SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1."

Transcripción

1 Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón de dos planos. Fnalmente, determnará el punto de nterseccón de una recta con un plano, sguendo el esquema de operacones a realzar. Las actvdades se centrarán en resolver los problemas de nterseccón de planos e nterseccón de recta con plano. Esta undad temátca abarcará un mínmo de dos clases. GEOMETRÍA DESCRIPTIVA INTERSECCIONES. Introduccón Vamos a resolver dos problemas del espaco de constante aplcacón en el estudo de la geometría descrptva:. Hallar la recta de nterseccón de dos planos.. Hallar el punto de nterseccón de una recta con un plano.. Interseccón de dos planos. Procedmento general La nterseccón de dos planos es una recta que quedará defnda cuando se conozcan dos de sus puntos. Aunque parezca paradójco, para determnar esta nterseccón se corta a los dos planos por un tercer plano y se determnan las nterseccones con cada uno de ellos; estas rectas se cortan en un punto que será de la nterseccón buscada; se repte la operacón con un segundo plano secante auxlar y las rectas obtendas se cortarán en otro punto de la nterseccón, que con el anteror defne la msma. Los planos auxlares que se toman son los planos de proyeccón H y V, o planos paralelos a ellos, cuyas nterseccones con los planos dados son las trazas de estos planos, o ben rectas horzontales o frontales de plano. DIBUJO TÉCNICO II - Bachllerato 83

2 GEOMETRÍA DESCRIPTIVA Sean, por ejemplo, los planos α y β, cuya recta nterseccón se trata de hallar (Fg. ). Se toma un plano cualquera γ y se determnan las rectas r y s de nterseccón con los anterores, las cuales se cortan en el punto. Tomando otro plano ε, obtenemos las rectas r y s, que se cortan en el punto. La recta que une los puntos y es la nterseccón de los dos planos. A contnuacón se resuelven algunos casos de nterseccón de dos planos. r s r s Ya en dédrco (Fg. 3), s cortamos a los planos α y β por el plano H, las nterseccones son las rectas s (s -s ) y r (r -r ), que son precsamente las trazas horzontales α y β y cuyo punto de nterseccón es H -H. Tomando como plano auxlar secante el plano V, éste corta a los dados según las rectas s (s -s ) y r (r -r ), que son las trazas vertcales α y β y que se cortan en el punto V -V. r' s'' ' r' s' s' s'' solucón en el espaco Fg. 3. La recta ( - ), que une los puntos H(H -H ) y V(V -V ), es la nterseccón de los dos planos. Fg.. 3. Interseccón de dos planos oblcuos (Fgs. y 3) Resolvemos el problema en el espaco (Fg. ). Sean los planos α(α -α ) y β(β -β ). Se observa que la recta nterseccón es la que une los puntos H y V, donde se cortan las trazas del msmo nombre de los dos planos. P.V. 4. Interseccón de un plano proyectante horzontal con un plano proyectante vertcal (Fg. 4) La recta nterseccón, por pertenecer al plano β(β -β ), se proyecta vertcalmente sobre β, ya que el plano es proyectante vertcal, y por pertenecer al plano α(α -α ), que es proyectante horzontal, se proyecta horzontalmente sobre α ; la nterseccón es, pues, la recta ( - ), que pasa por los puntos H -H y V -V, donde se cortan las trazas del msmo nombre de los planos. ' ' P.H. solucón en el espaco Fg.. Fg DIBUJO TÉCNICO II - Bachllerato

3 5. Interseccón de un plano oblcuo con otro horzontal (Fg. 5) Todo plano horzontal corta a un plano cualquera según una recta horzontal; en este caso, el plano horzontal α(α ) corta al plano oblcuo (β -β ) según la horzontal -, que pasa por el punto V(V -V ), donde se cortan las trazas vertcales; la traza β corta a la traza α, que es mpropa, en el punto del nfnto, por lo que y β han de ser paralelas. 7. Interseccón de dos planos paralelos a la L.T. (Fgs. 7 y 8) Prmer procedmento (Fg. 7) Sguendo el procedmento general, cortamos a los planos dados α y β por un plano γ oblcuo cualquera. Los planos α y γ se cortan según la recta r(r -r ) y los planos β y γ, según la recta s(s -s ); estas dos rectas se cortan en el punto ( - ), que es de la nterseccón; como los planos son paralelos a L.T., su nterseccón tambén resulta paralela a L.T., por lo que basta trazar por - las paralelas a L.T. para obtener las proyeccones e de la nterseccón buscada. ' '' s'' ' ' r' GEOMETRÍA DESCRIPTIVA s' Fg Interseccón de un plano oblcuo con otro de perfl (Fg. 6) La nterseccón del plano α, oblcuo, y del β, de perfl, es la recta de perfl ( - ), cuyas trazas son H -H la horzontal y V -V la vertcal; sus proyeccones están confunddas con las trazas β y β del plano del perfl. En la fgura, se ha pasado la recta a tercera proyeccón, con ayuda de los puntos H y V. V Fg. 7. Segundo procedmento (Fg. 8) Cortando a los dos planos por un plano de perfl, se ven éstos según las rectas α y β, que se cortan en, proyeccón tercera de la recta nterseccón; las proyeccones de la nterseccón - se obtenen al proyectar sobre los dos planos. ' H Fg. 6. Fg. 8. DIBUJO TÉCNICO II - Bachllerato 85

