Los vectores y sus operaciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Los vectores y sus operaciones"

Transcripción

1 lasmatematcas.e edro Castro rtega Los ectores ss operacones Un ector qeda determnado por dos pntos, el orgen, el etremo. Un ector qeda completamente defndo a traés de tres elementos: módlo, dreccón sentdo. Módlo de n ector es la dstanca entre. Se desgna ponendo el ector entre arras:. Dgamos qe el módlo es a n ector lo qe el alor asolto es a n número real. Dreccón de n ector es la dreccón de la recta qe lo contene o en la qe se encentra el ector, así como la de todas ss paralelas. Sentdo. Cada dreccón admte, natralmente, dos sentdos opestos. En la fgra de arra el ector tene sentdo opesto qe el ector. Dos ectores son gales cando tenen el msmo módlo, la msma dreccón el msmo sentdo. Cando qeremos hacer so de n ector, podemos tomar, en s lgar, calqera de los qe son gales a él. Dos ectores gales tamén se llaman eqalentes. l connto formado por todos los ectores gales o eqalentes se le llama ector lre se selen desgnar así:, entonces, ' ', '' '',, w,,, etcétera. Es decr, s, ' ', '' '',, son todos ectores gales, es n ector lre. S decmos qe estamos tlzando el ector, lo qe qeremos decr es qe estamos tlzando calqera de los del connto anteror, lo llamaremos representante de la clase. Ha dos tpos de magntdes físcas. Unas son las magntdes escalares, en las qe para ndcar s alor asta con ndcar n número s ndad correspondente (la masa, el tempo, el olmen, la temperatra, la densdad, etc.) Sn emargo, otras son magntdes ectorales, en las qe no asta ndcar n número (módlo) na ndad, sno qe tamén hará qe dar nformacón sore en qé dreccón an, en qé sentdo (elocdad, ferza, aceleracón, etc.) rodcto de n número por n ector Dado n ector n número real k, k msmo sentdo qe ; s k 0, k es la sgente: k k. Dcho de otra manera, el módlo de k eces el de. sí por eemplo, el sentdo del ector eces el módlo de. 3 es otro ector qe tene la msma dreccón qe. S k 0, k tene el tenen sentdos opestos. demás, la relacón entre los módlos de de k es es opesto al de, s módlo es tres k 3 Sma, resta comnacón lneal de ectores ara smar dos ectores, se procede del sgente modo: se stúa a contnacón de, de manera qe el orgen de concda con el etremo de. La sma es el ector co orgen es el de etremo el de. ara restar dos ectores de. :,, se le sma a, el opesto S colocamos con orgen común completamos n paralelogramo, entonces la dagonal co orgen es el de es el ector sma,. La dagonal qe a del etremo de al etremo de es la resta. Dados dos ectores, dos números reales a, el ector a se dce qe es na comnacón lneal de. or eemplo, 3, 5 7, son comnacones lneales de. Vectores ágna 1

2 lasmatematcas.e edro Castro rtega Coordenadas de n ector Un mportante resltado es qe, dados dos ectores,, con dstntas dreccones, calqer ector se pede poner como comnacón lneal de de. Es decr, esten números reales a tales qe a. demás la comnacón lneal anteror es únca, o lo qe es lo msmo, sólo esten dos números reales a para los qe es certa la galdad anteror. ase coordenadas Se llama ase del connto de los ectores del plano a dos ectores calesqera, este caso la ase se denotará así: e con dstntas dreccones. En. S los dos ectores de la ase son perpendclares se dce qe forman na ase ortogonal, s además, amos son ntaros o de módlo 1, se drá qe forman na ase ortonormal. Tal como hemos sto anterormente, calqer ector del plano se podrá poner como comnacón lneal de los de forma únca, es decr, esten números reales a tales qe a. es, ectores de na ase en, a los números a se les llama coordenadas de en la ase en a,. peracones con coordenadas Spongamos qe tenen, respecto de na ase escrremos, para arear, a,, las sgentes coordenadas:,,, Entonces: Las coordenadas del ector sma,, se otenen smando las coordenadas de con las de : k Dado n número real, las coordenadas del ector mltplcando por k las coordenadas de : a,, k o. (prodcto de n número por n ector), se otenen,, k k k k Dados números reales, las coordenadas de na comnacón lneal de aplcando lo qe se ha sto en los dos pntos anterores: Eemplos,,,,, a a a a a a 1. Spongamos qe, 3 5,4 5 1, a, se otenen son dos ectores respecto de na ase. Calclar las coordenadas de, 3. Las coordenadas de son:, 3 5, 4 5, 34 3,1. Las coordenadas de 5 son: 5, 3 5, 53 10,15. Las coordenadas de 3. Las coordenadas de, w respecto de na ase se cmpla qe w a. son: 3, 3 5, 4 6, 9 10,8 6 10, 9 8 4, 1. son 1, 1,,3 w 5,15. Hallar a para qe Lo qe haremos es epresar la galdad anteror ssttendo los ectores por ss coordenadas. Entonces: 5,15 a1, 1,3 a, a,3 a, a 3. Igalando las prmeras coordenadas entre a5 sí, las segndas entre sí se pede plantear el sstema a Resoléndolo tenemos qe a 3, 4. Vectores ágna

