Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas (o elementos) de la matriz A = Los siguientes son ejemplos de matrices, B =, C =, D = p X Definición Una matriz se denomina de tamaño m n si tiene m filas y n columnas Las matrices del ejemplo anterior son matrices de órdenes,, y, respectivamente Definición Una matriz de tamaño m se denomina matriz fila y una matriz de tamaño n se llama matriz columna Nota Usaremos la notación de subíndice doble para hacer referencia a las entradas de una matriz: la entrada de A en la fila i y la columna j se denotará por a ij Así, podemos escribir una matriz en forma compacta: A = a ij = aij mn (si es necesario especificar el tamaño) Por tanto, una matriz tiene la forma a a a n a a a n A = a m a m a mn Si las columnas de A son los vectores b, b,, b n, entonces podemos representar a A por A = b b b n A y si las filas de A son los vectores A, A,, A m, entonces podemos representar a A por A = A m Definición Sea A = a ij mn Las entradas diagonales de A son a, a, a,, a kk, Si m = n, entonces A se denomina matriz cuadrada de tamaño n Si A es una matriz cuadrada y todas sus entradas no diagonales son cero, A se denomina una matriz diagonal Una matriz diagonal en la cual todas las entradas diagonales sean todas iguales se conoce como una matriz escalar Si el escalar en la diagonal es, la matriz escalar se llama matriz identidad y es denotada por I n A Definición Dos matrices son iguales si tienen el mismo tamaño y sus entradas correspondientes son iguales
Operaciones Matriciales Adición de matrices y multiplicación por escalar Si A = a ij y B = bij son matrices m n, su suma A + B es la matriz m n cuya entrada ij es aij + b ij ; es decir, A + B = a ij + b ij Si además c es un escalar, entonces el producto escalar ca es la matriz m n obtenida al multiplicar cada entrada de A por c Así, ca = ca ij Multiplicación de matrices Si A es una matriz de tamaño m n y B es una matriz de tamaño n r entonces el producto matricial C = AB es una matriz de tamaño m r, donde la entrada (ij) de C está dada por: c ij = a i b j + a i b j + + a in b nj Nota Para que el producto de A por B tenga sentido se debe cumplir que # columnas de A = # filas de B Si la i-ésima fila de A es a i a i a in y la j-ésima columna de B es, entonces la entrada ij de C se computa así: (a) A = a i a i a in Calcule, si es posible, AB y BA, B = b j b j b nj b j b j c ij = = a ib j + a i b j + + a in b nj (b) A = b nj, B = Solución (a) Puesto que A es de tamaño y B de tamaño, tanto el producto AB como el producto BA están definidos Calculemos estas matrices Recordemos que para calcular la entrada ij de la matriz AB, realizamos el producto punto de los vectores dados por la i-ésima fila de A y la j-ésima columna de B Luego, + + + + ( ) + + + AB = = = + + + + ( ) + 8 + + Similarmente, + + + BA = + + + + ( ) + ( ) + ( ) = + + + + + + =
(b) Dado que A es de tamaño y B de tamaño, ambos productos están definidos Se puede verificar que AB = y BA = X Nota En general, el producto de matrices no es conmutativo Teorema Todo sistema lineal de m ecuaciones con n incógnitas se puede representar en la forma AX = b, donde A es la matriz de coeficientes, X es el vector que contiene las variables del sistema y b es el vector de términos independientes Exprese el siguiente sistema lineal en la forma AX = b Solución Notemos que A = x + y z + w = x + y + z + w = x + y z + w =, X = x y z w y b = Luego, el sistema lineal () se puede representar como AX = b; es decir, x y z w = () X Teorema Sean A una matriz m n, e i un vector unitario estándar de m y e j un vector unitario estándar de n Entonces (a) e i A = i-ésima fila de A (b) Ae j = j-ésima columna de A Potencias de una matriz Definición 8 Sea A una