes de un juego: Jugadores Estrategas posbles para cada

Más detalles

CAMPO MAGNÉTICO CREADO POR CORRIENTES RECTILÍNEAS INDEFINIDAS

CAMPO MAGNÉTICO CREADO POR CORRIENTES RECTILÍNEAS INDEFINIDAS Departamento de Físca - UBU enero de 2017 1 CAMPO MAGNÉTICO CREADO POR CORRIENTES RECTILÍNEAS INDEFINIDAS En esta hoja podrán vsualzar el campo magnétco creado por una, dos tres o cuatro correntes rectlíneas

Más detalles

El diodo Semiconductor

El diodo Semiconductor El dodo Semconductor J.I. Hurcán Unversdad de La Frontera Aprl 9, 2012 Abstract Se plantean procedmentos para analzar crcutos con dodos. Para smpl car el trabajo, el dodo semconductor es reemplazado por

Más detalles

5. DIAGONALIZACIÓN DE MATRICES

5. DIAGONALIZACIÓN DE MATRICES Dagonalzacón Herraentas nforátcas para el ngenero en el estudo del algebra lneal 5. DIAGONALIZACIÓN DE MATRICES 5.1. INTRODUCCIÓN 5.2. VALORES Y VECTORES PROPIOS 5.3. MATRICES DIAGONALIZABLES 5.4. DIAGONALIZACIÓN

Más detalles

TEMA 2 Revisión de mecánica del sólido rígido

TEMA 2 Revisión de mecánica del sólido rígido TEMA 2 Revsón de mecánca del sóldo rígdo 2.. ntroduccón SÓLDO RÍGDO SÓLDO: consderar orentacón y rotacón RÍGDO: CONDCÓN DE RGÍDEZ: - movmento: no se alteran dstancas entre puntos - se gnoran las deformacones

Más detalles

SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN SOLUCION NUMERICA Una solucón de esta ecuacón ncal con CI es una funcón ϕ : ( x ε, x + ε ) R tal que 0 0 ϕ '( x) = f ( x, ϕ( x)),

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

Propiedades efectivas de medios periódicos magneto-electroelásticos a través de funciones de Green

Propiedades efectivas de medios periódicos magneto-electroelásticos a través de funciones de Green Propedades efectvas de medos peródcos magneto-electroelástcos a través de funcones de Green utores: Lázaro Makel Sto Camacho Julán Bravo Castllero LOGO Renaldo Rodríguez Ramos Raúl Gunovart Díaz Introduccón

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

Para simplificar el modelo considerado no incluye los circuitos de amortiguamiento representación más simple.

Para simplificar el modelo considerado no incluye los circuitos de amortiguamiento representación más simple. 12.5. Establzador del sstema de potenca (Power System Stablzer - PSS) La funcón básca del PSS es agregar amortguamento a las osclacones del rotor controlando su exctacón con señales establzantes adconales.

Más detalles

Contactar:

Contactar: Mecánca Teórca Mao 009 Tema: Transformacones Canóncas Contactar: telegama@gmal.com Una transformacón canónca es un cambo de las coordenadas generalzadas tal ue dan lugar a un nuevo amltonano ( amltonano

Más detalles

Unidad 2 Representación Algebráica

Unidad 2 Representación Algebráica Undad Representacón lgebráca Gráfcas no drgdas Matrz de Incdenca La matrz de ncdenca de una gráfca G se denota como (G) y se defne como: a, S el vértce v ncde en la línea e n cada columna hay exactamente

Más detalles

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton ema II Crcutos eléctrcos en corrente contnúa Indce Introduccón a los crcutos resstvos Ley de Ohm Leyes de Krchhoff Ley de correntes (LCK) Ley de voltajes (LVK) Defncones adconales Subcrcutos equvalentes

Más detalles

3.2. Competencia en cantidades modelo de Cournot Competencia en cantidades modelo de Cournot

3.2. Competencia en cantidades modelo de Cournot Competencia en cantidades modelo de Cournot Matlde Machado Supuestos báscos del : El producto de las empresas es homogéneo El preco de mercado resulta de la oferta agregada de las empresas (preco unco) Las empresas determnan smultaneamente la cantdad

Más detalles

Aplicación de curvas residuo y de permeato a sistemas batch y en continuo

Aplicación de curvas residuo y de permeato a sistemas batch y en continuo Aplcacón de curvas resduo de permeato a sstemas batch en contnuo Alan Dder érez Ávla En el presente trabajo se presentara de manera breve como obtener las ecuacones que generan las curvas de resduo, de

Más detalles

3.1. Características del comportamiento estratégico Características del comportamiento estratégico

3.1. Características del comportamiento estratégico Características del comportamiento estratégico 3.1. Característcas del Matlde Machado 1 3.1. Característcas del El análss formal de una stuacón de empeza por la formulacón de un juego. Componentes de un juego: Jugadores Estratégas posbles para cada