3 lasmatematcas.e edro Castro rtega ntos ectores en el plano Sstema de referenca en el plano Los ectores son de gran tldad para la geometría. Vamos a constrr, a partr de ellos, n sstema de referenca para epresar analítcamente los pntos. En el tema sgente tamén lo tlzaremos para epresar las fgras planas. Un sstema de referenca para el plano consste en el connto R, formado por n pnto fo, llamado orgen, por na ase para los ectores. Hatalmente se toma na ase ortonormal (dos ectores ntaros perpendclares). En este caso se hala del sstema de referenca hatal tenemos qe, Entonces, a cada pnto del plano, se le asoca n ector fo, llamado ector de poscón del pnto. Como es na ase el ector de poscón tendrá nas coordenadas respecto de la ase: 1,0 0,1,0 0,, a a a a Las coordenadas del ector de poscón son las msmas qe las del pnto fgra sgente la constrccón anteror). 1,0 : a, a, 0,1 (éase en la a, a Vector drector Los ectores sren para marcar las dreccones de las rectas. Un ector paralelo a na recta se dce qe es n ector drector o n ector de dreccón de ella. Cada recta tene pes nfntos ectores drectores. Dada na recta r del plano, cada pnto so tene s ector de poscón correspondente. or eemplo, a n pnto de la recta le corresponde s ector de poscón, a otro pnto de la recta le corresponde s ector de poscón, etcétera. El ector qe ne el pnto con el pnto,, sería n ector drector de r la recta (er fgra de la derecha). sérese qe el ector es gal al ector de poscón del pnto menos el ector de poscón del pnto :. r Coordenadas del ector qe ne dos pntos La galdad anteror nos sre para hallar las coordenadas del ector qe ne dos pntos. Como son,,. or tanto: ectores de poscón deen de tener amos nas coordenadas: a a, Vectores ágna 3,,, a a a a 1 sí pes las coordenadas del ector se otenen restándole a las coordenadas de de ) las coordenadas de (qe son las msmas qe las de ):,,,, a a a a 1 (qe son las msmas qe las sí por eemplo, el ector qe ne el pnto 3, 4 con el pnto Q 6, es 6 3, 4 3,6 Tamén podemos hallar el ector qe ne Q con : Q 3 6, 4 3, 6. Q.

4 lasmatematcas.e edro Castro rtega Condcón para qe tres pntos estén alneados Ya hemos sto qe s son dos pntos, el ector 1 a1, a de la recta qe los contene. S está alneado con C c a, c a C c, c 1 a, a, C c, c 1 es n ector drector, pertenecerá tamén a la recta, ocrrrá qe tamén serán ectores drectores de la recta, por tanto, paralelos a, lo qe sgnfca qe los tres ectores han de ser proporconales, con lo qe ss coordenadas deen de formar na proporcón: a a k C c a c a 1 1 ; a a k ' C c c 1 1 Un eercco típco donde se tlza lo anteror es el sgente: aergar el alor de m Q 5, R 6, m estén alneados. or lo qe hemos sto Q 5 1, 4 4, 6 R 6 1, m 4 5, m 4 por tanto, ss coordenadas proporconales: nto medo de n segmento para qe los pntos 1,4 harán de ser paralelos, 5 m m 4 m 4 m odemos tlzar tamén los ectores para hallar el pnto medo de n segmento. Dado n segmento de etremos,, tenemos qe es la dagonal del paralelogramo. Como las dagonales a a 1, de n paralelogramo se cortan en s pnto medo M, tenemos (er fgra de la derecha): 1 1 1, a, a M a a a a 1, M, or tanto, las coordenadas del pnto medo del segmento de 1 etremos a1, a 1, son a, a M 1, Smétrco de n pnto respecto a otro S n pnto X, es el smétrco de otro pnto Y, respecto de n pnto, el pnto medo del segmento XY. or tanto: 1 1 m1 1 1 m1, m, m Despeando 1 se otenen las coordenadas de X en fncón de las de Y las de M. or eemplo, s hemos de hallar el smétrco del pnto 6,9 respecto del pnto 4,3 llamar al smétrco X,. Entonces ,3, del pnto respecto del pnto es X 14, 3. Y M M m m, entonces M es, lo qe hacemos es or tanto, el smétrco 3 3 X Vectores ágna 4

