INTEGRALES IMPROPIAS

Documentos relacionados
Integrales impropias

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

2. Cálculo de primitivas

7.1. Definición de integral impropia y primeras propiedades

Integral Definida. Tema Introducción. 6.2 Definición de Integral Definida

Funciones de una variable real II Integrales impropias

5.2 Integral Definida

CAPÍTULO XII. INTEGRALES IMPROPIAS

Integral impropia Al definir la integral definida b

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

Tema 4: Integrales Impropias

El Teorema Fundamental del Cálculo

7. Integrales Impropias

APUNTES DE MATEMÁTICAS

El problema del área. Tema 5: Integración. Integral de Riemann. Particiones de un intervalo. Sumas superior e inferior

Grado en Química Bloque 1 Funciones de una variable

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.

INTEGRALES IMPROPIAS. 1. Integral de una función acotada, definida en un intervalo no acotado (Integral impropia de 1ª especie). Ejemplo: 1 x.

Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera

INTEGRALES IMPROPIAS INTRODUCCION

Aplicación de la Mecánica Cuántica a sistemas sencillos

La Integral Definida

CÁLCULO INTEGRAL. Definición: Sean a y b dos números reales a < b. Una partición del intervalo [a,b] es un conjunto finito de puntos de,

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

Determinantes y la Regla de Cramer

Funciones trascendentes

La Integral de Riemann

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

Sucesiones y series de números reales

Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A =

PROGRESIONES ARITMETICAS

C alculo Octubre 2010

2. LAS INTEGRALES DEFINIDA E INDEFINIDA

Tema 4. Integración de Funciones de Variable Compleja

3.- Matrices y determinantes.

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

Laboratorio N 7, Asíntotas de funciones.

Tema XIV: SUCESIONES Y SERIES DE NÚMEROS REALES XIV.1. Sucesiones. Sucesiones convergentes

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f.

CAPÍTULO 2. , para 0 p 1. [] x

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN Partición de un intervalo

Módulo 12 La División

INTEGRAL DEFINIDA. ln ln ln dx 3. t t. 1 5 ln t t 5t 1 ln 1 7 ln 1. [7.1] Calcular: Solución. [7.2] Calcular: Solución INTEGRAL DEFINIDA

Límite y Continuidad de Funciones

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

EJERCICIOS DE INTEGRALES IMPROPIAS

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

E.T.S. Minas: Métodos Matemáticos

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

TEMA 1. LOS NÚMEROS REALES.

Y f. Para ello procederemos por aproximaciones sucesivas, de modo que cada una de ellas constituya un término de una sucesión G n cuyo límite

Propiedades de los números

ANALISIS MATEMATICO II INTEGRAL DEFINIDA

Circunferencia y elipse

D I F E R E N C I A L

INTEGRALES IMPROPIAS INTEGRALES EN INTERVALOS NO ACOTADOS. (Integral impropia de 1ª especie).

Transcripción:

NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V

INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES DE LA INTEGRAL IMPROPIA.- DEFINICION DE INTEGRALES IMPROPIAS Y CONVERGENCIA..- DEFINICION DE INTEGRALES IMPROPIAS..- INTEGRALES CONVERGENTES DIVERGENTES Y OSCILANTES.3.- CONVERGENCIA ABSOLUTA.4.- EJEMPLOS DE II.5.- INTEGRALES IMPROPIAS CON UN NUMERO FINITO DE SINGULARIDADES.6.- EJEMPLOS DE INTEGRALES IMPROPIAS PARA TABLA DE COMPARACION 3.- VALOR PRINCIPAL DE UNA INTEGRAL IMPROPIA 3..- DEFINICIÓN DE VALOR PRINCIPAL 3..- EJEMPLO DE VALOR PRINCIPAL PARA TABLA DE COMPARACIÓN 4.- CRITERIOS DE CV 4..- ANALISIS DE LA DEFINICIÓN 4..- CRITERIO DE BOLZANO CAUCHY 4.3.- CRITERIO DE COMPARACIÓN 4.3..- CASO GENERAL 4.3..- CRITERIO DE COMPARACIÓN: CASOS PARTICULARES 4.4.- CRITERIO DE COMPARACIÓN POR LIMITE 4.4..- TEOREMA I 4.4..- TEOREMA II 4.4.3.- TEOREMA III 4.6.- CRITERIO DE COMPARACIÓN CON SERIES POSITIVAS 4.7.- CRITERIO DE ABEL 4.8.- CRITERIO DE COMPARACIÓN POR SERIES 5.- TABLA DE INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS (II).- PUNTOS SINGULARES DE LAS II Un form de etender el concepto de Integrl de Riemnn (IR) es estblecer un nuev definición pr los csos donde no se cumpln ls dos condiciones previs: H d(,b) < M Intervlo cotdo H f < M Función cotd Se llmn puntos singulres de l función rel los puntos isldos del intervlo de integrción donde no se cumplen ls H y H de l Integrl de Riemnn. Def.: s punto singulr (f[,b]) := V V s,v H H d(, b) / f / < M < M (Intervlo no cotdo) (Función no cotd).- DEFINICION DE INTEGRALES IMPROPIAS Y CONVERGENCIA..- DEFINICION DE INTEGRALES IMPROPIAS Suponiendo que en l Integrl Impropi eiste un único punto singulr, se presentn los dos csos, cundo el intervlo no es cotdo o l función no es cotd. Definición de Integrl Impropi: Cso Intervlo no cotdo H A f() d IR f() d := A f() d