4 GEOMETRÍA DESCRIPTIVA 8. Interseccón de un plano cualquera con el segundo plano bsector (Fg. 9) Como la recta ha de estar en el segundo bsector, sus proyeccones estarán confunddas. En la fgura, un punto de la nterseccón es el punto -, donde el plano α corta a la L.T. Sabendo que los puntos del segundo bsector tenen las proyeccones confunddas, se toma una horzontal r -r del plano α y sus proyeccones, prolongadas, se cortan en el punto - del segundo bsector. La recta que une los puntos y es la -, nterseccón del plano α con el segundo bsector. '' ' ' '' Dreccón de afndad: perpendcular a L.T. Dreccón D a. Eje de afndad: la recta nterseccón del plano con el segundo bsector. Sabemos que los puntos del eje son dobles; según esto, s la recta h es afín de h, el punto M de nterseccón de ambas es del eje de afndad; como el punto N de L.T. tambén es doble, la recta M-N es el eje de afndad y es precsamente la recta nterseccón del plano α con el segundo bsector, pues todos sus puntos tenen las proyeccones confunddas. Se halla una pareja de puntos afnes, por ejemplo el afín de, por medo de la horzontal h -h, y a partr de éstos se obtenen los demás puntos. M 5'' '' h'' '' 3'' - r' 4'' Da Fg. 9. A N B 5' ' h' Como aplcacón de esta recta de nterseccón de un plano con el segundo bsector resolvemos el problema sguente. 4' ' 9. Proyeccones de una fgura plana (Fg. 0) Se trata de resolver el sguente problema de tpo general: C eje de afndad 3' Dados un plano y una fgura contenda en dcho plano, de la que se conoce una de las proyeccones, hallar la otra proyeccón. En la Fg. 0, tenemos el plano α -α y una fgura contenda en él que se proyecta vertcalmente según un pentágono regular estrellado. Hay que hallar la proyeccón horzontal de dcha fgura. Fg. 0. Este problema se puede resolver por afndad. Las dos proyeccones de una fgura plana son fguras afnes, sendo los elementos de esta afndad los sguentes: 86 DIBUJO TÉCNICO II - Bachllerato

5 0. Interseccón de recta y plano (Fg. (Fg. ) ) En la parte superor zquerda de la fgura se ndca el procedmento a segur en el espaco. Se tene la recta r y el plano α. Para hallar el punto de nterseccón, se hace pasar por la recta un plano cualquera β, se halla la nterseccón de ambos planos, recta, y esta recta corta a la r en el punto I, que es el de nterseccón de la recta r con el plano α. En dédrco, para facltar las operacones, el plano β que se hace pasar por la recta es uno de los proyectantes de ella, en el caso de la fgura, es el proyectante horzontal β -β ; este plano y el α se cortan según la recta - ; la proyeccón vertcal corta a r en el punto I y este punto se refere a r, con lo que se obtene I. Por ser el plano β proyectante horzontal, y r concden con β. Fg.... Repaso de los conocmentos más necesaros de la geometría del espaco S una recta tene dos puntos en un plano, está en el plano. I r ' r' I'' I' GEOMETRÍA DESCRIPTIVA Una recta que sólo tene un punto común con un plano, corta a dcho plano. La recta y el plano que no tenen nngún punto común, se dce que son paralelos. Tres puntos del espaco no alneados determnan un solo plano. La nterseccón de dos planos es sempre una recta. Un plano puede defnrse tambén de las formas sguentes: por una recta y un punto que no se pertenecen, por dos rectas que se cortan o por dos rectas paralelas. Las poscones relatvas de dos rectas son: rectas que se cruzan (no tenen nngún punto en común y no forman plano); rectas que se cortan (determnan un plano y tenen un punto común); rectas paralelas (determnan un plano y tenen un punto común que es el del nfnto, llamado punto mpropo). DIBUJO TÉCNICO II - Bachllerato 87

6 GEOMETRÍA DESCRIPTIVA. Determnar la recta nterseccón de dos planos, uno oblcuo y otro paralelo a la L.T.. Hallar la nterseccón de dos planos proyectantes horzontales. 3. Hallar la nterseccón de dos planos proyectantes vertcales. 4. Hallar la nterseccón de un plano oblcuo con un plano frontal. 5. Hallar la nterseccón de un plano oblcuo con un plano proyectante horzontal. 6. Hallar la nterseccón de un plano oblcuo con un plano proyectante vertcal. 7. Hallar la nterseccón de un plano oblcuo con otro que pasa por la L.T. 8. Hallar la nterseccón de un plano cualquera con los dos planos bsectores. 9. Determnar la nterseccón de una recta con los planos bsectores, en los casos sguentes: ACTIVIDADES a) La recta es horzontal y no es paralela a L.T. b) La recta es perpendcular a uno de los planos de proyeccón. c) La recta es de perfl. 0. Determnar el punto común a tres planos. (Prmero se halla la nterseccón de dos planos y después la nterseccón de la recta obtenda con el tercer plano.). Determnar el punto común a tres planos en el caso sguente: Un plano oblcuo cualquera, otro frontal y un tercero paralelo a la L.T.. Determnar el punto de nterseccón de una recta con un plano en los sguentes casos: a) La recta es de punta y el plano es uno oblcuo cualquera. b) La recta es de perfl y el plano es uno oblcuo cualquera. 3. En un plano oblcuo hay una fgura cuya proyeccón horzontal es un hexágono regular. Hallar la proyeccón vertcal por afndad. 88 DIBUJO TÉCNICO II - Bachllerato

27. SISTEMA DIÉDRICO.- PARALELISMO, PERPENDICULARIDAD.

27. SISTEMA DIÉDRICO.- PARALELISMO, PERPENDICULARIDAD. 27. SISTEMA DIÉDRICO.- PARALELISMO, PERPENDICULARIDAD. 27.1. Paralelismo. 27.1.1. Paralelismo entre rectas. Dos rectas paralelas en el espacio se proyectan sobre un plano ortogonalmente sobre un plano

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

Números Complejos II. Ecuaciones

Números Complejos II. Ecuaciones Complejos 1º Bachllerato Departamento de Matemátcas http://selectvdad.ntergranada.com Raúl González Medna Ecuacones 1. Resolver las sguentes ecuacones y determnar en qué campo numérco tenen solucón: a)

Más detalles

ESTALMAT-Andalucía Actividades 05/06. Título: Geometría con lápiz y papel. Sesión: 3 Fecha: 14/10/2005

ESTALMAT-Andalucía Actividades 05/06. Título: Geometría con lápiz y papel. Sesión: 3 Fecha: 14/10/2005 ESTALMAT-Andalucía Actvdades 05/06 Sesón: 3 Fecha: 14/10/2005 Título: Geometría con lápz y papel Las actvdades desarrolladas han sdo: - Por donde cortarías. (Como relaconar unos polígonos con otros medante

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 0 "# Representa gráfcamente los resultados que obtengas al hallar y calcula el lado del trángulo formado al unr esos tres puntos. Para hallar las raíces prmero pasamos el número a forma polar : r ( )

Más detalles

27.1. Representación del Plano. Trazas del plano

27.1. Representación del Plano. Trazas del plano 27. SISTEMA DIÉDRICO.- EL PLANO. 27.1. Representación del Plano. Trazas del plano Se llaman trazas de un plano a las rectas que resultan de la intersección de este plano con los planos de proyección. Por

Más detalles

GEOMETRÍA MÉTRICA Y SISTEMAS DE REPRESENTACIÓN

GEOMETRÍA MÉTRICA Y SISTEMAS DE REPRESENTACIÓN SR.DR.01 Representar las proyecciones de un punto situado en: a) primer diedro e) PH anterior i) LT b) segundo diedro f) PV superior j) primer bisector (primer diedro) c) tercer diedro g) PH posterior

Más detalles

28. SISTEMA DIÉDRICO.- DISTANCIAS, VERDADERAS MAGNITUDES.

28. SISTEMA DIÉDRICO.- DISTANCIAS, VERDADERAS MAGNITUDES. 28. SISTEMA DIÉDRICO.- DISTANCIAS, VERDADERAS MAGNITUDES. 28.1. Verdaderas magnitudes. 28.1.1. Distancia entre dos puntos. Tenemos en el espacio dos puntos A y B, la distancia entre ellos es el segmento

Más detalles

60 EJERCICIOS de NÚMEROS COMPLEJOS

60 EJERCICIOS de NÚMEROS COMPLEJOS 60 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos a) x -x+=0 (Soluc ) b) x +=0 (Soluc ) c) x -x+=0 (Soluc ) d) x +x+=0 (Soluc ) e) x -6x +x-6=0 (Soluc,

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

SISTEMA DIÉDRICO II INTERSECCIONES PARALELISMO Y PERPENDICULARIDAD ANA BALLESTER JIMÉNEZ

SISTEMA DIÉDRICO II INTERSECCIONES PARALELISMO Y PERPENDICULARIDAD ANA BALLESTER JIMÉNEZ SISTEMA DIÉDRICO II INTERSECCIONES PARALELISMO Y PERPENDICULARIDAD 1 SISTEMA DIÉDRICO: INTERSECCIONES. r s: Dos rectas se cortan cuando tienen un punto en común. A2 r2 y s2 A1 r1 y s1 α β: Dos planos que

Más detalles

Perspectiva inversa para Ray Tracing

Perspectiva inversa para Ray Tracing erspectva nversa para Ray Tracng efncón de la cámara José ortés areo, Abrl 7 a cámara vrtual suele defnrse en funcón de un conunto de parámetros ntutvos: Observador unto Focal: unto de Mra: stanca Focal:

Más detalles

Dibujo Técnico Sistema diédrico.- Cambios de plano, giros y ángulos. ÁNGULOS.