5 lasmatematcas.e edro Castro rtega rodcto escalar de ectores Se llama prodcto escalar de dos ectores al resltado de mltplcar el módlo de, por el módlo de por el coseno del ánglo qe forman. S llamamos al ánglo qe forman,, tenemos: Como, cos son números, entonces, cos pes escalar sgnfca número, en contraposcón a ectoral, qe sgnfca ector., es decr, tamén es n número. De ahí el nomre de prodcto escalar, ntes de segr dgamos qe el ector nlo o ector cero, 0, es n ector co orgen etremo concden, por tanto, s módlo es cero. Carece de dreccón. es en, s no de los dos ectores o es 0, entonces, oamente, el prodcto escalar es 0. S son amos ectores no nlos, para qe el prodcto escalar sea 0 es necesaro qe cos 0, es decr, qe sean perpendclares:. or tanto, la condcón necesara sfcente para qe el prodcto escalar de dos ectores no nlos sea gal a es qe los ectores sean perpendclares. Esta es la propedad fndamental del prodcto escalar. S el ánglo, 0 0 es agdo, entonces cos 0, por tanto, es otso, entonces cos 0, en este caso, 0 0. Sn emargo s el ánglo, ropedades del prodcto escalar No son dfícles de demostrar, tlzando la defncón de prodcto escalar, las sgentes propedades elementales. Conmtata: socata homogénea:, Dstrta: w w osta: 0, 0 El prodcto escalar la proeccón de ectores Llamemos a la proeccón del ector sore el ector (er fgra). En el tránglo rectánglo se cmple qe cos cos. Entonces cos, hemos demostrado la sgente propedad: El prodcto escalar de dos ectores es gal al módlo de no de ellos por la proeccón del otro sore él. or tanto la proeccón del ector sore el ector se otene despeando:. Vectores ágna 5

6 lasmatematcas.e edro Castro rtega Epresón analítca del prodcto escalar en ases ortonormales S tomamos R, n sstema de referenca ortonormal, es decr, dos ectores ntaros (de módlo no) perpendclares (ortogonales), tenemos: es na ase ortonormal formada por cos0º 1111 ; cos0º 1111 ; cos90º demás, s las coordenadas de dos ectores Demostracón:, Como Eemplo respecto de la ase 1 1, entonces 1 1. or tanto:, son,, Sean los ectores, 3, 5, wk,7 or n lado,. Calclemos, 3 5, or otro lado, con lo qe k el alor de k w 5,4 k,7 5k 47 5k 8. Como w, entonces 8 5 para qe w. partr de ahora en el tema sgente traaaremos sempre con sstemas de referenca ortonormales. w 0, entonces, es decr 5k 8 0, Módlo de n ector Las coordenadas de n ector, son las meddas de los catetos de n tránglo rectánglo ca hpotensa es el módlo de tanto (er fgra de la derecha): Vamos a dedcr esta galdad a partr del prodcto escalar:. or, cos 0º,, Ánglo de dos ectores Spongamos qe es el ánglo de dos ectores :, S las coordenadas de estos ectores son,,,. or tanto: cos Eemplo Dados los ectores,3 5, , ss módlos son:. Entonces, despeando: cos., entonces 1 1,, , 5 6. demás cos 0,365 68, 6º, qe es el ánglo qe forman los ectores Vectores ágna 6

Los vectores y sus operaciones

Los vectores y sus operaciones lasmatematcase Pedro Castro rtega Los ectores y ss operacones Un ector qeda determnado por dos pntos, el orgen, y el extremo Un ector qeda completamente defndo a traés de tres elementos: módlo, dreccón

Más detalles

TEMA 7 VECTORES MATEMÁTICAS 1

TEMA 7 VECTORES MATEMÁTICAS 1 TEMA 7 VECTORES MATEMÁTICAS TEMA 7 VECTORES 7. LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un ector es n segmento orientado. Un ector AB qeda determinado por dos pntos, origen A y extremo B. Elementos de

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v.

