INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1"

Transcripción

1 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE En el Aula Vrtual se encuentra dsponble: Materal nteractvo con teoría y ejerccos resueltos. Para acceder a ello deberá pulsar sobre los sguentes enlaces una vez dentro de la asgnatura Pagna Prncpal >Apuntes>. Números Complejos Materal en pdf con el sguente contendo: - Repaso de números complejos a nvel de bachllerato - Apuntes de teoría - Ejerccos resueltos - Problemas de examen resueltos Para acceder a ellos se deberá pulsar sobre los sguentes enlaces una vez dentro de la asgnatura: Pagna Prncpal >Recursos Por Temas>Números Complejos Antes de realzar estos ejerccos debes leer y comprender los sguentes apartados: Necesdad de amplar el conjunto de los números reales. Defncón del conjunto de números complejos C. Forma bnómca de un número complejo. Representacón gráfca de números complejos. Interpretacón geométrca de la suma. Conjugado de un número complejo. Módulo y argumento de un número complejo. Prmeras defncones. Operacones. Representar gráfcamente la regón del plano donde se encuentran los afjos de los sguentes conjuntos de números complejos Solucón: (a) { z C / Imz> 0} (b){ z C / < z< } (c){ z C / 0 Rez } C (e) { z C / Re( z ) = } (d) { z / 0 Imz Rez} Profesora: Elena Álvarez Sáz

2 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE (a) Semplano superor b) El conjunto de los números complejos no es cuerpo totalmente ordenado. c) d) e) Demostrar las sguentes propedades: z Solucón: = z z w z w = z+ z= Re( z) z z= Im( z) z= a+ b z= a b z= a b= a+ b = + entonces + = ( + ) + ( ) = = Re S z a b z z a b a b a z Profesora: Elena Álvarez Sáz

3 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE = + entonces = ( + ) ( ) = = Im S z a b z z a b a b b z Localzar vectoralmente los números z + z y z z cuando (a) z z z= + z= = = (b) ( ) Solucón: (a) z = z = + (b) z 5 5 = 8 z = Dado los números complejos z= +, w= +, s= realzar las sguentes operacones: z w s + szw 5 (a) Im( ) 0 (b) zw s z (c) s + s + s + s (d) s + s + s s (e) zw z w Solucón: 7 6 (a) (d) - (e) 0 (b)( 0 ) ( 5) + (c) 0 5 Verfcar cada una de las sguentes dentdades (a) zz z z z z = (b) = z z (c) z = z 6 Verfcar cada una de las sguentes dentdades (a) arg( z z ) = arg( z ) + arg( z ) (b) arg arg( z ) arg( z ) z = z Profesora: Elena Álvarez Sáz

4 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 7 ϕ Resolver la ecuacón e = para ϕ ( < ϕ ) Solucón: ϕ= 8 Calcular (a) 00 (b) ( 6) / (c) ( + ) 0 Solucón: + + (c) ( + ) (a) (b) ( ), ( ), ( ), ( ) 9 Qué número complejo está más cerca del orgen: -+ ó +? Solucón: -+ 0 Qué puntos del plano complejo están a una dstanca de dos undades del orgen? y del punto +? Solucón: { z C / z = },{ z C / z ( + ) = } Representa el conjunto de puntos determnado por las condcones: (a) z + = (b) z+ (c) z Solucón: (a) Crcunferenca de centro (, -) y rado (b) Círculo de centro (0, -) y rado junto con la crcunferenca de centro (0, -) y rado (c) Todos los números complejos menos los que se encuentran en el círculo de centro (0, ) y rado. Profesora: Elena Álvarez Sáz

5 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE Descrbe geométrcamente en el plano complejo las regones cuyos puntos satsfacen las sguentes ecuacones: (a) Re( z ) < (b) ( z) (e) z > () Solucón: z z+ (f) z 0< Re < (c) Im = 0 z z+ z= z (g) z z z z (j) z + z+ (k) (d) z z= = (h) ( ) Im z < z z+ (l) z( z+ ) = (a) y - - O x - b) y - - O x - c) Las rectas x=0, y=0 d) y=/ e) f) y - - O x Profesora: Elena Álvarez Sáz 5

6 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE g) Se trata de la medatrz del segmento PQ sendo P el afjo de z y Q el afjo de z. h) La regón comprendda entre las dos ramas de la hpérbola xy=. ) El exteror de la crcunferenca de centro (-5, 0) y rado j) Exteror de la elpse de centro (0,0) y semeje a= y b=, es decr, de la elpse k) La ecuacón: z z+ = es una hpérbola de focos F=, G=-. La regón comprendda entre las dos ramas de la hpérbola es: z z+ < El resto de puntos serán los que cumplan: x y + = ( ) Profesora: Elena Álvarez Sáz 6

