Usando geometría proyectiva para corregir una cámara. Parte II

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Usando geometría proyectiva para corregir una cámara. Parte II"

Transcripción

1 Usando geometría proyectva para corregr una cámara. Parte II No hay nada partcularmente profundo en este problema o en su solucón, pero espero que muestre el placer que se puede encontrar cuando usamos nuestra ntucón matemátca. Coordenadas Barcéntrcas. Davd Austn 1 Blnn tambén descrbe un segundo método para resolver este problema. Este nuevo método fue propuesto por Krk Olynyk, uno de sus colegas en Mcrosoft Research, y usa coordenadas barcéntrcas para smplfcar las cuentas. Prmero descrbremos brevemente las coordenadas barcéntrcas y luego presentaremos el método de Olynyk. S tenemos tres puntos no colneales en el plano, dgamos p 0, p1, y p, podemos representar de manera únca cualquer punto p en el plano de la sguente forma p, 0 p0 1 p1 p con la condcón adconal de que 1. Esto se puede ver fáclmente s 0 1 uno de los puntos p es el orgen. El caso más general se obtene aplcando una traslacón unforme a los cuatro puntos. 1 Impreso con autorzacón del autor. 1

2 S pudésemos aplcar esto a un punto en nuestro espaco de llegada, tendríamos que 0t0 1t1 t1 t y de manera smlar para un punto en el espaco de salda: 0S0 1S1 S S. Consderemos el efecto de nuestra transformacón Mst sobre las coordenadas barcéntrcas. t SMst

3 lo que nos muestra que 0w 1w 0 0 w 1 1. Luego el efecto de la transformacón Mst en las coordenadas barcéntrcas es smplemente una multplcacón: 0. Una vez que logremos determnar las constantes, y 0 1, podremos encontrar usando la condcón La pregunta es ahora como determnar, y 0 1. Recordemos que tenemos cuatro pares de puntos S y t y que S Mst= t. S escrbmos las coordenadas barcéntrcas para S como [ ~ ~ ~ ] y las de t como 0 1 [ ~ ~ ~ ], tenemos, salvo por un reescalamento, 0 1 ~ / ~ Dcho de otro modo, en las coordenadas barcéntrcas, la Mst es smplemente una matrz dagonal

4 donde ~ y ~ son las coordenadas barcéntrcas de S y t, respectvamente. Esta es una expresón muy senclla para Mst. Sn embargo es necesaro un trabajo adconal para encontrar las coordenadas barcéntrcas S usando y después recuperando el punto del conjunto de llegada t de sus coordenadas barcéntrcas. Resumendo, la transformacón S. t se construye de la sguente manera: 1. Buscando las coordenadas barcéntrcas de S.. calculando =( ), 4

5 . normalzando las coordenadas de tal forma que 1, y recuperando t de sus coordenadas barcéntrcas. El método de Olynyk es smlar en espírtu al de Heckbert, ya que ambos hacen un paso ntermedo en el camno de encontrar la transformacón Mst. Heckbert descompone Mst en dos transformacones pasando por un conjunto estándar de puntos, los vértces del cuadrado undad. El de Olynyk descompone Mst pero antes pasa a las coordenadas barcéntrcas, las cuales son ndvdualmente escaladas. La mejora fnal de Blnn Blnn encontró un tercer método basado en el trabajo de Heckbert y en el de Olynyk, que se caracterza por una smplcdad asombrosa. Seguremos la dea de Heckbert de factorzar Mst a través de puntos ntermedos b. En lugar de usar el cuadrado undad, elegremos números en el plano proyectvo que tengan como coordenadas la mayor cantdad posble de ceros: b 0 = b 1 = b = b = 1 1 Observemos que dos de estos puntos están en nfnto, pero no es algo objetable. Para descrbr la transformacón Mbt, notemos que 1 b Mbt, = t = [ U b, b b 0 1, y tenemos que V ]. Consderando los tres prmeros puntos 5

6 Mbt: =. Luego la transformacon Mbt : Mbt :=. Todo lo que necestamos ahora es encontrar, y 0 1, y lo podemos hacer usando el cuarto punto: bmbt t = Vemos aquí una clara relacón con el método de Olynyk: 0, 1, no son nada más que las coordenadas barcéntrcas de t multplcadas por, 6