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v. Estdios J.Concha ( fndado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Jaier Concha y Ramiro Froilán TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS

Más detalles

VECTORES EN EL PLANO.

VECTORES EN EL PLANO. VECTORES EN EL PLNO. Introdcción: Magnitdes escalares ectoriales. Ha ciertas magnitdes físicas, tales como la masa, la presión, el olmen, la energía, la temperatra, etc., qe qedan completamente definidas

Más detalles

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u DPTO DE MATEMÁTICAS T5: VECTORES - 1 1.- VECTORES EN EL PLANO TEMA 7: VECTORES Hay magnitdes como ferza, desplazamiento, elocidad, qe no qedan completamente definidas por n número. Por ejemplo, no es sficiente

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES el blog de mate de aida MI: apntes de vectores y rectas pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas y el eje vertical se llama eje de ordenadas. El pnto

Más detalles

Cálculo vectorial Unidad II 2.2. La geometría de las operaciones vectoriales M.C. Ángel León 2.3. Operaciones con vectores y sus propiedades

Cálculo vectorial Unidad II 2.2. La geometría de las operaciones vectoriales M.C. Ángel León 2.3. Operaciones con vectores y sus propiedades Cálclo ectoral Undad II.. La geometría de las operacones ectorales M.C. Ángel León.. Operacones con ectores y ss propedades Undad II - Álgebra de ectores.. La geometría de las operacones ectorales.. Operacones

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169 TEMA. VECTORES SOLUCIONES DE LAS ACTIVIDADES Págs. 58 a 6 Página 58. Obtenemos los sigientes ectores: + Página 6. La representación es la sigiente: x - - Página 5. ( 0) (0 ) x ( ) a + b a / b y ( 6) a

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Ejercicios Resueltos de Vectores

Ejercicios Resueltos de Vectores Departamento de Matemátca y C C Coordnacón: Calculo II para Ingenería Semestre Eerccos Resueltos de Vectores Sean los vectores en IR : v,,, u,, 4, a,, y b,, 4 : a) Determne los vectores: UV y AB UV AB

Más detalles

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v.

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v. COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatra: FÍSICA 10º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE VECTORES VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO N FEH DURION 3 11 3 JULIO 26 DE 2013 9

Más detalles

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3 ALGEBRA Y GEOMETRÍA VECTORIAL EN R Y EN R Los ectores se peden representar mediante segmentos de recta dirigidos, o flechas, en R o en R. Se denotan por letras minúsclas negritas Pnto inicial del ector

Más detalles

TEMA 5. VECTORES EN EL ESPACIO

TEMA 5. VECTORES EN EL ESPACIO TEMA 5. VECTORES EN EL ESPACIO ÍNDICE 1. INTRODUCCIÓN... 2 2. VECTORES EN EL ESPACIO.... 3 2.1. CONDICIONES INICIALES.... 3 2.2. PRODUCTO DE UN VECTOR POR UN NÚMERO.... 3 2.3. VECTORES UNITARIOS.... 3

Más detalles

TEOREMAS DE CIRCUITOS ELÉCTRICOS. 2.1 Teoremas de THEVENIN Y NORTON y MILLMAN. Pasivado de fuentes

TEOREMAS DE CIRCUITOS ELÉCTRICOS. 2.1 Teoremas de THEVENIN Y NORTON y MILLMAN. Pasivado de fuentes TOMS D IUITOS LTIOS TOMS D IUITOS LÉTIOS. Teoremas de VNIN Y NOTON y MILLMN Pasvado de fentes Una fente qeda pasvada cando el módlo de s magntd eléctrca se hace cero (No tene más capacdad de aportar energía

Más detalles

Resuelve. Unidad 7. Vectores. BACHILLERATO Matemáticas I. Descomposición de una fuerza. Página 171

Resuelve. Unidad 7. Vectores. BACHILLERATO Matemáticas I. Descomposición de una fuerza. Página 171 Resele Página 171 Descomposición de na ferza I. Una cerda de 10 m de larga celga de dos escarpias, A y B, sitadas a la misma altra y a m de distancia entre sí. De ella se celga na pesa de 0 kg de masa

Más detalles

6. ANALISIS DE COLUMNAS DE DESTILACION

6. ANALISIS DE COLUMNAS DE DESTILACION 69 6. AALISIS DE COLUMAS DE DESTILACIO 6.1. ITRODUCCIO Una colmna de destlacón smple es na ndad compesta de n conjnto de etapas de eqlbro con n solo almento y dos prodctos, denomnados destlado y fondo.