Definición de Integrl Impropi: Cso función no cotd H s [ b] s H ( ) b f() d := s f() d IR f() d b s s f() d IR b f() d Obs.: Ls vribles y son diferentes. Más delnte se estudirá que sucede si definen como igules. Obs.: Ls II sobre intervlo no cotdo se pueden trnsformr en II del tipo de funciones no cotds por el cmbio de vribles t = /(-s). Por lo tnto pr el estudio de ls propieddes de ls II, es indiferente hblr de un tipo u otro...- INTEGRALES CONVERGENTES DIVERGENTES Y OSCILANTES Ls II como límite de IR se clsificn según l eistenci o no del límite y si es finito o infinito. Est clsificción es nálog l que se hce pr ls series. Se denomin entonces II convergentes, divergentes y oscilntes, ls que cumplen: Def II CV := IR finito II DV := IR infinito

II OSC := / IR Obs.: En lgunos tetos se us el concepto de Divergente como contrrio lógico de Convergente. L convención de este teto es que Integrl No Convergente es Divergente u Oscilnte..3.- CONVERGENCIA ABSOLUTA Se define en form nálog como se hce con ls series l Convergenci Absolut de ls Integrles Impropis. Esto es l Convergenci de l Integrl de f. Def: II f CA := II f CV.4.- EJEMPLOS DE II Ejemplo d I.- Análisis de eistenci de l función sobre el intervlo de Integrción y puntos singulres V ps /H [, [ /< M Vps : V H f < M II.- Eistenci de IR d f C/[ A] III.- Cálculo por definición d = Arctg A = Arctg A π A El resultdo finl es: d = π d CV Ejemplo ( ) d

I.- Análisis de eistenci de l función sobre el intervlo de Integrción y puntos singulres V ps L función ( ) no está definid pr el intervlo [ ] por lo tnto no eiste l Integrl Impropi. Ejemplo 3 L d I.- Análisis de eistenci de l función sobre el intervlo de Integrción y puntos singulres V ps H d(,) < M /H L /< M Vps : V II.- Eistenci de IR L d f C/[ ] III- Cálculo por definición L d = (L ) = (L ) El resultdo finl es: L d = L d CV Ejemplo 4 sin d I.- Análisis de eistenci de l función sobre el intervlo de Integrción y puntos singulres V ps /H [, [ /< M Vps : V H sin < M II.- Eistenci de IR sin d sin C/[ A] III.- Cálculo por definición

sin d = cos A = cos A A / Lim El resultdo finl es: / sin d sin d OSC Ejemplo 5 d 3 3 I.- Análisis de eistenci de l función sobre el intervlo de Integrción y puntos singulres V ps H d(,3) < M /H /< M Vps : V 3-3 II.- Eistenci de IR d f C/[ 3 ] 3 3 III.- Cálculo por definición 3 d = L 3 = L 3 3 El resultdo finl es: d 3 3 3 3 d DV Ejemplo 6 5 3 d I.- Análisis de eistenci de l función sobre el intervlo de Integrción y puntos singulres V ps H d(,5) < M /H /< M Vps : V 3- V 3 3 3 5 II.- Eistenci de IR d f C/[ 3 ] 3 d f C/[3 5] 3 3