7 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE z z+ > z z+ > z z+ < La regón z z+ > es de las dos zonas sombreadas en el gráfco sguente en la que se encuentra el punto P La regón z z+ < es de las dos zonas sombreadas en el gráfco sguente en la que se encuentra el punto P l) Los puntos reales y - Profesora: Elena Álvarez Sáz 7

8 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE Representa en el plano el conjunto A B C D : { C / } B z C z ( z) A= z z = C= z C / z { / arg 0} = = < < D= z C / z+ Solucón: Profesora: Elena Álvarez Sáz 8

9 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE Antes de realzar estos ejerccos debes leer y comprender los sguentes apartados: Interpretacón geométrca de la suma y el producto. Módulo y el argumento de un número complejo. La fórmula de Movre. Raíces enésmas de un número complejo y su representacón gráfca. La forma exponencal de un número complejo. La funcón exponencal compleja y sus propedades. Defncón de logartmo complejo. La fórmula de Euler. Cómo calcular una potenca con base y exponente números complejos. Interpretacón geométrca de la suma y el producto Elge tres puntos no alneados en el plano y consdera el trángulo de vértces los tres puntos. Calcula el transformado de este trángulo por la aplcacón f( z) z ( ) = + + sobre cada uno de sus vértces. Haz la representacón gráfca e ndca que transformacones (dlatacón, contraccón, rotacón, traslacón) has realzado. Solucón: Dlatacón () +Traslacón (+) Profesora: Elena Álvarez Sáz 9

10 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 5 Consdera el rectángulo de vértces 0,, +,. Calcula el transformado de este rectángulo por la aplcacón f( z) ( ) = + z+ sobre cada uno de sus vértces. Haz la representacón gráfca e ndca que transformacones (dlatacón, contraccón, rotacón, traslacón) has realzado. Solucón: Gro ( / ) +Dlatacón ( ) +Traslacón () 6 Demostrar que s los puntos z, z, z son los vértces de un trángulo equlátero, entonces: + + = + + z z z z z z z z z Potencas. Raíces enésmas. 7 Escrbr en forma bnómca: Solucón: 9 8 Calcula en funcón de sen( ϕ ) y cos( ϕ ) (a) sen( ϕ ) (b) cos( ϕ ) (c) sen( ϕ ) (d) cos( ϕ ) Solucón: cos( ϕ) = cos ϕ senϕ sen( ϕ) = senϕ cosϕ ( ϕ) = ϕ ϕ ϕ+ ϕ sen( ) = cos sen cos sen cos cos 6 cos sen sen ϕ ϕ ϕ ϕ ϕ Profesora: Elena Álvarez Sáz 0

11 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 9 Es certo que la parte real dew 5 + = es mayor que -0.5? + Solucón: Falso 0 Encontrar todas las solucones de la ecuacón z = z y representar tres de ellas. Cuántas hay? Solucón: Hay solucones dstntas (además de la trval) que se obtenen para los valores de k sguentes: Calcular: (a) z 0 k= 0 : z = k= : z = e k= : z = e 6 ( + )( ) = (b) + ( ) Escrbe en forma bnómca y exponencal el resultado. Solucón: (a) k 6 k + 6 z = = e k= 0,,,,,5 k (b) + *0* cos wo = e = e = + sen + 9 cos w = e = e = + sen w = e = e = e = e = = e = cos + sen Fallos habtuales: Consderar que ( )( ) ( + ) ( ) ( ) ( ) + = ( + )( ) = + + ( ) En el conjunto de los números complejos hay n raíces n-ésmas de cualquer número complejo no nulo. En el caso de que se esté calculando: Profesora: Elena Álvarez Sáz

12 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE z = z k= 0,, arg( z ) + k Para k=0 se tene que una raíz es z pero hay dos más (las correspondentes a k= y a k=). De qué número es raíz cúbca +? De qué número es raíz décma? Solucón: Potencas complejas. Logartmo complejo. Calcular: (a) z (d) z + = log = + (b) z = (c) z= ( + ) (e) log + + Solucón: (a) (b) z (c) e (e) z = log = + k k Z + κ + κ + κ e ( + ) e e = = = = + multplcando ( )( + ) ln + por el conjugado κ cos ln sen ln + κ + + con k Z (d) e con k Z ( k)( k) ( k) ( k) ( ln 8) + ( + k ) ln ln ln ln k, k Z Demostrar que los afjos de los valores de ( ) están en la msma línea recta 5 De entre todas las raíces n-ésmas del complejo +. Hay alguna raíz cuyo logartmo prncpal sea real? Solucón: No exste Profesora: Elena Álvarez Sáz