Más detalles

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar.

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar. +34 9 76 056 - Fa: +34 9 78 477 Vectores: Vamos a distingir dos tipos de magnitdes: Magnitdes escalares, son aqellas qe qedan definidas por na sola cantidad qe denominaremos valor del escalar. Ej: Si decimos

Más detalles

Una viga se encuentra sometida a Flexión Pura cuando el momento Flector es la única fuerza al interior de la sección.

Una viga se encuentra sometida a Flexión Pura cuando el momento Flector es la única fuerza al interior de la sección. 3. FLEXÓ E VGS RECTS 3.1.- Conceptos Báscos Una ga se encentra sometda a Fleón Pra cando el momento Flector es la únca fera al nteror de la seccón. Ejemplo: Una ga smplemente apoada de l L solctada por

Más detalles

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E IES Pade Poeda (Gadx) Matemátcas II UNIDAD 8: VECTORES EN EL ESPACIO.. VECTORES FIJOS EN EL ESPACIO. Sea E el connto de pntos del espaco qe notaemos po A B C K Dados dos pntos A B de E se llama ecto fo

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1 TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II º Bach. TEMA 5 VECTORES EN EL ESPACIO 5. LOS VECTORES Y SUS OPERACIONES DEINICIÓN Un ector es n segmento orientado. Un ector extremo B. Elementos de n ector:

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por AB o por. El pnto A es el origen y el pnto B

Más detalles

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR 8 REPSO POO OJETIVO IDENTIFICR LOS ELEMENTOS DE UN VECTOR Nombre: Crso: Fecha: Vector: segmento orientado determinado por dos pntos: (a, a ), origen del ector, y (b, b ), extremo del ector. Coordenadas

Más detalles

2.- DEFINICIÓN Y CLASIFICACIÓN DE LOS ERRORES EXPERIMENTALES

2.- DEFINICIÓN Y CLASIFICACIÓN DE LOS ERRORES EXPERIMENTALES TEORÍA DE LA MEDIDA. - ITRODUCCIÓ Todas las meddas enen afectadas de na certa e netable mprecsón, debda a dferentes casas. En el caso de meddas drectas peden deberse a mperfeccones del aparato de medda,

Más detalles

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE 2012 7 UNIDDES

Más detalles

TEMA 13 Vectores en el plano *

TEMA 13 Vectores en el plano * TEMA Vectores en el plano * Definiciones Hay magnitudes físicas como la temperatura, que se puede dar eclusiamente mediante un número, por ejemplo podemos decir que la temperatura es de º C, o la altura

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

CAPÍTULO 2 FORMULACIÓN DEL PROBLEMA DE CONTACTO MECÁNICO

CAPÍTULO 2 FORMULACIÓN DEL PROBLEMA DE CONTACTO MECÁNICO CAPÍULO. FORMULACIÓN DEL PROBLEMA DE CONACO CAPÍULO FORMULACIÓN DEL PROBLEMA DE CONACO..- EL MÉODO DE LOS ELEMENOS FINIOS El método de los elementos fntos se basa en la dscretzacón de n sstema real, es

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

Robótica Tema 4. Modelo Cinemático Directo

Robótica Tema 4. Modelo Cinemático Directo UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de

Más detalles

Matemáticas II. 2º Bachillerato. Capítulo 4: Geometría en el espacio Vectores LibrosMareaVerde.tk

Matemáticas II. 2º Bachillerato. Capítulo 4: Geometría en el espacio Vectores LibrosMareaVerde.tk Mtemátcs II. º Bchllerto. Cpítlo : Geometrí en el espco Vectores LrosMreVerde.t.pntesmreerde.org.es Atores: Letc González Pscl y Álro Vldés Menéndez Resor: Mlgros Lts Tods ls mágenes hn sdo creds por los

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

GEOMETRÍA ANALÍTICA AB CD CD AB CD

GEOMETRÍA ANALÍTICA AB CD CD AB CD GEOMETRÍA ANALÍTICA.- Vectores..- Vectores fijos en el plano Llamaremos ector fijo a todo par ordenado de pntos del plano. Si los pntos son A y B conendremos en representar por AB el ector fijo qe determinan;

Más detalles

TEMA 11: VECTORES EN EL ESPACIO

TEMA 11: VECTORES EN EL ESPACIO Matemáticas º Bachillerato. Geometría Analítica TEMA : VECTORES EN EL ESPACIO. VECTORES EN EL ESPACIO OPERACIONES CON VECTORES. BASE DEL CONJUNTO DE VECTORES DEL ESPACIO. PRODUCTO ESCALAR DE DOS VECTORES

Más detalles

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE FILIL - REQUIP VECTORES INGENIERO: PERCY LFREDO GRMONTE LIMCHE En el tem nteror hímos menondo qe ls mgntdes físs según s ntrle peden ser lsfds omo eslres o etorles MGNITUD ESCLR: Es qell mgntd qe qed en

Más detalles

Tema 6. Circuitos eléctricos

Tema 6. Circuitos eléctricos Tema 6. Crctos eléctrcos. Crcto eléctrco. Magntdes eléctrcas 3. Elementos eléctrcos 4. Leyes de los crctos eléctrcos 5. Asocacón de elementos 6. Corrente contna en perodo estaconaro 7. Fncones senodales

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

TEMA 1. MAGNITUDES FÍSICAS

TEMA 1. MAGNITUDES FÍSICAS TEMA 1. MAGNITUDES FÍSICAS 1. Definición de magnitd física 2. Magnitdes físicas fndamentales deriadas. Sistema Internacional de Unidades (SI) 3. Cambio de nidades: Método de las fracciones nitarias 4.

Más detalles

Ecuación de Lagrange

Ecuación de Lagrange Capítulo 6 Ecuacón de Lagrange 6. Introduccón a las ecuacones de Lagrange La mecánca que nos presenta Lagrange en su Mécanque Analytque sgnfca un salto conceptual muy grande respecto de la formulacón Newtonana.

Más detalles

PRACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO.

PRACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO. RACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERO RÍGIDO ALREDEDOR DE UN EJE FIJO. 1. -INTRODUCCIÓN TEÓRICA El objeto de la eperenca será el equlbrar estátca y dnámcamente un

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero.

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero. RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: Dirección de un vector: La dirección del vector es la dirección

Más detalles

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES CAÍTULO : VARIABLES ALEATORIAS SUS DISTRIBUCIONES En este capítulo el alumno debe abordar el conocmento de un mportante concepto el de VARIABLE ALEATORIA tpos de varables aleatoras cómo se dstrbue la funcón

Más detalles

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR:

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Componentes de un vector Si las coordenadas de los puntos A y B son ELEMENTOS DE UN VECTOR:

Más detalles

MMII_CV_c4: Extensiones del modelo básico: Varias variables independientes y fronteras móviles

MMII_CV_c4: Extensiones del modelo básico: Varias variables independientes y fronteras móviles MMII_V_c4: Etensones del modelo básco: Varas varables ndeendentes ronteras móvles Gón: En esta clase se aborda la etensón del modelo básco (MB) ara nclr varas varables ndeendentes, anqe nos centraremos

Más detalles

TEMA 1: VECTORES EN EL PLANO

TEMA 1: VECTORES EN EL PLANO Profesora: María José Sánchez Qeedo TEMA 1: VECTORES EN EL PLANO El estdio del Análisis Vectorial se remonta al siglo XVII, cando el ingeniero holandés Steen (1548-160), formló el principio del paralelogramo

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

VECTORES. En este apartado vamos a trabajar exclusivamente con los vectores en el espacio a los que vamos a llamar F 3.

VECTORES. En este apartado vamos a trabajar exclusivamente con los vectores en el espacio a los que vamos a llamar F 3. Edcaga.com VECTORES En este apatado amos a tabaa eclsamente con los ectoes en el espaco a los qe amos a llama F. VECTOR FIJO Lo pmeo tendemos qe sabe qe es n ecto. Así qe llamamos ecto fo AB a n ecto qe

Más detalles

La representación Denavit-Hartenberg

La representación Denavit-Hartenberg La representacón Denavt-Hartenberg José Cortés Parejo. Marzo 8 Se trata de un procedmeto sstemátco para descrbr la estructura cnemátca de una cadena artculada consttuda por artculacones con. un solo grado

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

. Algebraicamente se obtienen diferentes ecuaciones: v u Op v y es otro vector con el mismo módulo, la

. Algebraicamente se obtienen diferentes ecuaciones: v u Op v y es otro vector con el mismo módulo, la 6 CAPÍTULO : GEOMETRÍA EN EL ESPACIO - VECTORES. GEOMETRÍA DEL PLANO A lo largo de los crsos pasados estdamos la geometría del plao co los sgetes elemetos fdametales: Pto: Poscó e el plao qe por coeo defmos

Más detalles

3. Funciones analíticas

3. Funciones analíticas 3. Fncones analítcas 1 Derada de na ncón compleja Teorema del alor ntermedo para ncones reales Sea contna para a < < b a b entonces toma todos los alores entre a b en el nteralo a < ξ < b Teorema del alor

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Físca General 1 Proyecto PMME - Curso 2007 Insttuto de Físca Facultad de Ingenería UdelaR ANÁLISIS E INFLUENCIA DE DISTINTOS PARÁMETROS EN EL ESTUDIO DE LA ESTÁTICA DE CUERPOS RÍGIDOS. Sebastán Bugna,

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 Rcardo Ramírez Facultad de Físca, Pontfca Unversdad Católca, Chle 1er. Semestre 2008 Corrente eléctrca CORRIENTE ELECTRICA Corrente eléctrca mplca carga en movmento.

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por

12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por . Vectores 665. Vectores Algnos de los factores qe medimos están determinados simplemente por ss magnitdes. Por ejemplo, para registrar la masa, la longitd o el tiempo sólo necesitamos escribir n número

Más detalles

(p +Q 222 P +Q P +Q )

(p +Q 222 P +Q P +Q ) TEMA S.- PUNTOS. RECTAS Y PLANOS EN EL ESPACO. TEMA 5.- PUNTOS, RECTAS Y PLANOS EN EL ESPACO..- PUNTOS. Sstema de referenca: Un sstema de referenca en el espaco 93 consste en un conjunto formado por un

Más detalles

CAPÍTULO I ÁLGEBRA TENSORIAL

CAPÍTULO I ÁLGEBRA TENSORIAL Sección I.1.a) álgebra ectorial intrínseca 10/09/2011 CAPÍTULO I ÁLGEBRA TENSORIAL 1.1 Repaso de álgebra ectorial intrínseca 1.2 Álgebra ectorial en componentes ortonormales y generales: notación indicial.

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO (,4,3) MATEMÁTICAS II º Bachillerato Alfonso Gonále IES Fernando de Mena Dpto. de Matemáticas I. DEFINICIONES 1 Módlo: Indica la intensidad, iene dado por la longitd de la flecha

Más detalles

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E IES Pade Poeda (Gadx Matemátcas II UNIDAD 8 VECTORES EN EL ESPACIO VECTORES FIJOS EN EL ESPACIO Sea E el connto de pntos del espaco qe notaemos po A B C K Dados dos pntos A B de E se llama ecto fo de ogen

Más detalles

Segunda Parte: Producto escalar de vectores

Segunda Parte: Producto escalar de vectores Segnda Parte: Prodcto escalar de ectores Constrcciones ectores En el diseño del techo de na galería se emlea n semicílindro, qe se sostiene a traés de igas qe se cran en distintos ntos sobre el techo.

Más detalles

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica? Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento

Más detalles

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido TEM. Dnámca I Captulo 3. Dnámca del sóldo rígdo TEM : Dnámca I Capítulo 3: Dnámca del sóldo rígdo Eje nstantáneo de rotacón Sóldo con eje fjo Momento de nerca. Teorema de Stener. Conservacón del momento

Más detalles

4. Espacios Vectoriales

4. Espacios Vectoriales 4. Espacios Vectoriales 4.. Definición de espacio, sbespacio ectorial y ss propiedades n ector es na magnitd qe consta de módlo, dirección y sentido. Algnos sin embargo; más teóricos, explicarían qe n

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio.

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio. 1 Movmento Vbratoro Tema 8.- Ondas, Sondo y Luz Movmento Peródco Un móvl posee un movmento peródco cuando en ntervalos de tempo guales pasa por el msmo punto del espaco sempre con las msmas característcas

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido ALGEBRA LINEAL. º GRADO DE ECONOMÍA CURSO 0-04 Prof. Pedro Ortega Plido I. ESPACIOS VECTORIALES I.. Vectores. Operaciones con vectores I.. Espacio vectorial. Propiedades I.. Sbespacio vectorial. Operaciones

Más detalles

Coordenadas Curvilíneas

Coordenadas Curvilíneas Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

ACTIVIDADES INICIALES. b) ( 1, 6) d) (0, 3) (0, 1) (0, 2) f) ( 8, 4) (24, 6) (16, 2) h) ( 5, 3) (2, 2) ( 3, 1) EJERCICIOS PROPUESTOS

ACTIVIDADES INICIALES. b) ( 1, 6) d) (0, 3) (0, 1) (0, 2) f) ( 8, 4) (24, 6) (16, 2) h) ( 5, 3) (2, 2) ( 3, 1) EJERCICIOS PROPUESTOS Solcionario 4 Vectores TIVIDDES INIILES 4.I. Efectúa las sigientes operaciones: a) (5, 3) (, 4) c) 5(3, ) (, 4) e) (7, 4) (, ) g) (3, 6) 3 (, ) b) (6, 4) (7, ) d) 3(0, ) (0, 3) f) 4(, ) 6(4, ) h) (5, 3)

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 4 METROLOGÍA Y CALIDAD. CALIBRACIÓN DE UN PIE DE REY Metrología y Caldad. Calbracón de n pe de rey. INDICE 1. OBJETIVOS

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta.

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta. Rentas Fnanceras. Renta fracconada 6. RETA FRACCIOADA Una renta fracconada se caracterza porque su frecuenca no concde con la frecuenca de varacón del térmno de dcha renta. Las característcas de la renta

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO (,4,3) MATEMÁTICAS II º Bachillerato Alfonso Gonále IES Fernando de Mena Dpto. de Matemáticas I. DEFINICIONES Módlo: Indica la intensidad, iene dado por la longitd de la flecha

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x Regla de la cadena Una de las reglas qe en el cálclo de na variable reslta my útil es la regla de la cadena. Dicho grosso modo, esta regla sirve para derivar na composición de fnciones, esto es, na fnción

Más detalles

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2 34 CAPÍTULO 3 Vectores en R R 3 ais sqare a=ais; ais([min(a([1,3])),ma(a([,4])),min(a([1,3])),ma(a([,4]))]) % hold off Una ez qe se haa escrito la fnción en n archio con nombre lincomb.m, dé el comando

Más detalles

Tema 10 Ejercicios resueltos

Tema 10 Ejercicios resueltos Tema 1 Ejercicios reseltos 1.1. Determinar el campo de eistencia de las fnciones sigientes: - 1 f(, ) = log f(, ) = ç è + ø f(, ) + - = ( f (, ) = log - 3 ) + 1.. Calclar los límites de las sigientes fnciones

Más detalles

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( )

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( ) Diferenciabilidad de fnciones de dos variables - Sea = f(,) na fnción real de variable real, se verifica qe: a) Si f admite derivada direccional en n pnto P en calqier dirección, entonces f es diferenciable

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente en el análss y dseño de sstemas de control. Otro procedmento alternatvo

Más detalles

.. A x 1 lo llamamos primera componente, a x 2 segunda

.. A x 1 lo llamamos primera componente, a x 2 segunda Capítlo VECTORES DE IR n.. Introdcción Una vez tenemos claro lo qe es n sistema de ecaciones lineales y s representación matricial, el significado de s solción, el tipo de conjnto solción y n método para

Más detalles

ESTÁTICA DEL SÓLIDO RÍGIDO

ESTÁTICA DEL SÓLIDO RÍGIDO DSR-1 ESTÁTICA DEL SÓLIDO RÍGIDO DSR-2 ESTÁTICA DEL SÓLIDO RÍGIDO La estátca estuda las condcones bajo las cuales los sstemas mecáncos están en equlbro. Nos referremos úncamente a equlbro de tpo mecánco,

Más detalles

unidad 12 Estadística

unidad 12 Estadística undad 1 Estadístca Qué es una tabla de frecuencas Págna 1 Al número de veces que se repte un dato se le denomna frecuenca de ese dato. Una tabla de frecuencas es una tabla en la que cada valor de la varable

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

PROBABILIDAD. Álgebra de sucesos. Inclusión o igualdad de sucesos. Operaciones con sucesos.

PROBABILIDAD. Álgebra de sucesos. Inclusión o igualdad de sucesos. Operaciones con sucesos. ROILIDD Álgebra de sucesos. Un fenómeno o exerenca se dce que es aleatoro cuando al reetrlo en condcones análogas es mosble de redecr el resultado. El conjunto de todos los resultados osbles de un exermento

Más detalles