3 III.- Cálculo por definición 3 d 5 3 3 El resultdo finl es: 5 d 3 5 3 3 5 d = L 3 L 3 3 = L L5 L / Lim d OSC Ejemplo 7 k d I.- Análisis de eistenci de l función sobre el intervlo de Integrción y puntos singulres V ps /H [, [ /< M Vps : V H f < M II.- Eistenci de IR k d f C/[ A] III.- Cálculo por definición k d = k A = k A k > k d DV A k = k d CV A k < k d DV A

.5. INTEGRALES IMPROPIAS CON UN NUMERO FINITO DE SINGULARIDADES L II cundo tiene un número finito de puntos singulres se define como un sum de II cd un de ells con un solo punto singulr. f() d :=... B B s s 3 3 A f() d f() d f() d f() d s s 4 3 4 f() d f() d L II resultnte es entonces un límite múltiple.6.- EJEMPLOS DE INTEGRALES IMPROPIAS PARA TABLA DE COMPARACION Alguns integrles impropis que su usrán más delnte pr estudir l CV por comprción son: Ejemplo (Tbl )

V d d > I.- Análisis de eistenci de l función sobre el intervlo de Integrción y puntos singulres V ps /H [, [ /< M Vps : V H < M II.- Eistenci de IR d f C/[ A] III.- Cálculo por definición d = A A = A > A < = A = L = LA - L A El resultdo finl es: d CV > Ejemplo (Tbl ) V d d > I.- Análisis de eistenci de l función sobre el intervlo de Integrción y puntos singulres V ps H d(,) < M /H /< M Vps : V II.- Eistenci de IR d f C/[ ] III.- Cálculo por definición d = = < >

= = L = L - L V El resultdo finl es: d CV <

3.- VALOR PRINCIPAL DE UNA INTEGRAL IMPROPIA En el cso de un II oscilnte que depende de un límite doble o múltiple, este límite no eiste. Pero con un restricción en el psje l límite, tomndo tods ls vribles de l siguiente mner: B = = = 3 =... = n- = n = A puede drse el cso de que sí eist el límite nuevo. Est convención gener un nuev definición de integrl, que se llm Vlor Principl de l Integrl. Se retom el Ejemplo 5 visto nteriormente: 5 d 3 3 5 3 3 d d OSC 5 3 3 3 5 d = L 3 L 3 3 = L L5 L / Lim Sin embrgo si se tom 5 d 3 3 3 3 = = d = L L5 L L5 Entonces VP 5 3 d = L5 L definición de vlor principl de un II con n puntos singulres es entonces: Definición de Vlor Principl de un Integrl Impropi con un número finito de singulriddes f() d := { f() d / s f() d s s 3 f() d s... / f() d } f() d f() d El VP de l II resultnte es entonces un límite simple en contrposición de l Integrl Impropi con un número finito de singulriddes que er un límite múltiple de n puntos singulres: {,,, 3 =... = n- = n = } B tomndo: = = = 3 =... = n- = n = A

3..- EJEMPLO DE ANÁLISIS DE VALOR PRINCIPAL PARA TABLA DE COMPARACIÓN b Un Integrl impropi d < < b R V ps I.- Eistenci de l función en el intervlo de integrción [ b] y nálisis de los puntos singulres en Estudindo ést integrl que en su intervlo de integrción incluye l. Aquí debe nlizrse l eistenci de l función en el Vecinl de cero pues no eiste pr todos los vlores de cundo < : L función f eiste solmente si es frccionrio con denomindor impr f: [,b] {} R H d(,b) < M = q p Q (p,q) Primos entre si q Impr /H /< M Vps : V - V II.- Eistenci de IR b d d f C/[ ] [ b] III.- Cálculo del VP por definición d b d = IV.- El resultdo finl es: = = ( ) = = p / q< q Im pr = = p / q> q Im pr p Pr = = p / q> q Im pr p Im pr b b = b b b = L L = L L Lb L Lb L < < b R b d CV = q p Q (p,q) Primos entre si p < q q Impr = q p Q (p,q) Primos entre si p q q Impr p Impr