Más detalles

ÁLGEBRA LINEAL. Tarea 1. Nombre: Fecha:

ÁLGEBRA LINEAL. Tarea 1. Nombre: Fecha: ÁLGEBRA LINEAL Tarea. Investque a) Defncón de vector b) Operacones de vectores c) Defncón de matr d) Operacones de matrces e) Defncón de matr traspuesta Bblografía: ÁLGEBRA LINEAL Tarea. a) Investque )

Más detalles

Tema 2: El modelo clásico de regresión

Tema 2: El modelo clásico de regresión CURSO 010/011 Tema : El modelo clásco de regresón Aránzazu de Juan Fernández ECONOMETRÍA I ESQUEMA DEL TEMA Presentacón del modelo Hpótess del modelo Estmacón MCO Propedades algebracas de los estmadores

Más detalles

Física I Apuntes de Clase 2, Turno D Prof. Pedro Mendoza Zélis

Física I Apuntes de Clase 2, Turno D Prof. Pedro Mendoza Zélis Físca I Apuntes de Clase 2, 2018 Turno D Prof. Pedro Mendoza Zéls Isaac Newton 1643-1727 y y 1 y 2 j O Desplazamento Magntudes cnemátcas: v m r Velocdad meda r r 1 r 2 r velocdad s x1 2 r1 x1 + r2 x2 +

Más detalles

Práctica 4ª: RESOLUCIÓN DE SISTEMAS LINEALES. METODOS ITERATIVOS.

Práctica 4ª: RESOLUCIÓN DE SISTEMAS LINEALES. METODOS ITERATIVOS. practca4srnb Apelldos Nombre: Práctca 4ª: RESOLUCIÓN DE SISTEMAS LINEALES METODOS ITERATIVOS Normas vectorales normas matrcales Número de condcón de una matr Cuando se construe una sucesón de vectores

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO 8 CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO En esta seccón se descrbe el análss de posconamento y orentacón del robot paralelo: Se resuelve el problema cnemátco nverso en base a métodos

Más detalles

ESTÁTICA DEL SÓLIDO RÍGIDO

ESTÁTICA DEL SÓLIDO RÍGIDO DSR-1 ESTÁTICA DEL SÓLIDO RÍGIDO DSR-2 ESTÁTICA DEL SÓLIDO RÍGIDO La estátca estuda las condcones bajo las cuales los sstemas mecáncos están en equlbro. Nos referremos úncamente a equlbro de tpo mecánco,

Más detalles

a) Cuando tomamos como parámetros la longitud y la latitud. b) Cuando usamos la parametrización en forma explícita.

a) Cuando tomamos como parámetros la longitud y la latitud. b) Cuando usamos la parametrización en forma explícita. PROBLEMA DE INTEGRALE DE UPERFICIE. (20 I.T.I.MECÁNICA). -2008-09- 1.-Encontrar los puntos sngulares de la semesfera superor: x 2+y 2+z 2=R 2.z 0 a) Cuando tomamos como parámetros la longtud y la lattud.

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

Sistemas de Amortización de Deudas MATEMÁTICA FINANCIERA

Sistemas de Amortización de Deudas MATEMÁTICA FINANCIERA Sstemas de Amortzacón de Deudas MATEMÁTICA FINANCIERA SISTEMA FRANCÉS Lus Alcalá UNSL Segundo Cuatrmeste 2016 Como hpótess ncal de trabajo suponemos que la tasa de nterés cobrada por el prestamsta (acreedor)

Más detalles

LECCIONES DEL CURSO DE MODELACIÓN MATEMÁTICA Y COMPUTACIONAL

LECCIONES DEL CURSO DE MODELACIÓN MATEMÁTICA Y COMPUTACIONAL LECCIONES DEL CURSO DE MODELACIÓN MATEMÁTICA Y COMPUTACIONAL POSGRADOS DE CIENCIAS DE LA TIERRA Y DE CIENCIA E INGENIERÍA DE LA COMPUTACIÓN UNAM AUTOR: ISMAEL HERRERA REVILLA 1 Basado en el Lbro Mathematcal

Más detalles

Electricidad y calor

Electricidad y calor Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage: Algunas definiciones

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage:  Algunas definiciones Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Coordenadas Curvilíneas

Coordenadas Curvilíneas Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,

Más detalles

UNIDAD N 1 ESPACIOS VECTORIALES

UNIDAD N 1 ESPACIOS VECTORIALES UNIDAD N ESPACIOS VECTORIALES ESPACIOS VECTORIALES DEFINICIÓN Nº : Un CUERPO F es un conjunto con dos operacones (denotadas por + y ) que satsface las sguentes propedades: + ) La adcón es conmutatva, o

Más detalles