13 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 6 ω Dado a+ b= log ω sendo ω tal que + es real y el módulo de ω es la undad. Hallar a + b. Observacón: Puede ser nteresante consderar la expresón de ω de la forma: al tener módulo uno quedará perfectamente determnado s se conoce arg( ) ω = t. t ω= e = cost+ sent ya que 7 (a) Escrbr el valor de cos( x ) en funcón de sen ( x ) y cos( x ) (b) Calcular el valor prncpal del complejo z=a+b donde A ( ) x= argumento +. = ( ), B cos( x) = sendo = (b) z= A+ B= e Solucón: (a) cos( x) cos x cos( x) sen ( x) Profesora: Elena Álvarez Sáz

14 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE Antes de realzar estos ejerccos debes leer y comprender los sguentes apartados: Extensón al plano complejo de las funcones trgonométrcas e hperbólcas. Polnomos en C : Raíz de un polnomo, coefcente de un polnomo, factorzacón, regla de Ruffn. Regón acotada en C Propedades del módulo. Desgualdad trangular y desgualdad trangular nversa. Funcones trgonométrca y funcones hperbólcas 8 Calcular la parte real y la parte magnara del número complejo z= sen + Es la parte real mayor que? Justfcar la respuesta. Solucón: e + e 9 Determnar todos los números z complejos que verfquen que senz= (b) g( z) (a) cot = Solucón: (a) z= + κ ln( ) k Z z= + κ ln( + ) k Z (b) log z= + k+, k Z 0 Calcular la parte real de w log( sen( ) ) =. Profesora: Elena Álvarez Sáz

15 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE e e Solucón: ln = Ln( Sh) Representar las gráfcas de las funcones Shx y Chx sendo x real. Solucón: En azul aparece la gráfca del coseno hperbólco y en rojo la del seno hperbólco. (a) Resolver la sguente ecuacón Sh( z) (b) Resolver la ecuacón: senz= sendo z C = sendo z C z= + k ± k Z Solucón: (b) ln( ) Polnomos Escrbr una ecuacón de segundo grado cuyas raíces sean + y -. Recuerda: S x, x son las raíces de una ecuacón de segundo grado ax + bx+ c= 0 entonces se cumple: x +x =(-b/a); x *x =(c/a). Solucón: x -x+8=0 z z + + = 0 Resolver ( ) Profesora: Elena Álvarez Sáz 5

16 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE Solucón: z=,, +, 5 Demostrar que s zo es una raíz compleja no real de un polnomo con coefcentes reales entonces su conjugada, z o, tambén es raíz del polnomo. p x = x x + 5x 7x 6 un polnomo de manera que b es una raíz. Factorzar el 6 Sea ( ) polnomo. Solucón:, -,, -. 7 Determnar a y b números reales para que ( ) Solucón: a=-, b= p x = x + x + ax+ b tenga como raíz +. Solucón: Conjuntos acotados 8 Comprobar que s z z entonces se cumple: z z z + z z z 9 Acotar, s es posble, el sguente conjunto: z A= / z C, z = z + z( ) Solucón: El conjunto A está acotado por estar contendo en el círculo undad centrado en el orgen. 0 5 Dbujar la regón del plano complejo defnda por la expresón A= z C / z. Calcular en forma bnómca y representar las raíces cúbcas de. Cuáles de estas raíces están en la regón A? Solucón: El conjunto A es el nteror de la crcunferenca de centro (0, -) y de son los números complejos: rado 5/. Las raíces cúbcas Profesora: Elena Álvarez Sáz 6

17 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE zo = + z = + z = Acotar el conjunto de números complejos sguente Solucón: Una cota puede ser: 6e ( z+ ) + e A= / z =, a = z az+ a Determnar s el A= { z / z+ = z + } C está acotado Solucón: No está acotado. Profesora: Elena Álvarez Sáz 7

(4 3 i)(4 3 i)

(4 3 i)(4 3 i) E.T.S.I. Industrales y Telecomuncacón Curso 00-0 Grados E.T.S.I. Industrales y Telecomuncacón Asgnatura: Cálculo I Ejerccos resueltos Calcular el valor de a y b para que b a 4 sea real y de módulo undad

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. Pág. NOTA: En todos los ejerccos se deberá justfcar la respuesta explcando el procedmento segudo en la resolucón del ejercco. CURSO 0 - CONTROL OCTUBRE 00 A contnuacón se presentan 5 preguntas con respuestas

Más detalles

Actividades de recuperación

Actividades de recuperación Actvdades de recuperacón 1.- Para cada uno de los sguentes complejos, se pde 1 Señala cuál es su parte real y su parte magnara e ndca cuáles se corresponden con números reales y cuáles son magnaros puros.