4.- CRITERIOS DE CV El nálisis del Convergenci de ls II se hce por medio de criterios (teorems) que nos permitn segurr su tipo (CV, DV, OSC, VP). En todos los criterios se nliz un sólo punto singulr que puede ser tnto de intervlo no cotdo o de función no cotd, en form indiferente, sbiendo que un tipo de II siempre se puede trnsformr en l otr. 4..- ANALISIS DE LA DEFINICIÓN form L definición de l Integrl Impropi en el cso de Intervlo no cotdo puede presentrse de otr Def CV V s < A := > A : A > A < A < =: V s < Análogmente se puede presentr l Definición de II V s cundo el intervlo es finito (s es finito) 4..- CRITERIO DE BOLZANO CAUCHY T.- [ > V s : ( ) V s D f() d < ] D.- Aplicndo el Criterio de Bolzno-Cuchy pr l eistenci del límite de funciones F() = L > V : ( ) (V D) F ( ) F( ) < Como F(A) = f() d f() d = f() d > V : ( ) V A < < Un resultdo equivlente se obtiene pr V s con s finito.

4.3.- CRITERIO DE COMPARACION 4.3..- CASO GENERAL T.- H g f g H g CV T H 3 g CV D.- g f g g f g - g f g TCR H /T /H H 3 4.3..- CRITERIO DE COMPARACION: CASOS PARTICULARES T H f g H g CV T TCR H /T /H T H g f g H g CV T Tmbién se demuestr prtir de T y l tutologí f f f [ que stisfce H ] f CV T Es decir T f CA T

4.4.- CRITERIO DE COMPARACION POR LIMITE 4.4..- COMPARACION POR LIMITE: TEOREMA I T H f g λ : λ λ ± s H g CV T D [ ] Por definición de límite g f - λ < f λ - < < λ g g > (λ - ) g < f < (λ ) g g < (λ - ) g > f > (λ ) g En mbos csos plicndo el Criterio de Comprción g CV [ ] f g s λ : λ λ ± g f s : ± λ λ λ Por lo tnto plicndo l demostrción nterior g CV 4.4..- COMPARACION POR LIMITE: TEOREMA II T H f g s λ= H g CV T

D [ ] Es l mism demostrción de l condición suficiente del teorem nterior, tomndo λ= g CV No es válido l condición necesri 4.4.3.- COMPARACION POR LIMITE: TEOREMA III T H f g λ=± s H g CV T D [ ] f g s λ = ± g f s = λ Entonces estmos en ls condiciones del teorem nterior g CV

4.5.- CRITERIO DE COMPARACIÓN CON SERIES POSITIVAS Estos criterios de Comprción muestrn l íntim relción entre ls Integrles Impropis y ls Series en cunto los estudios de Convergenci. En prticulr se tiene: T 3.- Comprción con Series No negtivs monótons No crecientes H f H f H 3 f(n) CV n= f() d CV D.- f(). f(3). 3 n f f(). f f().... n f(n). f f(n). Sumndo n n f(k) f k= n k = f(k) Psndo l límite cundo n tiende. f(k) f f(k) k = k = k= Por un prte si f(k) CV k= k = f(k) CV Pues difieren en un constnte. Entonces por comprción: f(k) CV f(k) CV f() d CV k= Asimismo por comprción si

f() d CV k = f(k) CV pues está cotd inferiormente por. 4.6.- CRITERIO DE ABEL T 4.- H f: f M f f f H (p q) q p g() d M V f() g() d CV D.- f() g() d = f() = f(a) g(t) dt A g(t) dt f () g(t) dt d f () g(t) dt d El primer término tiende cero pues: f(a) g(t) dt f(a) M A El segundo término f () g(t) dt d f () M f () d M f () d M [ f (A) f() ] g(t) dt d 4.7.- CRITERIO DE COMPARACION POR SERIES ALTERNADAS Cundo se tiene un función con infinitos ceros Serie Alternd {ζ k } se puede igulr un Integrl impropi con un

ζ ζ f = ζ ζ ζ ζ 3 ζ... - donde cd término de l SA es un integrl Recordndo el Teorem de Leibnitz de Series Alternds Teorem de Leibnitz. Convergenci de Series Alternds u n u n u n n k= se tiene el siguiente Criterio de CV (-) n u n CV T 5.- Criterio de Convergenci de Funciones oscilntes H.- Se un función lternd con infinitos ceros ζ n u n = ζ n H u n u n H u n n k= (-) n u n CV ζ

5.- TABLA DE INTEGRALES IMPROPIAS.- V.- V 3.- V d CV > d CV < d CV = q p Q (p,q) Primos entre si p < q q Impr = q p Q (p,q) Primos entre si p q q Impr p Impr 4.- V 5.- V 6.- V 7.- V L d CV > L d CV < sin( ) d CV > e - d CV R