Módulo 5 Inducción y Deducción OBJETIVO: Distinguirá razonamientos en que se empleen los métodos inductivo y deductivo; la definición, construcción y forma de graficar en Diagrama de Venn las proposiciones simples y abiertas identificando su valor de verdad. Lógica Es la ciencia que tiene por objeto llegar a la verdad, utilizando el método racional. Razonamiento inductivo Es el proceso de encontrar un principio general, basándose en la presentación de hechos o casos particulares. Ejemplo: - Hecho numero uno: Meter la mano en agua a 350 grados (quemadura). - Hecho numero dos: Meter la mano en agua a 350 grados (quemadura). - Hecho numero tres: Meter la mano en agua a 350 grados (quemadura). - Principio General: Al meter la mano en agua a 350 grados sufrirías quemaduras de primer grado. Usemos el razonamiento inductivo para establecer un principio general: Un borrego fue alimentado con alfalfa durante nueve días consecutivos. qué induces que pasó en el décimo día? Razonamiento deductivo Es el proceso de utilizar un principio general aceptado como verdadero para obtener una conclusión en un caso o hecho en particular. Ejemplo: - Principio general aceptado como verdadero: Al meter la mano en agua a 350 grados sufrirías quemaduras de primer grado. - Hecho numero uno: Meter la mano en agua a 350 grados (quemadura). Usemos el razonamiento deductivo para establecer un principio particular: Todos los estudiantes de prepa aprueban matemáticas. Si Juan es un estudiante de prepa entonces:
Proposición Es una oración de la que se puede decir si es verdadera o falsa. Por ejemplo: El perro es un animal mamífero (verdadera) México está en el continente europeo (falsa) Dos ejemplos de oraciones que no son proposiciones abiertas son las siguientes: Karla tiene 10 años (no es verdadera ni falsa puesto que no se sabe de que Karla se está hablando). Juan Gabriel es el mejor cantante de México. (no es verdadera ni falsa puesto que no se sabe de que Juan Gabriel se está hablando). Proposiciones simples Son las oraciones o proposiciones que inmediatamente se puede decir si son verdaderas o son falsas. Valor de verdad: Es la clasificación de la proposición simple de acuerdo a si es verdadera o es falsa. Proposición simple: Los números pares son impares. Valor de verdad: Falso. Proposición simple: Monterrey es la capital de Nuevo león. Valor de verdad: Verdadero. Proposiciones abiertas Es una oración en la que interviene alguna variable (letra) y se debe tener un conjunto de reemplazamiento para decidir si es verdadera o falsa. Conjunto de verdad: Es el conjunto de elementos que hacen que la proposición sea verdadera. Oración abierta: X es un número impar Conjunto de reemplazamiento: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} Conjunto de verdad: {1, 3, 5, 7, 9, 11, 13, 15} Oración abierta: X es un número primo Conjunto de reemplazamiento: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20} Conjunto de verdad: { 2, 3, 5, 7, 11, 13, 17, 19}
Gráfica de proposiciones Los diagramas de Venn son una forma de graficar proposiciones de tal manera que nos puedan ayudar a identificar más fácilmente los conjuntos. Proposición simple: El numero 6 es un numero par. Diagrama de Venn N Números Pares 6 Proposición abierta: X es un múltiplo de 4. Diagrama de Venn N Múltiplos de 4 Proposición: 3< 5 Esta proposición dice que el 3 es un elemento del conjunto de números menores que 5 y su gráfica es: Números menores que 5 * 3
Actividades de aprendizaje Use el razonamiento inductivo para establecer un principio general: 1.- Un estudiante de prepa observó durante cuatro días consecutivos que su novia sólo le daba un beso diario. Qué induces que pasó en el quinto día? 2.- Use el razonamiento deductivo para establecer un principio particular: Todos los entrenadores de la selección mexicana pierden en penales. Si Hugo Sánchez es un entrenador de la selección mexicana entonces: En los siguientes ejercicios clasifique las oraciones diciendo si son o no, proposiciones y en caso afirmativo, si éstas son simples o abiertas dando su valor de verdad o su conjunto de verdad según sea el caso. 3.- 4 es un número primo 4.- 3 y + 4 = 8 5.- 7 + 4 = 5 x ; x N 6.- y es un número impar; y N Utilice el lenguaje de conjuntos para modificar las siguientes proposiciones y así poder modificarlas. 7.- Todos los múltiplos de 4 son pares 8.- 4 > 7 9.- Cuál de los siguientes enunciados es una proposición? a) 5 x 3 = 2x + 8 b) 5 es un factor de 45 c) Andrés Méndez es mayor. d) Un rombo es menor que un cuadrado.
10.- El conjunto de verdad de la proposición 2 x 5 = 3 2x; x ℵ, es: a) { 1} b) { 2} c) { 4} d) { 7} 11.- Cuál de las siguientes proposiciones es falsa? 20 a) = 4; x ℵ x 2 b) Esta proposición es falsa. c) Maribel tiene un bonito auto rojo. d) Un triangulo equilátero es isósceles. 12.- En que grafica se localiza la proposición siguiente, x es un elemento del conjunto de números primos?