7 = [ ]. Como Mbt está defnda salvo por una constante multplcatva, podemos elegr de modo arbtraro. S lo tomamos = det, entonces =. Usando los datos del espaco de llegada, defnmos la matrz T = de tal modo que =. Por supuesto, todavía nos falta encontrar Msb de manera análoga: 7

8 Mbs = S, donde = y S es la matrz formada por los datos del espaco de llegada: S =. Ponendo todo junto, tenemos que Mst MsbMbt = Mbs Mbt S S 8

9 Para coronar esto, Blnn nos da una nterpretacón geométrca smple para los Z. Recordemos que y = =, por lo cual )( )( )( )( )( )(. Estas expresones demuestran que puede ser nterpretada como el doble del área sgnada de uno de los trángulos formados por los puntos t. En la magen de abajo se representa con verde un área postva y con rojo una negatva 9

10 0

11 Resumen Es dfícl magnar una expresón más smple para Mst : Mst = S T. Recordando que S está formado a partr de los datos del espaco de partda y T de los datos t del espaco de llegada, solo necestamos calcular los y Z, pero vmos más arrba que esto no es complcado. Como mostramos podemos encontrar Mst resolvendo un sstema homogéneo de 8 9 ecuacones. Sn embargo, no perdendo de vsta la naturaleza geométrca del problema, tanto Heckbert, Olynyk, y Blnn encontraron formas cada vez más smples para Mst. 1

12 Referencas Jm Blnn, Inferrng Transforms n Jm Blnn's Corner: Notaton, Notaton, Notaton. Morgan Kaufmann. 00. (Como todas las columnas de Blnns, esta esta escrta claramente y ademas es muy entretenda.) Paul Heckbert, Fundamentals of Texture Mappng and Image arpng. Master's Thess, Unversty of Calforna, Berkeley, Colaboracón de la Dra. Carna Boyallán. Facultad de Matemátca, Astronomía y Físca. Unversdad Naconal de Córdoba.

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller Unversdad Smón Bolívar Conversón de Energía Eléctrca Prof José anuel Aller 41 Defncones báscas En este capítulo se estuda el comportamento de los crcutos acoplados magnétcamente, fjos en el espaco El medo

Más detalles

Solución. Se multiplica numerador y denominador por el conjugado del denominador.

Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Solucón. Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador,

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

(4 3 i)(4 3 i)

(4 3 i)(4 3 i) E.T.S.I. Industrales y Telecomuncacón Curso 00-0 Grados E.T.S.I. Industrales y Telecomuncacón Asgnatura: Cálculo I Ejerccos resueltos Calcular el valor de a y b para que b a 4 sea real y de módulo undad

Más detalles

Propiedades Asintóticas

Propiedades Asintóticas Capítulo 3 Propedades Asntótcas 3.. Dstrbucones Estaconaras Defncón 3. Sea X n, n, una cadena de Markov con espaco de estados E y matrz de transcón P. Sea π(), E, una dstrbucón de probabldad, es decr,

Más detalles

60 EJERCICIOS de NÚMEROS COMPLEJOS

60 EJERCICIOS de NÚMEROS COMPLEJOS 60 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos a) x -x+=0 (Soluc ) b) x +=0 (Soluc ) c) x -x+=0 (Soluc ) d) x +x+=0 (Soluc ) e) x -6x +x-6=0 (Soluc,

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

Actividades de recuperación

Actividades de recuperación Actvdades de recuperacón 1.- Para cada uno de los sguentes complejos, se pde 1 Señala cuál es su parte real y su parte magnara e ndca cuáles se corresponden con números reales y cuáles son magnaros puros.

Más detalles

Números Complejos. 4º Año. Matemática. Cód M i r t a R o s i t o V e r ó n i c a F i l o t t i J u a n C a r l o s B u e

Números Complejos. 4º Año. Matemática. Cód M i r t a R o s i t o V e r ó n i c a F i l o t t i J u a n C a r l o s B u e Números Complejos Matemátca 4º Año Cód. 403-8 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de Matemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D.

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D. CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 0 Ing. Dego A. Patño G. M.Sc, Ph.D. Solucón de la Ecuacón de Estado Solucón de Ecuacones de Estado Estaconaras: Para el caso estaconaro (nvarante en el tempo),

Más detalles

Números Complejos. 4º Año. Matemática. Cód M i r t a R o s i t o V e r ó n i c a F i l o t t i J u a n C a r l o s B u e

Números Complejos. 4º Año. Matemática. Cód M i r t a R o s i t o V e r ó n i c a F i l o t t i J u a n C a r l o s B u e Números Complejos Matemátca 4º Año Cód. 404-7 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de M atemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

1 x. f) 4. Encuentra los valores de x que hacen cierta la ecuación: x² + 1=0.

1 x. f) 4. Encuentra los valores de x que hacen cierta la ecuación: x² + 1=0. Los Números Complejos. La necesdad de crear nuevos conjuntos numércos (enteros, raconales, rraconales), fue surgendo a medda que se presentaban stuacones que no tenían solucón dentro de los conjuntos numércos

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE En el Aula Vrtual se encuentra dsponble: Materal nteractvo con teoría y ejerccos resueltos. Para acceder a ello deberá pulsar sobre los sguentes enlaces una vez dentro

Más detalles

Unidad 6-. Números complejos 1

Unidad 6-. Números complejos 1 Undad -. Números complejos ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Efectúa las sguentes operacones: aa (-(-(- aa (-(-(- cc ( -(-( bb ( ( - - (- 7 dd ( - - (- / ( - ( ( (. ( Sumamos algebracamente por

Más detalles

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule,

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule, Mecánca Cambo de Coordenadas En coordenadas Cartesanas estamos acostumbrados a pensar a los vectores base como versores (vectores de norma 1 o untaros) drgdos a lo largo de los correspondentes ejes, en

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca

Más detalles

Números Complejos. Matemática

Números Complejos. Matemática Números Complejos Matemátca 4º Año Cód. 40-6 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de Matemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

Números Complejos. Matemática

Números Complejos. Matemática Números Complejos Matemátca 4º Año Cód. 40-5 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de Matemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

3 - VARIABLES ALEATORIAS

3 - VARIABLES ALEATORIAS arte Varables aleatoras rof. María B. ntarell - VARIABLES ALEATORIAS.- Generaldades En muchas stuacones epermentales se quere asgnar un número real a cada uno de los elementos del espaco muestral. Al descrbr

Más detalles

Números Complejos II. Ecuaciones

Números Complejos II. Ecuaciones Complejos 1º Bachllerato Departamento de Matemátcas http://selectvdad.ntergranada.com Raúl González Medna Ecuacones 1. Resolver las sguentes ecuacones y determnar en qué campo numérco tenen solucón: a)

Más detalles

NÚMEROS COMPLEJOS. [1.1] Expresar en forma binómica: z 1 3i 1 3i. Solución: Teniendo en cuenta que 1 3i. [1.2] Calcular: a) 3 4 NÚMEROS COMPLEJOS

NÚMEROS COMPLEJOS. [1.1] Expresar en forma binómica: z 1 3i 1 3i. Solución: Teniendo en cuenta que 1 3i. [1.2] Calcular: a) 3 4 NÚMEROS COMPLEJOS NÚMEROS COMPLEJOS NÚMEROS COMPLEJOS 9 9 [1.1] Expresar en forma bnómca: z 1 1 Tenendo en cuenta que 1 / 1 / 9 9 9 9 9 9 1 1 / / z 9 9 9 10 10 (cos sen ) (cos( ) sen( )) cos ( 1) 10 [1.] Calcular: z 1 a)

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

Sistemas de Amortización de Deudas MATEMÁTICA FINANCIERA

Sistemas de Amortización de Deudas MATEMÁTICA FINANCIERA Sstemas de Amortzacón de Deudas MATEMÁTICA FINANCIERA SISTEMA FRANCÉS Lus Alcalá UNSL Segundo Cuatrmeste 2016 Como hpótess ncal de trabajo suponemos que la tasa de nterés cobrada por el prestamsta (acreedor)

Más detalles

5 Métodos iterativos para la resolución de ecuaciones algebraicas lineales Método de Gauss-Jacobi Método de Gauss-Seidel...

5 Métodos iterativos para la resolución de ecuaciones algebraicas lineales Método de Gauss-Jacobi Método de Gauss-Seidel... CONTENIDO 5 Métodos teratvos para la resolucón de ecuacones algebracas lneales 95 5.1 Método de Gauss-Jacob................................ 95 5.2 Método de Gauss-Sedel................................

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. Pág. NOTA: En todos los ejerccos se deberá justfcar la respuesta explcando el procedmento segudo en la resolucón del ejercco. CURSO 0 - CONTROL OCTUBRE 00 A contnuacón se presentan 5 preguntas con respuestas

Más detalles

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147 Undad. Números complejos Matemátcas I Resuelve Págna 7 Cómo operar con? Vamos a proceder como los antguos algebrstas: cuando nos encontremos con seguremos adelante operando con ella con naturaldad y tenendo

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

Modelado de un Robot Industrial KR-5

Modelado de un Robot Industrial KR-5 RESUMEN Modelado de un Robot Industral KR-5 (1) Eduardo Hernández 1, Samuel Campos 1, Jorge Gudno 1, Janeth A. Alcalá 1 (1) Facultad de Ingenería Electromecánca, Unversdad de Colma, km 2 Carretera Manzanllo-Barra

Más detalles

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI CAPÍTULO 5: MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 57 CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 5. Resumen Se busca solucón a las ecuacones acopladas que descrben los perfles de onda medante

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

Robótica Tema 4. Modelo Cinemático Directo

Robótica Tema 4. Modelo Cinemático Directo UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de

Más detalles

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro Matemátcas Bachllerato? Soluconaro del Lbro Actvdades Dado el número complejo se pde: qué valor ha de tener x para que x? Calcula el opuesto de su conjugado Calcula el conjugado de su opuesto x x x El

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

Tema 3: Curvas racionales

Tema 3: Curvas racionales Tema 3: Curvas raconales Leonardo Fernández Jambrna E.T.S.I. Navales, Unversdad Poltécnca de Madrd Arco de la Vctora s/n E-28040-Madrd, España Correo-e: leonardo.fernandez@upm.es 1. Introduccón Las curvas

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

La representación Denavit-Hartenberg

La representación Denavit-Hartenberg La representacón Denavt-Hartenberg José Cortés Parejo. Marzo 8 Se trata de un procedmeto sstemátco para descrbr la estructura cnemátca de una cadena artculada consttuda por artculacones con. un solo grado

Más detalles

UNIDAD 2: NÚMEROS COMPLEJOS

UNIDAD 2: NÚMEROS COMPLEJOS I.E.S. Ramón Graldo UNIDAD : NÚMEROS COMPLEJOS. CONSTRUCCIÓN A los pares de números reales, consderando las sguentes operacones: x, y x', y' xx', y y' El camno más corto entre dos verdades del Análss Real

Más detalles

LUGAR DE LAS RAÍCES. Lugar de las raíces.

LUGAR DE LAS RAÍCES. Lugar de las raíces. Unversdad Carlos III de Madrd Señales y Sstemas LUGAR DE LAS RAÍCES Lugar de las raíces. 1. Introduccón. Crteros del módulo y argumento. 2. Gráfcas del lugar de las raíces. 3. Reglas para construr el lugar

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 0 "# Representa gráfcamente los resultados que obtengas al hallar y calcula el lado del trángulo formado al unr esos tres puntos. Para hallar las raíces prmero pasamos el número a forma polar : r ( )

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reales Complejos Ejerccos resueltos Halla los números reales que cumplen la condcón a a S a 0 : a a a 0 No este solucón S a < 0 : a a a a Halla todos los números r tales que r < a) S

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

Ecuación de Lagrange

Ecuación de Lagrange Capítulo 6 Ecuacón de Lagrange 6. Introduccón a las ecuacones de Lagrange La mecánca que nos presenta Lagrange en su Mécanque Analytque sgnfca un salto conceptual muy grande respecto de la formulacón Newtonana.

Más detalles

Principio del palomar

Principio del palomar Prncpo del palomar Juana Contreras S. Claudo del Pno O. Insttuto de Matemátca y Físca Unversdad de Talca Introduccón Cuando se reúnen 367 personas, es seguro que debe haber al menos dos personas que cumplen

Más detalles

Problemas sobre números complejos -1-

Problemas sobre números complejos -1- Problemas sobre números complejos --.- Representa gráfcamente los sguentes números complejos y d cuáles son reales, cuáles magnaros y, de estos, cuáles magnaros puros: 5-5 + 4-5 7 0 -- -7 4.- Obtén las

Más detalles

Apéndice A. Obtención y representación de forma.

Apéndice A. Obtención y representación de forma. Apéndce A. Obtencón y representacón de forma. A.1. Algortmo de deteccón de contorno. El algortmo de segumento de contorno se puede resumr en los sguentes pasos: 1. Se recorre la magen, desde la esquna

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

TRABAJO Nº 5 PSU MATEMÁTICA 2017 NÚMEROS COMPLEJOS Nombre:. Fecha:..