matriz cuadrada n n Para k, definimos A k = A A A {z } k factores (si k =, definimos A = I n ) Proposición 9 Si A es una matriz cuadrada y r, s son enteros no negativos, entonces (a) A r A s = A r+s (b) (A r ) s = A rs Transpuesta de una matriz Definición Sea A una matriz de tamaño m n La transpuesta de A, denotada A T, es la matriz de tamaño n m que se obtiene cuando se intercambian las filas y columnas de A Es decir, la i-ésima columna de A T es la i-ésima fila de A para todo i Sea A = Halle A T Solución Notemos que A es de tamaño Por tanto, A T = es de tamaño X
Definición Sea A una matriz cuadrada A se dice simétrica si A T = A (o equivalentemente, si a ij = a ji, para todo i, j) A se dice antisimétrica si A T = A Determine si la matriz es simétrica o antisimétrica (a) A = (b) B = (c) C = Solución Calculemos la transpuesta para cada una de las matrices anteriores A T =, B T = y C T = Notemos que A T = A; por lo tanto, A no es simétrica y puesto que A T = A, A tampoco es antisimétrica Por otro lado, B T = B; luego, B es antisimétrica Finalmente, se cumple que C T = C; por lo tanto, C es simétrica X Nota Si A es antisimétrica, entonces las entradas en su diagonal son todas ceros Algebra de matrices Teorema (Propiedades de la suma de matrices y la multiplicación por escalares) Sean A, B, C matrices del mismo tamaño y sean c, d escalares Entonces : (a) A + B = B + A (b) (A + B) + C = A + (B + C) (c) A + O = O + A = A (d) A + ( A) = O (e) c (A + B) = ca + cb (f) (c + d) A = ca + da (g) c(da) = (cd) A (h) A = A Definición Sean A,, A k y B matrices del mismo tamaño Decimos que B es combinación lineal de A,, A k si existen escalares c,, c k tales que B = c A + + c k A k Definimos el espacio de A,, A k, denotado por espacio (A,, A k ) como el conjunto de todas las combinaciones lineales de A,, A k Sean A =, A =, A =, A =, A =, A = y B = (a) Encuentre espacio (A, A,, A ) (b) B espacio (A, A,, A )? Solución (a) Notemos que una matriz A está en espacio (A, A,, A ) sii existen escalares c, c,, c k tales que A = c A + c A + + c k A k Luego, a a a a = c a = c a = c A = a a a espacio (A, A,, A ) sii a = c a = c a = c a a a a = c a = c a = c
Luego, vemos que A espacio (A, A,, A ) sii su entrada ij es igual a su entrada ji; es decir, sii A es simétrica Por tanto, espacio (A, A,, A ) = fa M j A es simétricag (b) Sí, ya que B es simétrica X Teorema (Propiedades del producto de matrices) Sean A, B y C matrices (con tamaños tales que las siguientes operaciones son válidas) y sea k un escalar Entonces (a) A (BC) = (AB) C (b) A (B + C) = AB + AC (c) (A + B) C = AC + BC (d) k (AB) = (ka) B = A (kb) (e) I m A = A = AI n, si A es de tamaño m n Teorema (Propiedades de la transpuesta) Sean A, B matrices (con tamaños tales que las siguientes operaciones son válidas) y k escalar Entonces (a) (A T ) T = A (b) (A + B) T = A T + B T (c) (ka) T = ka T (d) (AB) T = B T A T (e) (A r ) T = A T r, para todo entero r no negativo Prueba Veamos que se cumple la propiedad (b) Sean A, B matrices de tamaño m n Entonces, la j-ésima fila de (A + B) T es la j-ésima columna de A + B, la cual se obtiene al sumar la j-ésima columna de A y la j-ésima columna de B;,es decir, al sumar la j-ésima fila de A T y la j-ésima fila de B T Teorema (a) Si A es una matriz cuadrada, entonces A + A T es simétrica (b) Para cualquier matriz A, AA T y A T A son simétricas Prueba (a) Para ver que la matriz A + A T es simétrica, calculemos su transpuesta (A + A T ) T = A T + (A T ) T (por teorema (b)) = A T + A (por teorema (a)) = A + A T (por teorema (a)) Así que A + A T es simétrica (b) Veamos que AA T es simétrica: (AA T ) T = (A T ) T A T (por teorema (d)) = AA T (por teorema (a)) Análogamente, se prueba que A T A es simétrica