Más detalles

60 EJERCICIOS de NÚMEROS COMPLEJOS

60 EJERCICIOS de NÚMEROS COMPLEJOS 60 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos a) x -x+=0 (Soluc ) b) x +=0 (Soluc ) c) x -x+=0 (Soluc ) d) x +x+=0 (Soluc ) e) x -6x +x-6=0 (Soluc,

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

Números Complejos II. Ecuaciones

Números Complejos II. Ecuaciones Complejos 1º Bachllerato Departamento de Matemátcas http://selectvdad.ntergranada.com Raúl González Medna Ecuacones 1. Resolver las sguentes ecuacones y determnar en qué campo numérco tenen solucón: a)

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca

Más detalles

Solución. Se multiplica numerador y denominador por el conjugado del denominador.

Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Solucón. Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador,

Más detalles

NÚMEROS COMPLEJOS. [1.1] Expresar en forma binómica: z 1 3i 1 3i. Solución: Teniendo en cuenta que 1 3i. [1.2] Calcular: a) 3 4 NÚMEROS COMPLEJOS

NÚMEROS COMPLEJOS. [1.1] Expresar en forma binómica: z 1 3i 1 3i. Solución: Teniendo en cuenta que 1 3i. [1.2] Calcular: a) 3 4 NÚMEROS COMPLEJOS NÚMEROS COMPLEJOS NÚMEROS COMPLEJOS 9 9 [1.1] Expresar en forma bnómca: z 1 1 Tenendo en cuenta que 1 / 1 / 9 9 9 9 9 9 1 1 / / z 9 9 9 10 10 (cos sen ) (cos( ) sen( )) cos ( 1) 10 [1.] Calcular: z 1 a)

Más detalles

TRABAJO Nº 5 PSU MATEMÁTICA 2017 NÚMEROS COMPLEJOS Nombre:. Fecha:..

TRABAJO Nº 5 PSU MATEMÁTICA 2017 NÚMEROS COMPLEJOS Nombre:. Fecha:.. GUÍA DE TRABAJO Nº 5 PSU MATEMÁTICA 07 NÚMEROS COMPLEJOS Nombre:. Fecha:.. CONTENIDOS Números complejos, problemas que permten resolver. Undad magnara. Operatora con números complejos. Propedades de los

Más detalles

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147 Undad. Números complejos Matemátcas I Resuelve Págna 7 Cómo operar con? Vamos a proceder como los antguos algebrstas: cuando nos encontremos con seguremos adelante operando con ella con naturaldad y tenendo

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

Problemas sobre números complejos -1-

Problemas sobre números complejos -1- Problemas sobre números complejos --.- Representa gráfcamente los sguentes números complejos y d cuáles son reales, cuáles magnaros y, de estos, cuáles magnaros puros: 5-5 + 4-5 7 0 -- -7 4.- Obtén las

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

Unidad 6-. Números complejos 1

Unidad 6-. Números complejos 1 Undad -. Números complejos ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Efectúa las sguentes operacones: aa (-(-(- aa (-(-(- cc ( -(-( bb ( ( - - (- 7 dd ( - - (- / ( - ( ( (. ( Sumamos algebracamente por

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 0 "# Representa gráfcamente los resultados que obtengas al hallar y calcula el lado del trángulo formado al unr esos tres puntos. Para hallar las raíces prmero pasamos el número a forma polar : r ( )

Más detalles

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro Matemátcas Bachllerato? Soluconaro del Lbro Actvdades Dado el número complejo se pde: qué valor ha de tener x para que x? Calcula el opuesto de su conjugado Calcula el conjugado de su opuesto x x x El

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

Números Complejos. 4º Año. Matemática. Cód M i r t a R o s i t o V e r ó n i c a F i l o t t i J u a n C a r l o s B u e

Números Complejos. 4º Año. Matemática. Cód M i r t a R o s i t o V e r ó n i c a F i l o t t i J u a n C a r l o s B u e Números Complejos Matemátca 4º Año Cód. 403-8 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de Matemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

Números Complejos. 4º Año. Matemática. Cód M i r t a R o s i t o V e r ó n i c a F i l o t t i J u a n C a r l o s B u e

Números Complejos. 4º Año. Matemática. Cód M i r t a R o s i t o V e r ó n i c a F i l o t t i J u a n C a r l o s B u e Números Complejos Matemátca 4º Año Cód. 404-7 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de M atemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

1 x. f) 4. Encuentra los valores de x que hacen cierta la ecuación: x² + 1=0.

1 x. f) 4. Encuentra los valores de x que hacen cierta la ecuación: x² + 1=0. Los Números Complejos. La necesdad de crear nuevos conjuntos numércos (enteros, raconales, rraconales), fue surgendo a medda que se presentaban stuacones que no tenían solucón dentro de los conjuntos numércos

Más detalles

Números Complejos. Matemática

Números Complejos. Matemática Números Complejos Matemátca 4º Año Cód. 40-6 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de Matemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

Números Complejos. Matemática

Números Complejos. Matemática Números Complejos Matemátca 4º Año Cód. 40-5 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de Matemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

CAPÍTULO 9: CONJUNTO DE LOS NÚMEROS COMPLEJOS

CAPÍTULO 9: CONJUNTO DE LOS NÚMEROS COMPLEJOS Conjunto de los números complejos CAPÍTULO 9: CONJUNTO DE LOS NÚMEROS COMPLEJOS SUMARIO: INTRODUCCIÓN OBJETIVOS DEL CAPÍTULO PARTE TEÓRICA DEL TEMA: 9.1.- Defncón. 9..- Suma y producto. 9..- Partes real

Más detalles

Ejercicios Resueltos de NÚMEROS COMPLEJOS

Ejercicios Resueltos de NÚMEROS COMPLEJOS Ejerccos Resueltos de NÚMEROS COMPLEJOS Ejerccos Resueltos de NÚMEROS COMPLEJOS Números Complejos. Formas de epresarlos.- Halla las raíces de los sguentes números: 00 Solucón: ± 00 00 ± 0 ± ±.- Representa

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

UNIDAD 2: NÚMEROS COMPLEJOS

UNIDAD 2: NÚMEROS COMPLEJOS I.E.S. Ramón Graldo UNIDAD : NÚMEROS COMPLEJOS. CONSTRUCCIÓN A los pares de números reales, consderando las sguentes operacones: x, y x', y' xx', y y' El camno más corto entre dos verdades del Análss Real

Más detalles

SOLUCIONARIO. UNIDAD 6: Números complejos. . Puede verse en el dibujo. soluciones. Por tanto, no hay puntos de corte. x y ACTIVIDADES-PÁG.

SOLUCIONARIO. UNIDAD 6: Números complejos. . Puede verse en el dibujo. soluciones. Por tanto, no hay puntos de corte. x y ACTIVIDADES-PÁG. MatemátcasI UNIDAD : Números complejos ACTIVIDADES-PÁG.. Las solcones de las ecacones dadas son: a) x x + = 0 x y x b) x + x = 0 x x y x 0. El vector resltante de grar 90º el vector v, es el vector,. Pede

Más detalles

E. P. E. T. N 20 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROF.: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO

E. P. E. T. N 20 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROF.: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO E. P. E. T. N 0 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROF.: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO E. P. E. T. N 0 MATEMÁTICA AÑO Undad N I: Epresones algebracas PROGRAMA DE MATEMÁTICA 0 TERCER AÑO Revsón:

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reales Complejos Ejerccos resueltos Halla los números reales que cumplen la condcón a a S a 0 : a a a 0 No este solucón S a < 0 : a a a a Halla todos los números r tales que r < a) S

Más detalles

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad,

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad, 17 Análss matemátco para Ingenería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Los números complejos La varable compleja permte resolver problemas muy dferentes dentro de áreas tan varadas

Más detalles

NÚMEROS COMPLEJOS MATEMÁTICAS I 1º

NÚMEROS COMPLEJOS MATEMÁTICAS I 1º NÚMEROS COMPLEJOS MATEMÁTICAS I 1º Bachllerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemátcas Matemátcas I COMPLEJOS I) NECESIDAD DE LOS NÚMEROS COMPLEJOS Los números complejos, tambén

Más detalles

NÚMEROS COMPLEJOS MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas

NÚMEROS COMPLEJOS MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas NÚMEROS COMPLEJOS MATEMÁTICAS I 1º Bachllerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemátcas Matemátcas I COMPLEJOS I) NECESIDAD DE LOS NÚMEROS COMPLEJOS Los números complejos, tambén

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

62 EJERCICIOS de NÚMEROS COMPLEJOS

62 EJERCICIOS de NÚMEROS COMPLEJOS 6 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos: a x -x+=0 (Soluc: ± b x +=0 (Soluc: ± c x -x+=0 (Soluc: ± d x -x+=0 (Soluc: ± e x -6x +x-6=0 (Soluc:,

Más detalles

Notas de la materia de Cálculo IV. Dr. Antonio Ramos Paz Profesor e Investigador Titular B de Tiempo Completo Facultad de Ingeniería Eléctrica UMSNH

Notas de la materia de Cálculo IV. Dr. Antonio Ramos Paz Profesor e Investigador Titular B de Tiempo Completo Facultad de Ingeniería Eléctrica UMSNH Notas de la matera de Cálculo IV Dr. Antono Ramos Pa Profesor e Investgador Ttular B de Tempo Completo Facultad de Ingenería Eléctrca UMSNH Febrero 7 Prologo A contnuacón se presenta una recoplacón de

Más detalles

6. Introducción al cálculo en C

6. Introducción al cálculo en C 6. Introduccón al cálculo en C 6.. Funcones de varable compleja No hay nngún número real x tal que x + = 0. Para que esa ecuacón tenga solucón es necesaro ntroducr el número magnaro : =. Veamos algunas

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116 Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.

Más detalles

1 i) c) ( 3+ 2i) (1 5i) es una diagonal del paralelogramo de lados z. 1 i) c) ( 3 + 2i)(1 5i) 3 4i e) c) 33

1 i) c) ( 3+ 2i) (1 5i) es una diagonal del paralelogramo de lados z. 1 i) c) ( 3 + 2i)(1 5i) 3 4i e) c) 33 Ejerccs resuelts en vde http://www.aprendermatematcas.rg 6. De ls sguentes númers cmplejs, calcula:,,,,,, a) = b) = + c) = 7. A) Calcula: a) ( ) + ( + 6) b) ( ) (7 + 5 ) c) ( + ) ( 5). B) Representa gráfcamente,

Más detalles

a) Cuando tomamos como parámetros la longitud y la latitud. b) Cuando usamos la parametrización en forma explícita.

a) Cuando tomamos como parámetros la longitud y la latitud. b) Cuando usamos la parametrización en forma explícita. PROBLEMA DE INTEGRALE DE UPERFICIE. (20 I.T.I.MECÁNICA). -2008-09- 1.-Encontrar los puntos sngulares de la semesfera superor: x 2+y 2+z 2=R 2.z 0 a) Cuando tomamos como parámetros la longtud y la lattud.

Más detalles

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI CAPÍTULO 5: MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 57 CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 5. Resumen Se busca solucón a las ecuacones acopladas que descrben los perfles de onda medante

Más detalles

Tema 4. Números Complejos

Tema 4. Números Complejos Tema. Números Complejos. Números complejos...... Defncón de números complejo..... Conjugado y opuesto de números complejos..... Representacón gráfca de los complejos.... Operacones con complejos..... Suma

Más detalles

Facultad de Ciencias Básicas

Facultad de Ciencias Básicas Facultad de Cencas Báscas ANÁLISIS GRÁFICO DE DATOS EXPERIMENTALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos expermentales. Establecer un crtero para el análss de grafcas

Más detalles

Sumas de potencias de números naturales y los números de Bernoulli

Sumas de potencias de números naturales y los números de Bernoulli Sumas de potencas de números naturales y los números de Bernoull Alexey Beshenov (cadadr@gmal.com 4 de Febrero de 07 La suma de n números naturales consecutvos puede ser calculada medante la fórmula +

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

= x 1º B. 2º- Calcular y simplificar: 3º- Calcular el valor de k para que el cociente

= x 1º B. 2º- Calcular y simplificar: 3º- Calcular el valor de k para que el cociente Departamento de Matemátcas 1º B 7 / OCT / 05 1º- Defnr conjugado, opuesto e nverso de un nº complejo. Escrbr y representar el conjugado, el opuesto, el conjugado del opuesto, el opuesto del conjugado,

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA PRUEBA DE MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA PRUEBA DE MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA PRUEBA DE MATEMÁTICAS Curso 016-017 Test de matemátcas 016/17 INSTRUCCIONES GENERALES 1. No escrba en este cuadernllo las respuestas.. DEBERÁ CONTESTAR CON LÁPIZ

Más detalles

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud Unversdad de Pamplona Facultad de Cencas Báscas Físca para cencas de la vda y la salud AÁLISIS GRÁFICO DE DATOS EXPERIMETALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos

Más detalles

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO 8 CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO En esta seccón se descrbe el análss de posconamento y orentacón del robot paralelo: Se resuelve el problema cnemátco nverso en base a métodos

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

UNIDAD N 1 ESPACIOS VECTORIALES

UNIDAD N 1 ESPACIOS VECTORIALES UNIDAD N ESPACIOS VECTORIALES ESPACIOS VECTORIALES DEFINICIÓN Nº : Un CUERPO F es un conjunto con dos operacones (denotadas por + y ) que satsface las sguentes propedades: + ) La adcón es conmutatva, o

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller Unversdad Smón Bolívar Conversón de Energía Eléctrca Prof José anuel Aller 41 Defncones báscas En este capítulo se estuda el comportamento de los crcutos acoplados magnétcamente, fjos en el espaco El medo

Más detalles

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011 Departamento de Señales, Sstemas y Radcomuncacones Comuncacones Dgtales, juno 011 Responder los problemas en hojas ndependentes. No se permte el uso de calculadora. Problema 1 6 p.) En este ejercco se

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

E. P. E. T. N 20 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROFESORAS: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO

E. P. E. T. N 20 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROFESORAS: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO E. P. E. T. N 0 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROFESORAS: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO E. P. E. T. N 0 MATEMÁTICA AÑO Undad N I: Epresones algebracas PROGRAMA DE MATEMÁTICA 0 TERCER AÑO

Más detalles

b) Encuentra el criterio de formación de la siguiente sucesión recurrente:

b) Encuentra el criterio de formación de la siguiente sucesión recurrente: Ejercco nº.- Calcula, utlzando la dencón de logartmo: log log log b) Halla el valor de, aplcando las propedades de los logartmos: log log log Ejercco nº.- Avergua el térmno general de la sucesón: ; 0,;

Más detalles

b) Encuentra el criterio de formación de la siguiente sucesión recurrente:

b) Encuentra el criterio de formación de la siguiente sucesión recurrente: Ejercco nº.- Calcula, utlzando la dencón de logartmo: log log log b) Halla el valor de, aplcando las propedades de los logartmos: log log log Solucón: b) log log log 9 log log log log log 9 9 Ejercco nº.-

Más detalles

Números Complejos I. Campo de los Números Complejos. Teorema. Número Complejos. Forma cartesiana o binómica de un complejo

Números Complejos I. Campo de los Números Complejos. Teorema. Número Complejos. Forma cartesiana o binómica de un complejo Númers Cmplejs I Camp de ls Númers Cmplejs Dentr del camp de ls númers reales (IR) pdems sempre hallar númers x tales que: x - = 0 Per que sbre la ecuacón: x + = 0 N exste nngún númer real x que satsfaga

Más detalles

Sistemas Lineales de Masas-Resortes 2D

Sistemas Lineales de Masas-Resortes 2D Sstemas neales de Masas-Resortes D José Cortés Pareo. Novembre 7 Un Sstema neal de Masas-Resortes está consttudo por una sucesón de puntos (de ahí lo de lneal undos cada uno con el sguente por un resorte

Más detalles

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido TEM. Dnámca I Captulo 3. Dnámca del sóldo rígdo TEM : Dnámca I Capítulo 3: Dnámca del sóldo rígdo Eje nstantáneo de rotacón Sóldo con eje fjo Momento de nerca. Teorema de Stener. Conservacón del momento

Más detalles

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FIS120: FÍSICA GENERAL II GUÍA#7: Campo magnétco, orgen. Objetvos de aprendzaje. Esta guía es una herramenta que usted debe usar para lograr los sguentes objetvos: Analzar los fenómenos que organ los campos

Más detalles

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO.

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. Dado un numero n de puntos del plano ( a, b ) es posble encontrar una funcón polnómca

Más detalles

LUGAR DE LAS RAÍCES. Lugar de las raíces.

LUGAR DE LAS RAÍCES. Lugar de las raíces. Unversdad Carlos III de Madrd Señales y Sstemas LUGAR DE LAS RAÍCES Lugar de las raíces. 1. Introduccón. Crteros del módulo y argumento. 2. Gráfcas del lugar de las raíces. 3. Reglas para construr el lugar

Más detalles

Tema 1: Jerarquía Digital Síncrona, SDH Disponibilidad de Sistemas

Tema 1: Jerarquía Digital Síncrona, SDH Disponibilidad de Sistemas Tema : Jerarquía Dgtal Síncrona, SDH Dsponbldad de Sstemas Tecnologías de red de transporte de operadora MÁSTER EN INGENIERÍ TELEMÁTIC Profesor: Espín Defncones Fabldad (Relablty): Probabldad de que el

Más detalles

Introducción al Método de los Elementos Finitos

Introducción al Método de los Elementos Finitos S 4 v v 5 Introduccón al Método de los Elementos Fntos Parte 4 Estmacón de error en problemas elíptcos Alberto Cardona, Víctor Facnott Cmec-Intec (UNL/Concet), Santa Fe, Argentna Estmacón de error en problemas

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 16/12/2011 DACIBAHCC EXAMEN FINAL DE METODOS NUMERICOS (MB536)

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 16/12/2011 DACIBAHCC EXAMEN FINAL DE METODOS NUMERICOS (MB536) UNIVERSIDAD NACIONAL DE INGENIERIA P.A. 0- FACULTAD DE INGENIERIA MECANICA 6//0 EXAMEN FINAL DE METODOS NUMERICOS (MB536) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMENTE

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas y Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

Más detalles

Usando geometría proyectiva para corregir una cámara. Parte II

Usando geometría proyectiva para corregir una cámara. Parte II Usando geometría proyectva para corregr una cámara. Parte II No hay nada partcularmente profundo en este problema o en su solucón, pero espero que muestre el placer que se puede encontrar cuando usamos

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2014 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2014 Cuestiones (Un punto por cuestión). Examen de Físca-, del Grado en Ingenería Químca Examen fnal. Septembre de 204 Cuestones (Un punto por cuestón. Cuestón (Prmer parcal: Un satélte de telecomuncacones se mueve con celerdad constante en una

Más detalles

Regresión Lineal Simple y Correlación

Regresión Lineal Simple y Correlación 4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse

Más detalles

Integrales Trigonométricas (II) Potencias Trigonométricas (I)

Integrales Trigonométricas (II) Potencias Trigonométricas (I) Integrales Trgonométrcas (II) Potencas Trgonométrcas (I) He decdo que el título de este documento sea Integrales Trgonométrcas II, por que las ntegrales que veremos en esta seccón tendrán funcones trgonométrcas,

Más detalles

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3 Hoja NúmerosComplejos.- Calcular todos los números z IC tales que: a) z = z 2 b) z = Rez + 2.- Obtener en forma binómica. a) b) c) 8 ( i) 5 (3 + 5i) (2 i) ( + i 3 ) ( + i) 3 3.- Obtener en forma binómica

Más detalles

Prácticas de Mathematica. Diplomatura de Óptica y Optometría. Cuando el programa se cuelga.

Prácticas de Mathematica. Diplomatura de Óptica y Optometría. Cuando el programa se cuelga. Práctcas de Mathematca. Dplomatura de Óptca Optometría. Segunda Práctca Cuando el programa se cuelga. En ocasones, por la dfcultad o la mala escrtura de las operacones que le pedmos, el programa no responde.

Más detalles

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García Herramentas Matemátcas para la localzacón espacal Contendo I. Justfcacón 2. Representacón de la poscón 2. Coord. Cartesanas 2.2 Coord. Polares y Clíndrcas 2.3 Coord. Esfércas 3. Representacón de la orentacón

Más detalles

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un epermento, un número real.

Más detalles

Robótica Tema 4. Modelo Cinemático Directo

Robótica Tema 4. Modelo Cinemático Directo UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Capítulo V. Teoremas de Fermat, Euler y Wilson

Capítulo V. Teoremas de Fermat, Euler y Wilson Capítulo V Teoremas de Fermat, Euler y Wlson En este capítulo utlzamos los conceptos desarrollados en dvsbldad y conteo para deducr tres teoremas báscos de la teoría de números. En el próxmo capítulo,

Más detalles

Utilizar sumatorias para aproximar el área bajo una curva

Utilizar sumatorias para aproximar el área bajo una curva Cálculo I: Guía del Estudante Leccón 5 Apromacón del área bajo la curva Leccón 5: Apromacón del área bajo una curva Objetvo: Utlzar sumatoras para apromar el área bajo una curva Referencas: Stewart: Seccón

Más detalles

Tema 9: Otros temas de aplicación

Tema 9: Otros temas de aplicación Tema 9: Otros temas de aplcacón. Introduccón Exsten muchos elementos nteresantes y aplcacones del Matlab que no se han comentado a lo largo de los temas. Se nvta al lector a que nvestgue sobre ellos según

Más detalles

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun Práctca 1 - Programacón en C++ Pág. 1 Práctcas de C++ Practca Nº 1 Informátca II Fundamentos de Programacón Prof. Dr. Paul Bustamante Práctca 1 - Programacón en C++ Pág. 1 INDICE ÍNDICE... 1 1.1 Ejercco

Más detalles

Electromagnetismo. El campo de las cargas en reposo: el campo electrostático. Campo eléctrico

Electromagnetismo. El campo de las cargas en reposo: el campo electrostático. Campo eléctrico Electromagnetsmo El campo de las cargas en reposo: el campo electrostátco Andrés Cantarero. Curso 2005-2006. ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electrostátco.

Más detalles

Integración por el método de los residuos

Integración por el método de los residuos Semana 13 - lase 38 Tema 6: Varable ompleja 1. Introduccón Integracón por el método de los resduos Las expansones de funcones en seres de potencas dejan resduos al detener la expansón a para una determnada

Más detalles