TRABAJO Nº 5 PSU MATEMÁTICA 2017 NÚMEROS COMPLEJOS Nombre:. Fecha:.. GUÍA DE TRABAJO Nº 5 PSU MATEMÁTICA 07 NÚMEROS COMPLEJOS Nombre:. Fecha:.. CONTENIDOS Números complejos, problemas que permten resolver. Undad magnara. Operatora con números complejos. Propedades de los

Más detalles

Sistemas Lineales de Masas-Resortes 2D

Sistemas Lineales de Masas-Resortes 2D Sstemas neales de Masas-Resortes D José Cortés Pareo. Novembre 7 Un Sstema neal de Masas-Resortes está consttudo por una sucesón de puntos (de ahí lo de lneal undos cada uno con el sguente por un resorte

Más detalles

Introducción al Método de los Elementos Finitos

Introducción al Método de los Elementos Finitos S 4 v v 5 Introduccón al Método de los Elementos Fntos Parte 4 Estmacón de error en problemas elíptcos Alberto Cardona, Víctor Facnott Cmec-Intec (UNL/Concet), Santa Fe, Argentna Estmacón de error en problemas

Más detalles

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO 8 CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO En esta seccón se descrbe el análss de posconamento y orentacón del robot paralelo: Se resuelve el problema cnemátco nverso en base a métodos

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2014 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2014 Cuestiones (Un punto por cuestión). Examen de Físca-, del Grado en Ingenería Químca Examen fnal. Septembre de 204 Cuestones (Un punto por cuestón. Cuestón (Prmer parcal: Un satélte de telecomuncacones se mueve con celerdad constante en una

Más detalles

3.2. Competencia en cantidaes modelo de Cournot

3.2. Competencia en cantidaes modelo de Cournot Matlde Machado Supuestos báscos del : El producto de las empresas es homogéneo El preco de mercado resulta de la oferta agregada de las empresas (preco unco Las empresas determnan smultaneamente la cantdad

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Métodos numéricos en Ingeniería: Elementos nitos

Métodos numéricos en Ingeniería: Elementos nitos Métodos numércos en Ingenería: Elementos ntos 18 de septembre de 2004 Contendo Contendo 1 Formulacón varaconal de los problemas de contorno. 1 2 El método de elementos trangulares. 3 2.1 Formulacón varaconal.........................

Más detalles

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton ema II Crcutos eléctrcos en corrente contnúa Indce Introduccón a los crcutos resstvos Ley de Ohm Leyes de Krchhoff Ley de correntes (LCK) Ley de voltajes (LVK) Defncones adconales Subcrcutos equvalentes

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y ENUNCADOS DE LOS EJERCCOS PROPUESTOS EN 011 EN MATEMÁTCAS APLCADAS A LAS CENCAS SOCALES. EJERCCO 1 a (5 puntos Raconalce las epresones y. 7 b (5 puntos Halle el conjunto de solucones de la necuacón EJERCCO

Más detalles

PRÁCTICA 10 CINÉTICA QUÍMICA I: DETERMINACIÓN DEL ORDEN DE REACCIÓN Y DE LA CONSTANTE DE VELOCIDAD

PRÁCTICA 10 CINÉTICA QUÍMICA I: DETERMINACIÓN DEL ORDEN DE REACCIÓN Y DE LA CONSTANTE DE VELOCIDAD PRÁCTICA 10 CINÉTICA QUÍMICA I: DETERMINACIÓN DEL ORDEN DE REACCIÓN Y DE LA CONSTANTE DE VELOCIDAD OBJETIVOS. Estudar la cnétca de una reaccón químca por el método de las velocdades ncales. Determnar los

Más detalles

PRELIMINARES. ab bc aec ac H. a b S / b a.

PRELIMINARES. ab bc aec ac H. a b S / b a. Introduccón Cuando un novel estudante de álgebra abstracta se enfrenta a expresones como grupo cocente, espaco cocente, cree y con justfcada razón, que se enfrentará a conjunto de cocentes, fnalmente se

Más detalles

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud Unversdad de Pamplona Facultad de Cencas Báscas Físca para cencas de la vda y la salud AÁLISIS GRÁFICO DE DATOS EXPERIMETALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos

Más detalles

El Tensor de Deformación

El Tensor de Deformación Comportamento Mecánco de Sóldos Capítlo IV Tensor de deformacón 4.. Introdccón El Tensor de Deformacón Además de descrbr los esferzos de n cerpo, la mecánca de los sóldos contnos aborda tambén la descrpcón

Más detalles

Electricidad y calor

Electricidad y calor Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Aplicación de curvas residuo y de permeato a sistemas batch y en continuo

Aplicación de curvas residuo y de permeato a sistemas batch y en continuo Aplcacón de curvas resduo de permeato a sstemas batch en contnuo Alan Dder érez Ávla En el presente trabajo se presentara de manera breve como obtener las ecuacones que generan las curvas de resduo, de

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage: Algunas definiciones

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage:  Algunas definiciones Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Curso l Física I Autor l Lorenzo Iparraguirre

Curso l Física I Autor l Lorenzo Iparraguirre Curso l Físca I Autor l Lorenzo Iparragurre AEXO 4.2: La Ley del Impulso en un ntervalo nfntesmal y en un ntervalo fnto En el texto prncpal la Ley del Impulso ha sdo presentada para un ntervalo t cualquera,

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria.

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria. Guía de Laboratoro de Físca Mecánca. ITM, Insttucón unverstara. Práctca 0. Colsones. Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla corta,

Más detalles

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido TEM. Dnámca I Captulo 3. Dnámca del sóldo rígdo TEM : Dnámca I Capítulo 3: Dnámca del sóldo rígdo Eje nstantáneo de rotacón Sóldo con eje fjo Momento de nerca. Teorema de Stener. Conservacón del momento

Más detalles

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc.

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc. TEMA. INSTRUMENTOS FÍSICO-MATEMÁTICOS.. SISTEMAS DE MAGNITUDES Y UNIDADES. CONVERSIÓN DE UNIDADES. MAGNITUD: propedad o cualdad físca susceptble de ser medda y cuantfcada. Ejemplos: longtud, superfce,

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

2.- Vectores deslizantes.

2.- Vectores deslizantes. .- Vectores deslzantes... Momento de un vector respecto a un punto (4);.. Momento de un vector respecto a un eje (4);.. Sstemas de vectores deslzantes (4);.4. Invarantes del sstema (44);.5. Par de vectores

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

x i y p i h i h p i P i x p i O i

x i y p i h i h p i P i x p i O i Capítulo T NÁLISIS CINEMÁTIC DE SISTEMS MULTICUER.5 CINEMÁTIC LN Coordenadas de un punto pertenecente a un elemento lo largo de este apartado a partr de ahora se van a utlzar las coordenadas de punto de

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

Unidad 2 Representación Algebráica

Unidad 2 Representación Algebráica Undad Representacón lgebráca Gráfcas no drgdas Matrz de Incdenca La matrz de ncdenca de una gráfca G se denota como (G) y se defne como: a, S el vértce v ncde en la línea e n cada columna hay exactamente

Más detalles

ANEXO A: Método de Interpolación de Cokriging Colocado

ANEXO A: Método de Interpolación de Cokriging Colocado ANEXO A: Método de Interpolacón de Corgng Colocado A. Conceptos Báscos de Geoestadístca Multvarada La estmacón conunta de varables aleatoras regonalzadas, más comúnmente conocda como Corgng (Krgng Conunto),

Más detalles

UNIVERSIDAD POLITÉCNICA. TEMA: Modelo Cinemático. E.U.I.T. Industrial FECHA: Titulación: Grado en Ingeniería Electrónica y Automática

UNIVERSIDAD POLITÉCNICA. TEMA: Modelo Cinemático. E.U.I.T. Industrial FECHA: Titulación: Grado en Ingeniería Electrónica y Automática 7//5 IGNTUR: Robótca UNIVERIDD POLITÉNI DE MDRID TEM: Moelo nemátco E.U.I.T. Inustral Ttulacón: Grao en Ingenería Electrónca y utomátca Área: Ingenería e stemas y utomátca Departamento e Electrónca utomátca

Más detalles

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas y Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

Tema 1: Jerarquía Digital Síncrona, SDH Disponibilidad de Sistemas

Tema 1: Jerarquía Digital Síncrona, SDH Disponibilidad de Sistemas Tema : Jerarquía Dgtal Síncrona, SDH Dsponbldad de Sstemas Tecnologías de red de transporte de operadora MÁSTER EN INGENIERÍ TELEMÁTIC Profesor: Espín Defncones Fabldad (Relablty): Probabldad de que el

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles