Programa de Doctorado en Ingeniería Aeronáutica Capítulo III Tensor deformación. El Tensor de Deformación A A'

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Programa de Doctorado en Ingeniería Aeronáutica Capítulo III Tensor deformación. El Tensor de Deformación A A'"

Transcripción

1 Programa de Doctorado en Ingenería Aeronátca Capítlo III Tensor deformacón Comportamento Mecánco de Materales - Dr. Alberto Monsalve González - El Tensor de Deformacón Introdccón Además de descrbr los esferzos de n cerpo, la mecánca de los sóldos contnos aborda tambén la descrpcón de las deformacones. La deformacón pede edar completamente descrta dando el desplazamento de cada pnto en el cerpo, desde s poscón de elbro hasta la deformada. Esto sgnfca e al dar las tres componentes del vector desplazamento para cada pnto, la deformacón eda completamente defnda. Para peeños desplazamentos, tal como ocrre en mchos problemas elástcos, es convenente sar la deformacón elástca lneal, defnda en térmnos de la dervada de los desplazamentos. A A'.. Fgra. Representacón esemátca del proceso de deformacón. Defncón: En general:,, = desplazamento en la dreccón

2 Programa de Doctorado en Ingenería Aeronátca Capítlo III Tensor deformacón Comportamento Mecánco de Materales - Dr. Alberto Monsalve González - La combnacón de dervadas sadas en la defncón de la deformacón son elegdas así para e los movmentos del cerpo rígdo den na deformacón cero. Eemplo: z k ˆ ln ˆ cos ˆ 6 sen z cos cos z sen cos cos 6

3 Programa de Doctorado en Ingenería Aeronátca Capítlo III Tensor deformacón B B' d C C' d d A' D' A D d Fgra. Interpretacón geométrca de la deformacón. Interpretacón geométrca de la deformacón d = Dferenca de desplazamento en dos caras separadas por na peeña dstanca velocdad de cambo del desplazamento por la dstanca e separa dchas caras. Las deformacones normales dan los cambos relatvos en longtdes de líneas paralelas a los ees coordenados. lm Comportamento Mecánco de Materales - Dr. Alberto Monsalve González -

4 Programa de Doctorado en Ingenería Aeronátca Capítlo III Tensor deformacón Interpretacón geométrca de la deformacón ( ) d B' C' B C A A' D D' d Fgra. Dstorsón anglar de n sóldo deformado. tg tg en e es la deformacón anglar total en el plano Comportamento Mecánco de Materales - Dr. Alberto Monsalve González - 4

5 Programa de Doctorado en Ingenería Aeronátca Capítlo III Tensor deformacón Comportamento Mecánco de Materales - Dr. Alberto Monsalve González - 5 Matrz de rotacón d d d d Fgra 4. Rotacones de n sóldo en torno a. Para peeñas rotacones en la dreccón en la dreccón la rotacón promedo del elemento pede defnrse como: El connto de componentes de rotacón peden representarse como:

6 Programa de Doctorado en Ingenería Aeronátca Capítlo III Tensor deformacón Comportamento Mecánco de Materales - Dr. Alberto Monsalve González - 6 rotacón de Matrz Matrz de desplazamento Al smar la matrz de deformacón con la matrz de rotacón se obtene la matrz desplazamento e e e Deformacón czallante : Cambo anglar total Cambo anglar total = tg tg Fgra 5.Cambo anglar por deformacón de czalle.

7 Programa de Doctorado en Ingenería Aeronátca Capítlo III Tensor deformacón pero En general además Matrz deformacón en térmnos de la deformacón czallante: Interpretacón geométrca de la matrz de rotacón Corresponde a na rotacón rígda sobre n ee coordenado en el plano perpendclar a dcho ee. Por eemplo: z P z / 45 O Fgra 6. Interpretacón geométrca de la matrz de rotacón. Comportamento Mecánco de Materales - Dr. Alberto Monsalve González - 7

8 Programa de Doctorado en Ingenería Aeronátca Capítlo III Tensor deformacón corresponde a la rotacón de la dagonal OP en el plano, alrededor del ee, de tal forma e dcha dagonal concda con la bsectrz del cadrante. S la dagonal se gra n ánglo 4 z, para llevarla a 45º de los ees : z 4 con lo cal z Por lo tanto, efectvamente corresponde a la rotacón de la recta OP para hacerla concdr con la bsectrz del plano. Ecacones de Compatbldad Se precsan 6 térmnos para descrbr completamente el estado de deformacón en n pnto. Las componentes de la deformacón no son todas cantdades ndependentes, por lo tanto: Las componentes de la deformacón no peden ser defndas en forma arbtrara, deben por lo tanto satsfacer certas relacones, llamadas ecacones de compatbldad. Conocdo el vector desplazamento, se pede calclar el tensor deformacón dervando convenentemente dcho vector. Dado es posble calclar? d () d d () d d () d Comportamento Mecánco de Materales - Dr. Alberto Monsalve González - 8

9 Programa de Doctorado en Ingenería Aeronátca Capítlo III Tensor deformacón Comportamento Mecánco de Materales - Dr. Alberto Monsalve González - 9 (4) (5) (6) El número total de ecacones es 6 El número total de ncógntas es Incógntas : deben cmplrse condcones adconales para Estas condcones adconales, se denomnan Ecacones de Compatbldad Se pede demostrar e: Invarantes del tensor deformacón Para peeñas deformacones, el cambo en el volmen específco de n cerpo dstorsonado es gal a la sma de las tres deformacones normales V V

10 Programa de Doctorado en Ingenería Aeronátca Capítlo III Tensor deformacón El cambo de volmen de n cerpo pede ser meddo sn referenca a n sstema coordenado, por tanto la sma de las deformacones normales debe ser n nvarante. I Tambén son nvarantes I I Descomposcón del tensor deformacón El tensor deformacón pede descomponerse en n tensor asocado al cambo de volmen no asocado a la dstorsón Matrz devatórca de la Deformacón Matrz asocada al cambo de volmen Cambo de volmen = Dstorsón = ' ' Deformacón devatórca Comportamento Mecánco de Materales - Dr. Alberto Monsalve González -

11 Programa de Doctorado en Ingenería Aeronátca Capítlo III Tensor deformacón.- Las poscones de n cerpo ABCD son: Eerccos propestos A(,) A (,) B(4,) B (5;.5) C(4,5) D(,) C (4,5;) D (-.;) a) Determne los tensores deformacón, rotacón desplazamento. b) Cál es el cambo de volmen porcental?..- (a) Demostrar e para peeñas deformacones el cambo de volmen ntaro vene dado por V V zz en e es la deformacón normal a la cara en la dreccón b) Demostrar e todo tensor se pede escrbr como la sma de n tensor smétrco más otro antsmétrco..- En n pnto de n sóldo elástco en el e este n estado tensonal plano, la matrz de tensones referda a n sstema de ees cartesanos ortogonales es: 5 5 (Kgf/cm ) Hallar las deformacones prncpales Calclar la varacón anglar epermentada por la dreccón a la e corresponde la deformacón transversal ntara máma (en grados) e ndcar la dreccón o dreccones correspondentes. Comportamento Mecánco de Materales - Dr. Alberto Monsalve González -

El Tensor de Deformación

El Tensor de Deformación Comportamento Mecánco de Sóldos Capítlo IV Tensor de deformacón 4.. Introdccón El Tensor de Deformacón Además de descrbr los esferzos de n cerpo, la mecánca de los sóldos contnos aborda tambén la descrpcón

Más detalles

CAPÍTULO 2 FORMULACIÓN DEL PROBLEMA DE CONTACTO MECÁNICO

CAPÍTULO 2 FORMULACIÓN DEL PROBLEMA DE CONTACTO MECÁNICO CAPÍULO. FORMULACIÓN DEL PROBLEMA DE CONACO CAPÍULO FORMULACIÓN DEL PROBLEMA DE CONACO..- EL MÉODO DE LOS ELEMENOS FINIOS El método de los elementos fntos se basa en la dscretzacón de n sstema real, es

Más detalles

Los vectores y sus operaciones

Los vectores y sus operaciones lasmatematcase Pedro Castro rtega Los ectores ss operacones Matemátcas I 1º achllerato Un ector qeda determnado por dos pntos, el orgen, el extremo Un ector qeda completamente defndo a traés de tres elementos:

Más detalles

Los vectores y sus operaciones

Los vectores y sus operaciones lasmatematcase Pedro Castro rtega Los ectores y ss operacones Un ector qeda determnado por dos pntos, el orgen, y el extremo Un ector qeda completamente defndo a traés de tres elementos: módlo, dreccón

Más detalles

Mecánica no lineal de la fractura

Mecánica no lineal de la fractura rograma de Doctorado en Ingenería Aeronátca Capítlo VII. Mecánca No-lneal de la fractra Introdccón. Mecánca no lneal de la fractra El factor crítco de ntensdad de tensones KIC descrbe las condcones en

Más detalles

TEMA 2 Revisión de mecánica del sólido rígido

TEMA 2 Revisión de mecánica del sólido rígido TEMA 2 Revsón de mecánca del sóldo rígdo 2.. ntroduccón SÓLDO RÍGDO SÓLDO: consderar orentacón y rotacón RÍGDO: CONDCÓN DE RGÍDEZ: - movmento: no se alteran dstancas entre puntos - se gnoran las deformacones

Más detalles

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido TEM. Dnámca I Captulo 3. Dnámca del sóldo rígdo TEM : Dnámca I Capítulo 3: Dnámca del sóldo rígdo Eje nstantáneo de rotacón Sóldo con eje fjo Momento de nerca. Teorema de Stener. Conservacón del momento

Más detalles

Los vectores y sus operaciones

Los vectores y sus operaciones lasmatematcas.e edro Castro rtega Los ectores ss operacones Un ector qeda determnado por dos pntos, el orgen, el etremo. Un ector qeda completamente defndo a traés de tres elementos: módlo, dreccón sentdo.

Más detalles

Coordenadas Curvilíneas

Coordenadas Curvilíneas Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Descripción de la deformación y de las fuerzas en un medio continuo

Descripción de la deformación y de las fuerzas en un medio continuo Descrpcón de la deformacón y de las fuerzas en un medo contnuo Mecánca del Contnuo 15 de marzo de 2010 1. Temas tratados con anterordad: Descrpcón cualtatva de un medo contnuo Hpótess del contnuo Elementos

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

R (3 coordenadas) y tres ángulos que definen la rotación del sistema de coordenadas ligada con el cuerpo

R (3 coordenadas) y tres ángulos que definen la rotación del sistema de coordenadas ligada con el cuerpo . Velocdad y Aceleracón en Marcos de Referenca en Movmento.. Cnemátca de un cuerpo rígdo... Ángulos de Euler.. Teorema de Euler..4 Marcos de Referenca en Movmentos Traslaconal y Rotaconal..5 Dervada de

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Robótica Tema 4. Modelo Cinemático Directo

Robótica Tema 4. Modelo Cinemático Directo UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de

Más detalles

Modelado de un Robot Industrial KR-5

Modelado de un Robot Industrial KR-5 RESUMEN Modelado de un Robot Industral KR-5 (1) Eduardo Hernández 1, Samuel Campos 1, Jorge Gudno 1, Janeth A. Alcalá 1 (1) Facultad de Ingenería Electromecánca, Unversdad de Colma, km 2 Carretera Manzanllo-Barra

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

UdelaR Facultad de Ciencias Curso de Física I p/lic. Física y Matemática Curso 2011 CINEMÁTICA

UdelaR Facultad de Ciencias Curso de Física I p/lic. Física y Matemática Curso 2011 CINEMÁTICA UdelaR Facultad de Cencas Curso de Físca I p/lc. Físca y Matemátca Curso 011 1.- CINEMÁTICA UNIDIMENSIONAL CINEMÁTICA Partícula- Modelo de punto materal, de dmensones desprecables. Ley horara x (t) Funcón

Más detalles

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule,

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule, Mecánca Cambo de Coordenadas En coordenadas Cartesanas estamos acostumbrados a pensar a los vectores base como versores (vectores de norma 1 o untaros) drgdos a lo largo de los correspondentes ejes, en

Más detalles

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A CI4A: ANALISIS ESTRUCTURAL Prof.: Rcardo Herrera M. Programa CI4A NÚMERO NOMBRE DE LA UNIDAD OBJETIVOS DURACIÓN 4 semanas Prncpo de los trabajos vrtuales y teoremas de Energía CONTENIDOS.. Defncón de trabajo

Más detalles

Física I Apuntes de Clase 2, Turno D Prof. Pedro Mendoza Zélis

Física I Apuntes de Clase 2, Turno D Prof. Pedro Mendoza Zélis Físca I Apuntes de Clase 2, 2018 Turno D Prof. Pedro Mendoza Zéls Isaac Newton 1643-1727 y y 1 y 2 j O Desplazamento Magntudes cnemátcas: v m r Velocdad meda r r 1 r 2 r velocdad s x1 2 r1 x1 + r2 x2 +

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

Ejercicios Resueltos de Vectores

Ejercicios Resueltos de Vectores Departamento de Matemátca y C C Coordnacón: Calculo II para Ingenería Semestre Eerccos Resueltos de Vectores Sean los vectores en IR : v,,, u,, 4, a,, y b,, 4 : a) Determne los vectores: UV y AB UV AB

Más detalles

TEORÍA DE ESTRUCTURAS

TEORÍA DE ESTRUCTURAS TEORÍA DE ESTRUCTURAS TEA 4: CÁCUO DE ESTRUCTURAS POR E ÉTODO DE A DEFORACIÓN ANGUAR DEPARTAENTO DE INGENIERÍA ECÁNICA - EKANIKA INGENIERITZA SAIA ESCUEA TÉCNICA SUPERIOR DE INGENIERÍA DE BIBAO UNIVERSIDAD

Más detalles

ECUACIONES FUNDAMENTALES

ECUACIONES FUNDAMENTALES Compendo de Cálculo structural II FCFyN UNC J.Massa-J.Gro-A.Gudc - 05 Capítulo CUACIONS FUNDAMNTALS INTRODUCCIÓN La mecánca de los medos contnuos estuda los sóldos y los fludos desde un punto de vsta macroscópco

Más detalles

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D.

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D. CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 0 Ing. Dego A. Patño G. M.Sc, Ph.D. Solucón de la Ecuacón de Estado Solucón de Ecuacones de Estado Estaconaras: Para el caso estaconaro (nvarante en el tempo),

Más detalles

Cálculo de momentos de inercia

Cálculo de momentos de inercia Cálculo de momentos de nerca Cuando el cuerpo es homogéneo y unforme el cálculo de momento de nerca es una ntegral - Dvdmos el cuerpo en elementos de masa nfntesmal dm, todos a la msma dstanca r del eje

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

I Coordenadas generalizadas Constricciones y coordenadas generalizadas Desplazamientos virtuales... 3

I Coordenadas generalizadas Constricciones y coordenadas generalizadas Desplazamientos virtuales... 3 .1 Parte I Mecánca de Lagrange Índce I 1 1. Coordenadas generalzadas 1 1.1. Constrccones y coordenadas generalzadas............. 1 1.2. Desplazamentos vrtuales...................... 3 2. Ecs. de Lagrange

Más detalles

Una Ecuación Lineal de Movimiento

Una Ecuación Lineal de Movimiento Una Ecuacón Lneal de Movmento Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una ecuacón lneal de movmento que es nvarante bajo transformacones entre

Más detalles

x i y p i h i h p i P i x p i O i

x i y p i h i h p i P i x p i O i Capítulo T NÁLISIS CINEMÁTIC DE SISTEMS MULTICUER.5 CINEMÁTIC LN Coordenadas de un punto pertenecente a un elemento lo largo de este apartado a partr de ahora se van a utlzar las coordenadas de punto de

Más detalles

La representación Denavit-Hartenberg

La representación Denavit-Hartenberg La representacón Denavt-Hartenberg José Cortés Parejo. Marzo 8 Se trata de un procedmeto sstemátco para descrbr la estructura cnemátca de una cadena artculada consttuda por artculacones con. un solo grado

Más detalles

ESTÁTICA DEL SÓLIDO RÍGIDO

ESTÁTICA DEL SÓLIDO RÍGIDO DSR-1 ESTÁTICA DEL SÓLIDO RÍGIDO DSR-2 ESTÁTICA DEL SÓLIDO RÍGIDO La estátca estuda las condcones bajo las cuales los sstemas mecáncos están en equlbro. Nos referremos úncamente a equlbro de tpo mecánco,

Más detalles

Una Ecuación Lineal de Movimiento

Una Ecuación Lineal de Movimiento Una Ecuacón Lneal de Movmento Antono A. Blatter Lcenca Creatve Commons Atrbucón 3.0 (2015) Buenos Ares Argentna Este trabajo presenta una ecuacón lneal de movmento que es nvarante bajo transformacones

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

PRACTICA 3: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO.

PRACTICA 3: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO. PRACTCA 3: ESTUDO DEL EQULBRADO ESTÁTCO Y DNÁMCO. ROTACÓN DE UN CUERPO RÍGDO ALREDEDOR DE UN EJE FJO. 1. -NTRODUCCÓN TEÓRCA El objeto de la eperenca será el equlbrar estátca dnámcamente un sstema de masas

Más detalles

ANALISIS MATRICIAL DE ESTRUCTURAS MODELO MATEMATICO ANALISIS ESTRUCTURAL FUERZAS (ESFUERZOS)

ANALISIS MATRICIAL DE ESTRUCTURAS MODELO MATEMATICO ANALISIS ESTRUCTURAL FUERZAS (ESFUERZOS) . GENERIDDES NISIS MTRICI DE ESTRCTRS Representar medante un modelo matemátco un sstema físco real. El propósto del análss es determnar la respuesta del modelo matemátco que está sometdo a un conunto de

Más detalles

Ecuación de Lagrange

Ecuación de Lagrange Capítulo 6 Ecuacón de Lagrange 6. Introduccón a las ecuacones de Lagrange La mecánca que nos presenta Lagrange en su Mécanque Analytque sgnfca un salto conceptual muy grande respecto de la formulacón Newtonana.

Más detalles

Cinemática del movimiento rotacional

Cinemática del movimiento rotacional Cnemátca del movmento rotaconal Poscón angular, θ Para un movmento crcular, la dstanca (longtud del arco) s, el rado r, y el ángulo están relaconados por: 180 s r > 0 para rotacón en el sentdo anthoraro

Más detalles

Tema 2: TEOREMAS ENERGÉTICOS

Tema 2: TEOREMAS ENERGÉTICOS ema : EORES ENERGÉICOS Supongamos que las cargas aplcadas al sóldo crecen, progresvamente, desde cero hasta su valor fnal de una manera contnua. En ese caso, el trabajo W realzado por todas las cargas

Más detalles

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García Herramentas Matemátcas para la localzacón espacal Contendo I. Justfcacón 2. Representacón de la poscón 2. Coord. Cartesanas 2.2 Coord. Polares y Clíndrcas 2.3 Coord. Esfércas 3. Representacón de la orentacón

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO ) Defncón de ector fo y ector lre. Vector de poscón de n pnto. ) Módlo de n ector. Dstnc entre dos pntos. c) Opercones áscs con ectores. d) Prodcto esclr. Expresón nlítc. e) Propeddes

Más detalles

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria).

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria). Unversdad de Sonora Dvsón de Cencas Exactas y Naturales Departamento de Físca Laboratoro de Mecánca II Práctca #3: Cálculo del momento de nerca de un cuerpo rígdo I. Objetvos. Determnar el momento de nerca

Más detalles

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

Capítulo 2: Introducción al método de los Elementos Finitos 2. CAPÍTULO 2 INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS

Capítulo 2: Introducción al método de los Elementos Finitos 2. CAPÍTULO 2 INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS Capítulo 2: Introduccón al método de los Elementos Fntos 2. CAPÍTULO 2 ITRODUCCIÓ AL MÉTODO DE LOS ELEMETOS FIITOS 2.. ITRODUCCIÓ Vrtualmente cada fenómeno en la naturaleza, sea bológco, geológco o mecánco

Más detalles

Tema 3. Sólido rígido.

Tema 3. Sólido rígido. Tema 3. Sóldo rígdo. Davd Blanco Curso 009-010 ÍNDICE Índce 1. Sóldo rígdo. Cnemátca 3 1.1. Condcón cnemátca de rgdez............................ 3 1.. Movmento de traslacón...............................

Más detalles

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud Unversdad de Pamplona Facultad de Cencas Báscas Físca para cencas de la vda y la salud AÁLISIS GRÁFICO DE DATOS EXPERIMETALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos

Más detalles

Facultad de Ciencias Básicas

Facultad de Ciencias Básicas Facultad de Cencas Báscas ANÁLISIS GRÁFICO DE DATOS EXPERIMENTALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos expermentales. Establecer un crtero para el análss de grafcas

Más detalles

V i, i 1,2,3,..., N que definen la rapidez con que ellas cambian sus posiciones y las direcciones en que ellas están

V i, i 1,2,3,..., N que definen la rapidez con que ellas cambian sus posiciones y las direcciones en que ellas están . Descrpcón del Movmento de Un Sstema de Partículas.. Sstemas con Lgaduras Holónomas.. Desplazamentos posbles, reales y vrtuales..3 úmero de grados de lbertad y Coordenadas Generalzadas..4 Velocdad y aceleracón

Más detalles

Resolución de sistemas lineales por métodos directos

Resolución de sistemas lineales por métodos directos Resolucón de sstemas lneales por métodos drectos Descomposcón LU S la matr del sstema Ax = b se expresa como producto de una matr trangular nferor, L, de una superor, U, la resolucón del msmo se reduce

Más detalles

Tipología de nudos y extremos de barra

Tipología de nudos y extremos de barra Tpología de nudos y extremos de barra Apelldos, nombre Basset Salom, Lusa (lbasset@mes.upv.es) Departamento Centro ecánca de edos Contnuos y Teoría de Estructuras Escuela Técnca Superor de Arqutectura

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

PRACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO.

PRACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO. RACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERO RÍGIDO ALREDEDOR DE UN EJE FIJO. 1. -INTRODUCCIÓN TEÓRICA El objeto de la eperenca será el equlbrar estátca y dnámcamente un

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

La cinemática estudia como ya sabemos el movimiento como una relación espacio-temporal, sin analizar cuales son las causas que lo producen.

La cinemática estudia como ya sabemos el movimiento como una relación espacio-temporal, sin analizar cuales son las causas que lo producen. Capítulo 5 DINÁMICA 5.1. Introduccón La cnemátca estuda como ya sabemos el movmento como una relacón espaco-temporal, sn analzar cuales son las causas que lo producen. La dnámca tene por objeto el estudo

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

Robótica. TEMA 2: RELACIONES ESPACIALES EN ROBÓTICA Martin Mellado

Robótica. TEMA 2: RELACIONES ESPACIALES EN ROBÓTICA Martin Mellado obótca TEMA 2: ELACIONES ESACIALES EN OBÓTICA Martn Mellado (martn@sa.v.es) Deartamento de Ingenería de Sstemas Atomátca (DISA) Facltad de Informátca de Valenca (FIV) Unversdad oltécnca de Valenca (UV)

Más detalles

Capítulo 3. Principios Generales de la Mecánica PRINCIPIOS GENERALES DE LA MECÁNICA

Capítulo 3. Principios Generales de la Mecánica PRINCIPIOS GENERALES DE LA MECÁNICA Capítulo 3. Prncpos Generales e la Mecánca CPÍTULO 3 PRINCIPIOS GENERLES DE L MECÁNIC Introuccón La mecánca e los meos contnuos tene como base una sere e prncpos o postulaos e carácter general que se suponen

Más detalles

CAPITULO 2 VALORES, VECTORES PROPIOS y SVD. Ing. Diego A. Patiño M.Sc., Ph.D.

CAPITULO 2 VALORES, VECTORES PROPIOS y SVD. Ing. Diego A. Patiño M.Sc., Ph.D. CAPITULO VALORES, VECTORES PROPIOS y SVD Ing. Dego A. Patño M.Sc., Ph.D. Valores y Vectores Propos Muchas de las transformacones que se necestan en el dseño de sstemas de control se realzan sobre vectores

Más detalles

ÁLGEBRA LINEAL. Tarea 1. Nombre: Fecha:

ÁLGEBRA LINEAL. Tarea 1. Nombre: Fecha: ÁLGEBRA LINEAL Tarea. Investque a) Defncón de vector b) Operacones de vectores c) Defncón de matr d) Operacones de matrces e) Defncón de matr traspuesta Bblografía: ÁLGEBRA LINEAL Tarea. a) Investque )

Más detalles

EL ELEMENTO FINITO APLICADO A LAS ESTRUCTURA S METALICAS

EL ELEMENTO FINITO APLICADO A LAS ESTRUCTURA S METALICAS EL ELEMENTO FINITO APLICADO A LAS ESTRUCTURA S METALICAS ING. F. JAVIER ANAYA ESTRELLA INTRODUCCION UNA REGION COMPLEJA QUE DEFINE UN CONTINUO SE DISCRETIZA EN FORMAS GEOMETRICAS SIMPLES LLAMADAS ELEMENTOS

Más detalles

Modelos teóricos para el estudio de la deformación.

Modelos teóricos para el estudio de la deformación. Ingenería Mecánca 1 (2001) 43-48 43 Modelos teórcos para el estudo de la deformacón. L. O Connor Montero Insttuto Superor Poltécnco José A. Echeverría. Undad Docente Metalúrgca Antllana de Acero. Calle

Más detalles

Capítulo 4º : Geometría diferencial

Capítulo 4º : Geometría diferencial MÉTODOS - 4. Geom. Df. de CURVAS Curso - Capítulo 4º : Geometría dferencal 4. - Curvas en el espaco a) Ecuacones y parametrzacón. Parámetro arco. Longtud. b) Tredro de Frenet o ntrínseco. Curvatura y torsón.

Más detalles

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B. TEORIA DE LOS DOS EJES

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B. TEORIA DE LOS DOS EJES Departamento e Conversón y Transporte e Energía Seccón e Mánas Eléctrcas Pro. E. Daron B. TEORIA DE LOS DOS EJES Hoja Nº III-5 DESARROLLO HISTORICO La teoría e transormacón e los os ejes, e esarrollaa

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

Capítulo V Dinámica del cuerpo rígido

Capítulo V Dinámica del cuerpo rígido Capítulo V Dnámca del cuerpo rígdo 5. Dnámca de un sstema de masas puntuales Hasta el momento hemos estudado la nteraccón de dos cuerpos puntuales. Corresponde ahora analzar lo que ocurre cuando tenemos

Más detalles

Cantidad de movimiento de una partícula: pi = mi vi Cantidad de movimiento del sistema: i i i. dt dt dt dt. Conjunto de partículas: 1 m 1

Cantidad de movimiento de una partícula: pi = mi vi Cantidad de movimiento del sistema: i i i. dt dt dt dt. Conjunto de partículas: 1 m 1 DFARN -- FFI DINÁMICA DE LOS SISTEMAS A CANTIDAD DE MOVIMIENTO Para una partícula: Cantdad de ovento de una partícula: p v Cantdad de ovento del sstea: p p v d( v F + F Para el sstea (suando para todas

Más detalles

MOVIMIENTO CIRCULAR Y MOVIMIENTO DE ROTACIÓN DE UN CUERPO RÍGIDO TOMÁS S. GRIGERA

MOVIMIENTO CIRCULAR Y MOVIMIENTO DE ROTACIÓN DE UN CUERPO RÍGIDO TOMÁS S. GRIGERA MOVIMIENTO CIRCULAR Y MOVIMIENTO DE ROTACIÓN DE UN CUERPO RÍGIDO TOMÁS S. GRIGERA Insttuto de Físca de Líqudos y Sstemas Bológcos (IFLYSIB), CONICET y Unversdad Naconal de La Plata, Calle 59 no. 789, La

Más detalles

TEMA 3.2 Mecánica del medio continuo: Análisis de deformaciones

TEMA 3.2 Mecánica del medio continuo: Análisis de deformaciones TEMA. Mecánca del medo contno: Análss de defomacones Físca Mecánca de las Constccones ... Intodccón ESTUDIO DE LOS SÓLIDOS DEFORMABLES: efectos de las feas aplcadas MÉTODO DE TRABAJO: las TENSIONES INTERIORES

Más detalles

6. ANALISIS DE COLUMNAS DE DESTILACION

6. ANALISIS DE COLUMNAS DE DESTILACION 69 6. AALISIS DE COLUMAS DE DESTILACIO 6.1. ITRODUCCIO Una colmna de destlacón smple es na ndad compesta de n conjnto de etapas de eqlbro con n solo almento y dos prodctos, denomnados destlado y fondo.

Más detalles

Mecánica Clásica Alternativa II

Mecánica Clásica Alternativa II Mecánca Clásca Alternatva II Alejandro A. Torassa Lcenca Creatve Commons Atrbucón 3.0 (2014) Buenos Ares, Argentna atorassa@gmal.com - versón 1 - Este trabajo presenta una mecánca clásca alternatva que

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller Unversdad Smón Bolívar Conversón de Energía Eléctrca Prof José anuel Aller 41 Defncones báscas En este capítulo se estuda el comportamento de los crcutos acoplados magnétcamente, fjos en el espaco El medo

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingenería Químca Undad I. Introduccón a los cálculos de Ingenería Químca

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Fuerzas ficticias Referencial uniformemente acelerado

Fuerzas ficticias Referencial uniformemente acelerado Capítulo 10 Fuerzas fctcas Las fuerzas fctcas son fuerzas que deben nclurse en la descrpcón de un sstema físco cuando la observacón se realza desde un sstema de referenca no nercal, a pesar de ello, se

Más detalles

TEOREMAS DE CIRCUITOS ELÉCTRICOS. 2.1 Teoremas de THEVENIN Y NORTON y MILLMAN. Pasivado de fuentes

TEOREMAS DE CIRCUITOS ELÉCTRICOS. 2.1 Teoremas de THEVENIN Y NORTON y MILLMAN. Pasivado de fuentes TOMS D IUITOS LTIOS TOMS D IUITOS LÉTIOS. Teoremas de VNIN Y NOTON y MILLMN Pasvado de fentes Una fente qeda pasvada cando el módlo de s magntd eléctrca se hace cero (No tene más capacdad de aportar energía

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Y ahora observamos que lo que está entre paréntesis es la derivada de un producto, de modo que

Y ahora observamos que lo que está entre paréntesis es la derivada de un producto, de modo que Estas son ms notas para las clases del curso Mecánca Raconal (62.11) en la Facultad de Ingenería-UBA. Están aún en proceso de ser completadas, no tenen carácter de texto acabado, por el contraro seguramente

Más detalles

Tema 3-Sistemas de partículas

Tema 3-Sistemas de partículas Tema 3-Sstemas de partículas Momento lneal y colsones Momento lneal de un partícula Segunda ley de Newton dp F dt p mv Impulso I tb ta Fdt Teorema del mpulso I p B p A Centro de masas 1 r M m r con M m

Más detalles

Apuntes de Mecánica Newtoniana: Sistemas de Partículas, Cinemática y Dinámica del

Apuntes de Mecánica Newtoniana: Sistemas de Partículas, Cinemática y Dinámica del Apuntes de Mecánca Newtonana: Sstemas de Partículas, Cnemátca y Dnámca del Rígdo. Arel Fernández Danel Marta Insttuto de Físca - Facultad de Ingenería - Unversdad de la Repúblca Índce general Contendos

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO N FEH DURION 3 11 3 JULIO 26 DE 2013 9

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

SOLUCIONARIO. UNIDAD 6: Números complejos. . Puede verse en el dibujo. soluciones. Por tanto, no hay puntos de corte. x y ACTIVIDADES-PÁG.

SOLUCIONARIO. UNIDAD 6: Números complejos. . Puede verse en el dibujo. soluciones. Por tanto, no hay puntos de corte. x y ACTIVIDADES-PÁG. MatemátcasI UNIDAD : Números complejos ACTIVIDADES-PÁG.. Las solcones de las ecacones dadas son: a) x x + = 0 x y x b) x + x = 0 x x y x 0. El vector resltante de grar 90º el vector v, es el vector,. Pede

Más detalles

TEMA 0: FÍSICA DE 2º DE BACHILLERATO. CONTENIDOS PREVIOS DE MATEMÁTICAS.

TEMA 0: FÍSICA DE 2º DE BACHILLERATO. CONTENIDOS PREVIOS DE MATEMÁTICAS. TEMA 0: FÍSICA DE º DE BACHILLERATO. CONTENIDOS PREVIOS DE MATEMÁTICAS.. TRIGONOMETRÍA.. Raones tgonométcas de n ánglo agdo.. Raones tgonométcas de n ánglo calqea.. Relacones ente las aones tgonométcas.4.

Más detalles

Componentes de un sistema de visión. Capítulo 1. Formación de imagen. Formación de imagen. Modelo de lente fina

Componentes de un sistema de visión. Capítulo 1. Formación de imagen. Formación de imagen. Modelo de lente fina oponentes de n sstea de són apítlo. Foracón de agen Ls Baela. Vsón por optador. p.2/9 Ls Baela. Vsón por optador. p.3/9 Foracón de agen Índce: Modelo de lente fna Modelo de proyeccón perspecta Modelo afín

Más detalles

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria.

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria. Guía de Laboratoro de Físca Mecánca. ITM, Insttucón unverstara. Práctca 0. Colsones. Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla corta,

Más detalles

Energía potencial y conservación de la energía

Energía potencial y conservación de la energía Energía potencal y conservacón de la energía Mecánca y Fludos Proa. Franco Ortz 1 Contendo Energía potencal Fuerzas conservatvas y no conservatvas Fuerzas conservatvas y energía potencal Conservacón de

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

17/02/2015. Ángel Serrano Sánchez de León

17/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León 1 Índce Introduccón Varables estadístcas Dstrbucones esde frecuencas c Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca,

Más detalles

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño EDO: Ecuacón Dferencal Ordnara Solucones numércas Jorge Eduardo Ortz Trvño Organzacón general Errores en los cálculos numércos Raíces de ecuacones no-lneales Sstemas de ecuacones lneales Interpolacón ajuste

Más detalles

NÚMEROS COMPLEJOS. [1.1] Expresar en forma binómica: z 1 3i 1 3i. Solución: Teniendo en cuenta que 1 3i. [1.2] Calcular: a) 3 4 NÚMEROS COMPLEJOS

NÚMEROS COMPLEJOS. [1.1] Expresar en forma binómica: z 1 3i 1 3i. Solución: Teniendo en cuenta que 1 3i. [1.2] Calcular: a) 3 4 NÚMEROS COMPLEJOS NÚMEROS COMPLEJOS NÚMEROS COMPLEJOS 9 9 [1.1] Expresar en forma bnómca: z 1 1 Tenendo en cuenta que 1 / 1 / 9 9 9 9 9 9 1 1 / / z 9 9 9 10 10 (cos sen ) (cos( ) sen( )) cos ( 1) 10 [1.] Calcular: z 1 a)

Más detalles