Dibujo Técnico Sistema diédrico.- Cambios de plano, giros y ángulos. ÁNGULOS. 30. SISTEMA DIÉDRICO.- CAMBIOS DE PLANO, GIROS Y ÁNGULOS. 30.1. Cambios de plano. Los cambios de planos de proyección consisten en tomar o elegir otros planos de proyección de forma que los elementos que

Más detalles

S. DIÉDRICO: ABATIMIENTOS, CAMBIOS DE PLANO Y GIROS

S. DIÉDRICO: ABATIMIENTOS, CAMBIOS DE PLANO Y GIROS SISTEMA DIÉDRICO (III) TEMA 10: 2º DE BACH/Página 1 de 12 NOTA>COMO VERAS HAY DOS RECUADROS PARA TRAZAR LOS DIBUJOS DE LAS PRESENTACIONES, EN ESTA OCASION, EL PRIMERO ES PARA HACER LOS TRAZADOS A MANO

Más detalles

Hoja I.4 SOLUCIÓN DEL EJERCICIO 6

Hoja I.4 SOLUCIÓN DEL EJERCICIO 6 SOLUCIÓN DEL EJERCICIO 6 Se trata de defnr la funcón de códgo sguendo un orden dferente, y para dstngurla la llamamos dod(x,y), que Esta funcón de códgo numera la cuadrícula en el orden ndcado en la fgura,

Más detalles

r 2Lβ 2Ls 2 V r1 A 2 B 2 B 1 r 1 α 1 δ 1

r 2Lβ 2Ls 2 V r1 A 2 B 2 B 1 r 1 α 1 δ 1 Seccionar por el plano α el prisma oblicuo, dibujando las verdadera magnitud de dicha proyectantes, cambio de plano y afinidad. Se da la proyección horizontal de la base y las de una C H 2 r2 r2 r1 r 2β

Más detalles

DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE INTEGRACION III

DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE INTEGRACION III DEPRTMENTO DE INGENIERI QUIMIC Undad 2: Presón de vapor CTEDR DE INTEGRCION III Problema Nº 1: a) Tomando los datos necesaros de una tabla físca, representar una curva que relacone la presón de vapor del

Más detalles

r 2Lβ 2Ls 2 V r1 A 2 B 2 B 1 r 1 α 1 δ 1

r 2Lβ 2Ls 2 V r1 A 2 B 2 B 1 r 1 α 1 δ 1 Seccionar por el plano α el prisma oblicuo, dibujando las proyecciones y verdadera magnitud de dicha sección. Utilizar los procedimientos de: proyectantes, cambio de plano y afinidad. Se da la proyección

Más detalles

25. SISTEMA DIÉDRICO.- EL PLANO.

25. SISTEMA DIÉDRICO.- EL PLANO. 25. SISTEMA DIÉDRICO.- EL PLANO. 25.1. Representación del Plano. Trazas del plano Se llaman trazas de un plano a las rectas que resultan de la intersección de este plano con los planos de proyección. Por

Más detalles

24. SISTEMA DIÉDRICO.- LA RECTA.

24. SISTEMA DIÉDRICO.- LA RECTA. 24. SISTEMA DIÉDRICO.- LA RECTA. 24.1. Representación de la Recta. Una recta queda inequívocamente determinada conocidos dos puntos de la misma; para hallar sus proyecciones bastará unir las proyecciones

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Espacios de Búsqueda en un Árbol Binario para Resolver Problemas de Optimización Discreta

Espacios de Búsqueda en un Árbol Binario para Resolver Problemas de Optimización Discreta Espacos de Búsueda en un Árbol Bnaro para Resolver Problemas de Optmzacón Dscreta María Elena Gómez-Torres J. Crspín Zavala-Díaz Marco Antono Cruz- Chávez 3 Insttuto Tecnológco de Zacatepec Calzada Insttuto

Más detalles

SISTEMA DIÉDRICO PERTENENCIA VISIBILIDAD VISIBILIDAD 3º PROYECCIÓN PLANOS NO DADOS POR SUS TRAZAS

SISTEMA DIÉDRICO PERTENENCIA VISIBILIDAD VISIBILIDAD 3º PROYECCIÓN PLANOS NO DADOS POR SUS TRAZAS SISTEMA DIÉDRICO PERTENENCIA 1. Dado un plano cualquiera cuya traza horizontal forma 40º con la LT y 60º la traza vertical, situar pasando por un punto A que le pertenece y de altura 30 mm, todas sus rectas

Más detalles

Robótica Tema 4. Modelo Cinemático Directo

Robótica Tema 4. Modelo Cinemático Directo UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. Pág. NOTA: En todos los ejerccos se deberá justfcar la respuesta explcando el procedmento segudo en la resolucón del ejercco. CURSO 0 - CONTROL OCTUBRE 00 A contnuacón se presentan 5 preguntas con respuestas

Más detalles

+ + C + + G + D III. Representa las proyecciones diédricas de los puntos A, B, C, D, E, F y G. PV II. + a. d e. f f. g c. i III

+ + C + + G + D III. Representa las proyecciones diédricas de los puntos A, B, C, D, E, F y G. PV II. + a. d e. f f. g c. i III II C V B A I D G H III E F IV Representa las proyecciones diédricas de los puntos A, B, C, D, E, F y G. b d h g c h b d e f f a g c e i V II I j H j i III IV Expresa la posición del espacio donde se encuentran

Más detalles

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO 8 CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO En esta seccón se descrbe el análss de posconamento y orentacón del robot paralelo: Se resuelve el problema cnemátco nverso en base a métodos

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS.

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS. UNIVERSIDAD FRANCISCO DE AULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEARTAMENTO DE CIENCIAS BASICAS. DERIVADAS ARCIALES DE ORDEN SUERIOR. S es una uncón de dos varables al dervar la uncón parcalmente

Más detalles

A'' A''1. Este ejercicio se ha resuelto por cambios de plano poniendo el plano proyectante vertical.

A'' A''1. Este ejercicio se ha resuelto por cambios de plano poniendo el plano proyectante vertical. EJERCICIO 1 Hallar el ángulo que forman el plano y el PH. A'' A' 7 A''1 Este ejercicio se ha resuelto por cambios de plano poniendo el plano proyectante vertical. EJERCICIO 1 Hallar el ángulo que forma

Más detalles

El Sistema Diédrico Ortogonal II

El Sistema Diédrico Ortogonal II DIBUJO TÉCNICO I El Sistema Diédrico Ortogonal II Como se expuso en la anterior unidad didáctica, este sistema está basado en el uso de dos planos de proyección, denominados horizontal y vertical, que

Más detalles

Hidrología superficial

Hidrología superficial Laboratoro de Hdráulca Ing. Davd Hernández Huéramo Manual de práctcas Hdrología superfcal 7o semestre Autores: Héctor Rvas Hernández Juan Pablo Molna Agular Rukmn Espnosa Díaz alatel Castllo Contreras

Más detalles

UNIDAD. Diédrico: intersección, paralelismo y perpendicularidad

UNIDAD. Diédrico: intersección, paralelismo y perpendicularidad UNIDAD 8 Diédrico: intersección, paralelismo y perpendicularidad E n esta Unidad se continúa el estudio del sistema diédrico, introduciendo las construcciones basadas en las relaciones de intersección,

Más detalles

1º BACH SISTEMA DIÉDRICO III

1º BACH SISTEMA DIÉDRICO III SISTEMA DIÉDRICO III ABATIMIENTOS DISTANCIAS VERDADERAS MAGNITUDES LINEALES 1- ABATIMIENTOS Los abatimientos se utilizan para hallar la verdadera magnitud ( v.m.) de superficies y aristas contenidas en

Más detalles

A RG. Secciones 10: Cono Recto por plano oblicuo BT α 2. δ Lj 2 2. γ Ls 1 1. β Lt 1 1 A 1. α 1

A RG. Secciones 10: Cono Recto por plano oblicuo BT α 2. δ Lj 2 2. γ Ls 1 1. β Lt 1 1 A 1. α 1 Dibujar las proyecciones y verdadera magnitud, de la sección 2 s 2 t 2 δ Lj 2 2 Ñ2 q 2 j2 j1 N 2 Q 2 H s2 H t2 N Lq LÑ 1 1 1 γ Ls 1 1 j0 β Lt 1 1 H t1 (α ) 2 0 W 1 Y 1 Q 1 H s1 Z j 0 T Procedimiento mixto

Más detalles

Resolución de sistemas lineales por métodos directos

Resolución de sistemas lineales por métodos directos Resolucón de sstemas lneales por métodos drectos Descomposcón LU S la matr del sstema Ax = b se expresa como producto de una matr trangular nferor, L, de una superor, U, la resolucón del msmo se reduce

Más detalles

12 ÁNGULOS EN DIÉDRICO

12 ÁNGULOS EN DIÉDRICO 12-1 Apuntes de dibujo técnico Patxi Aguirrezabal M artin 12 ÁNGULOS EN DIÉDRICO Ángulos de la recta con los planos de proyección. Ángulo de dos rectas y bisectriz del ángulo. Ángulo de recta y plano.

Más detalles

La representación Denavit-Hartenberg

La representación Denavit-Hartenberg La representacón Denavt-Hartenberg José Cortés Parejo. Marzo 8 Se trata de un procedmeto sstemátco para descrbr la estructura cnemátca de una cadena artculada consttuda por artculacones con. un solo grado

Más detalles

DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 6 SISTEMA DIÉDRICO I. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 6 SISTEMA DIÉDRICO I. Departamento de Artes Plásticas y Dibujo DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 6 SISTEMA DIÉDRICO I Departamento de Artes Plásticas y Diujo Situar los siguientes puntos dados por sus coordenadas, decir el cuadrante a que pertenecen.

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

POSICIONES RELATIVAS ENTRE PUNTO, RECTA Y PLANO.

POSICIONES RELATIVAS ENTRE PUNTO, RECTA Y PLANO. .- Punto respecto a: P V P, Y P. Punto ecta Plano -Que coincidan. -Que no coincidan. (Determinan una recta) (Distancia) -res puntos no alineados. (Determinan un plano) -Que pertenezca a la recta. (as proyecciones

Más detalles

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro Matemátcas Bachllerato? Soluconaro del Lbro Actvdades Dado el número complejo se pde: qué valor ha de tener x para que x? Calcula el opuesto de su conjugado Calcula el conjugado de su opuesto x x x El

Más detalles

(c).- En equilibrio estático, el momento resultante respecto a cualquier punto es nulo. (d).- Un objeto en equilibrio no puede moverse.

(c).- En equilibrio estático, el momento resultante respecto a cualquier punto es nulo. (d).- Un objeto en equilibrio no puede moverse. Relacón de problemas DEPARTAMENTO DE FÍSICA ESCUELA POLITÉCNICA SUPERIOR UNIVERSIDAD DE JAÉN Equlbro estátco y elastcdad 1.- Verdadero o falso: (a).- F = 0 es sufcente para que exsta el equlbro estátco.

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS. DERIVADAS PARCIALES DE ORDEN SUPERIOR.

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS. DERIVADAS PARCIALES DE ORDEN SUPERIOR. UNIVERSIDAD FRANCISCO DE AULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEARTAMENTO DE CIENCIAS BASICAS. DANIEL SAENZ CONTRERAS EMAIL SAENZCODANIEL8@HOTMAIL.COM DERIVADAS ARCIALES DE ORDEN SUERIOR. S es una

Más detalles

SISTEMA DIÉDRICO 2º BACH.

SISTEMA DIÉDRICO 2º BACH. [Escribir el nombre de la compañía] [Escribir el nombre de la compañía] SISTEMA DIÉDRICO INTERSECCIONES. PARALELISMO Y PERPENDICULARIDAD. DISTANCIAS, VERDADERAS MAGNITUDES. [Escribir el nombre de la compañía]

Más detalles

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del TEMA 6. EL SISTEMA DIÉDRICO I. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del TEMA 6. EL SISTEMA DIÉDRICO I. Departamento de Artes Plásticas y Dibujo DIBUJO TÉCNICO BACHILLERATO Láminas resueltas del TEMA 6. EL SISTEMA DIÉDRICO I. Departamento de Artes Plásticas y Diujo Situar los siguientes puntos dados por sus coordenadas, decir el cuadrante a que

Más detalles

(p +Q 222 P +Q P +Q )

(p +Q 222 P +Q P +Q ) TEMA S.- PUNTOS. RECTAS Y PLANOS EN EL ESPACO. TEMA 5.- PUNTOS, RECTAS Y PLANOS EN EL ESPACO..- PUNTOS. Sstema de referenca: Un sstema de referenca en el espaco 93 consste en un conjunto formado por un

Más detalles

Utilizar sumatorias para aproximar el área bajo una curva

Utilizar sumatorias para aproximar el área bajo una curva Cálculo I: Guía del Estudante Leccón 5 Apromacón del área bajo la curva Leccón 5: Apromacón del área bajo una curva Objetvo: Utlzar sumatoras para apromar el área bajo una curva Referencas: Stewart: Seccón

Más detalles

Actividades de recuperación

Actividades de recuperación Actvdades de recuperacón 1.- Para cada uno de los sguentes complejos, se pde 1 Señala cuál es su parte real y su parte magnara e ndca cuáles se corresponden con números reales y cuáles son magnaros puros.

Más detalles

1º BACH SISTEMA DIÉDRICO III

1º BACH SISTEMA DIÉDRICO III SISTEMA DIÉDRICO III ABATIMIENTOS, GIROS, CAMBIOS DE PLANO. SISTEMA DIÉDRICO III: ABATIMIENTOS, CAMBIOS DE PLANO Y GIROS 1- ABATIMIENTOS Los abatimientos se utilizan para hallar la verdadera magnitud (

Más detalles

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador.

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador. ITM, Insttucón unverstara Guía de Laboratoro de Físca Mecánca Práctca : Colsones en una dmensón Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

Unidad 6-. Números complejos 1

Unidad 6-. Números complejos 1 Undad -. Números complejos ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Efectúa las sguentes operacones: aa (-(-(- aa (-(-(- cc ( -(-( bb ( ( - - (- 7 dd ( - - (- / ( - ( ( (. ( Sumamos algebracamente por

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García Herramentas Matemátcas para la localzacón espacal Contendo I. Justfcacón 2. Representacón de la poscón 2. Coord. Cartesanas 2.2 Coord. Polares y Clíndrcas 2.3 Coord. Esfércas 3. Representacón de la orentacón

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA PRUEBA DE MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA PRUEBA DE MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA PRUEBA DE MATEMÁTICAS Curso 016-017 Test de matemátcas 016/17 INSTRUCCIONES GENERALES 1. No escrba en este cuadernllo las respuestas.. DEBERÁ CONTESTAR CON LÁPIZ

Más detalles

TEMA 1. TRAZADOS GEOMÉTRICOS ELEMENTALES

TEMA 1. TRAZADOS GEOMÉTRICOS ELEMENTALES TEMA 1. TRAZADOS GEOMÉTRICOS ELEMENTALES GEOMETRÍA: Rama de las matemáticas que se ocupa del estudio de las figuras geométricas, incluyendo puntos, rectas, planos Proviene del Griego GEO (tierra) METRÍA

Más detalles

GEOMETRÍA DESCRIPTIVA Sistema diédrico

GEOMETRÍA DESCRIPTIVA Sistema diédrico Alfabetos- 1 Apuntes de dibujo técnico GEOMETRÍA DESCRIPTIVA Sistema diédrico Introducción. Convencionalismos para el dibujo. Alfabeto del punto. Alfabeto o representación de la recta. Planos bisectores.

Más detalles

ELEMENTOS DE GEOMETRÍA DESCRIPTIVA CURSO 2006 Prof.Sergio Weinberger. Horizontal: h // PH Frontal : f // PV De perfil : p Π LT p p Π L T L T L T

ELEMENTOS DE GEOMETRÍA DESCRIPTIVA CURSO 2006 Prof.Sergio Weinberger. Horizontal: h // PH Frontal : f // PV De perfil : p Π LT p p Π L T L T L T ELEMENTOS DE GEOMETRÍA DESCRIPTIVA CURSO 2006 Prof.Sergio Weinberger RECTAS PARTICULARES: Horizontal: h // PH Frontal : f // PV De perfil : p Π LT p p Π h f A A B L T L T L T h f A B B De fuga : r PV Vertical

Más detalles

Dibujo Técnico Secciones Planas

Dibujo Técnico Secciones Planas 37. SECCIONES PLANAS 37.1. INTRODUCCIÓN. Para hallar la sección plano de un cuerpo geométrico se pueden emplear tres métodos: a.- Por intersección de aristas o generatrices del cuerpo con el plano. b.-

Más detalles

Www.apuntesdemates.weebl.es TEMA AMO EALARE Y VETORIALE. INTRODUIÓN e entende por magntud cualquer cualdad o propedad medble. ueden clasfcarse en: - Magntudes escalares: Quedan totalmente defndas cuando

Más detalles

31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO

31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31.1. Representación de la recta. Si un punto se representaba por cuatro proyecciones, la recta se representa igual por cuatro proyecciones. Tenemos la recta

Más detalles

A(50,10,25) B(70,5,50) C(52,-10,37) A(45,15,35) B(45,-10,15) C(45,50,60) C(45,30,43) A(20,-5,70) B(45,-10,80) C(60,14,22)

A(50,10,25) B(70,5,50) C(52,-10,37) A(45,15,35) B(45,-10,15) C(45,50,60) C(45,30,43) A(20,-5,70) B(45,-10,80) C(60,14,22) Diédrico. Pertenencia de un punto a una recta. Dados los puntos indicados. Averiguar si están o no alineados. Partes vistas y ocultas y sectorización de la recta que contiene los puntos A y B Halla los

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO

31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31.1. Representación de la recta. Si un punto se representaba por cuatro proyecciones, la recta se representa igual por cuatro proyecciones. Proyecciones de

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reales Complejos Ejerccos resueltos Halla los números reales que cumplen la condcón a a S a 0 : a a a 0 No este solucón S a < 0 : a a a a Halla todos los números r tales que r < a) S

Más detalles

Problemas sobre números complejos -1-

Problemas sobre números complejos -1- Problemas sobre números complejos --.- Representa gráfcamente los sguentes números complejos y d cuáles son reales, cuáles magnaros y, de estos, cuáles magnaros puros: 5-5 + 4-5 7 0 -- -7 4.- Obtén las

Más detalles

LUGAR DE LAS RAÍCES. Lugar de las raíces.

LUGAR DE LAS RAÍCES. Lugar de las raíces. Unversdad Carlos III de Madrd Señales y Sstemas LUGAR DE LAS RAÍCES Lugar de las raíces. 1. Introduccón. Crteros del módulo y argumento. 2. Gráfcas del lugar de las raíces. 3. Reglas para construr el lugar

Más detalles

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta.

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta. Rentas Fnanceras. Renta fracconada 6. RETA FRACCIOADA Una renta fracconada se caracterza porque su frecuenca no concde con la frecuenca de varacón del térmno de dcha renta. Las característcas de la renta

Más detalles

EJERCICIOS DE DISTANCIAS PROCEDIMIENTOS DE EJECUCIÓN

EJERCICIOS DE DISTANCIAS PROCEDIMIENTOS DE EJECUCIÓN EJERCICIOS DE DISTANCIAS PROCEDIMIENTOS DE EJECUCIÓN 1-2-3.- Procedimiento: - Explicados en teoría 1) 2) 3) 4.- Procedimiento: - Trazar el plano P perpendicular a la recta R, pasando por el punto A, ayudándome

Más detalles

Modelos lineales Regresión simple y múl3ple

Modelos lineales Regresión simple y múl3ple Modelos lneales Regresón smple y múl3ple Dept. of Marne Scence and Appled Bology Jose Jacobo Zubcoff Modelos de Regresón Smple Que tpo de relacón exste entre varables Predccón de valores a partr de una

Más detalles

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II) LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN

Más detalles

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información IV. Base de Datos CAPÍTULO IV. MEDICIÓN De acuerdo con Székely (2005), exste dentro del período 950-2004 nformacón representatva a nvel naconal que en algún momento se ha utlzado para medr la pobreza.

Más detalles

2º BACH. SISTEMA DIÉDRICO [ABATIMIENTOS, CAMBIOS DE PLANOS, GIROS Y ÁNGULOS]

2º BACH. SISTEMA DIÉDRICO [ABATIMIENTOS, CAMBIOS DE PLANOS, GIROS Y ÁNGULOS] 2º BACH. SISTEMA DIÉDRICO [ABATIMIENTOS, CAMBIOS DE PLANOS, GIROS Y ÁNGULOS] ABATIMIENTOS ABATIMIENTO DE UN PUNTO CONTENIDO EN UN PLANO. Sobre el P.H. Sobre el P.V. 1 ABATIMIENTO DE UNA RECTA CONTENIDA

Más detalles

Dibujar las proyecciones y verdadera magnitud, de la sección que produce el plano α, al cono recto dado. α 2. α 1 A G R

Dibujar las proyecciones y verdadera magnitud, de la sección que produce el plano α, al cono recto dado. α 2. α 1 A G R Dibujar las proyecciones y verdadera magnitud, de la sección A G R Dibujar las proyecciones y verdadera magnitud, de la sección V 2 s 2 t 2 δ Lj 2 2 Ñ2 q 2 r 2 K 2 J 2 A 2 C 2 O 2 D 2 V j2 L 2 V j1 B 2

Más detalles

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria.

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria. Guía de Laboratoro de Físca Mecánca. ITM, Insttucón unverstara. Práctca 0. Colsones. Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla corta,

Más detalles

Curso l Física I Autor l Lorenzo Iparraguirre

Curso l Física I Autor l Lorenzo Iparraguirre Curso l Físca I Autor l Lorenzo Iparragurre AEXO 4.2: La Ley del Impulso en un ntervalo nfntesmal y en un ntervalo fnto En el texto prncpal la Ley del Impulso ha sdo presentada para un ntervalo t cualquera,

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2013 OPCIÓN A Ejercicio 1 a) (1 punto) Hallar los valores del parámetro para los que la siguiente matriz

Más detalles

Generación de e Modelos 3D a Partir de e Datos de e Rango de e Vistas Parciales.

Generación de e Modelos 3D a Partir de e Datos de e Rango de e Vistas Parciales. Generacón de e Modelos 3D a Partr de e Datos de e Rango de e Vstas Parcales. Santago Salamanca Mño Escuela de Ingenerías Industrales Unversdad de Extremadura (UNED, UCLM, UEX) Introduccón (I) Qué es un

Más detalles

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Examen Fnal Pregunta ( punto) Responda brevemente a las sguentes preguntas: a) Cuál es el obetvo en el aprendzae del Perceptron

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

D1 Generalidades: El punto

D1 Generalidades: El punto El sistema diédrico D1 Generalidades: El punto Generalidades Proyección ortogonal de un punto sobre un plano Proyección ortogonal o, simplemente proyección de un punto sobre un plano, es el pie de la perpendicular

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

SEMANA 13. CLASE 14. MARTES 20/09/16

SEMANA 13. CLASE 14. MARTES 20/09/16 SEMAA 3. CLASE. MARTES 20/09/6. Defncones de nterés.. Estadístca descrptva. Es la parte de la Estadístca que se encarga de reunr nformacón cuanttatva concernente a ndvduos, grupos, seres de hechos, etc..2.

Más detalles

INTERSECCIONES. POSICIONES RELATIVAS. DISTANCIAS

INTERSECCIONES. POSICIONES RELATIVAS. DISTANCIAS INTERSECCIONES. POSICIONES RELATIVAS. DISTANCIAS OBJETIVOS Recordar los principios que rigen las intersecciones geo - métricas entre recta y plano y de estos entre sí, para apli - car, con dominio, el

Más detalles

( s) () s. 2. Representar en diagrama de Bode la respuesta frecuencial de. . Calcular frecuencia de cruce de ganancia y el. margen de fase.

( s) () s. 2. Representar en diagrama de Bode la respuesta frecuencial de. . Calcular frecuencia de cruce de ganancia y el. margen de fase. Problema 1 El esquema de la fgura muestra el sstema de control bola-vga. Se pde: 1. S el rozamento es desprecable, demostrar que la FDT lnealzada entre la poscón de la bola, x(s), y el ángulo de la barra,

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles