Introducción al tratamiento de datos experimentales. Aplicación en fisicoquímica

Documentos relacionados
INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRES DE ENSAYO

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción

Mediciones. Errores. Propagación de errores. Estadística. Prof. Arturo S. Vallespi

Las 19 primeras diapositivas de esta clase están incluidas en la clase teórica previa: Error y expresión de resultados (diapositivas 22 a 40).

Práctica 2. Tratamiento de datos

Distribuciones Fundamentales de Muestreo. UCR ECCI CI-0115 Probabilidad y Estadística Prof. Kryscia Daviana Ramírez Benavides

05/06. Análisis estadístico y calibración. Juan A. Montiel-Nelson. Last Revision:

RESUMEN de TEORIA DE ERRORES

PPTCEG061EM33-A17V1. Distribución normal 1

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:

Tratamiento de datos experimentales

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS

UNIVERSIDAD DE PUERTO RICO HUMACAO DEPARTAMENTO DE QUIMICA Laboratorio de Química Física I

Medición: Conjunto de operaciones que tiene por objeto determinar el valor de una magnitud. Metrología: Ciencia de la medición.

Estimación de Parámetros.

Qué es? Primer paso Representación en un sistema de coordenadas. numéricos Cada punto muestra el valor de cada pareja de datos (X e Y)

Tema 04: Medición y error. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom

Simulación a Eventos Discretos. Clase 8: Análisis de resultados

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

Práctica 1. Medidas y Teoría de Errores

Error en las mediciones

ELECTRICIDAD Y MAGNETISMO TRABAJO PRÁCTICO Nº 11 "INSTRUMENTAL Y MEDICIONES ELECTRICAS"

ESTADISTICA PARA LA CALIBRACIÓN Y VALIDACIÓN DE METODOLOGÍAS ANALÍTICAS

No 0.1 LABORATORIO DE MECÁNICA TOMA DE DATOS E INTRODUCCIÓN AL ANÁLISIS DEL ERROR. Objetivos

Errores en las medidas

Medidas y cifras significativas

TALLER 01 CÁLCULO DE INCERTIDUMBRE PARA MEDICIONES FÍSICAS

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 11

Biometría. Distribuciones de probabilidad para variables aleatorias continuas

Guía para examen departamental de la asignatura Laboratorio de Física (1210) Semestre

VIM: Términos fundamentales. Vocabulario internacional de metrología

Teoría de errores. 4 Otro de estos ejemplos pueden ser el de la medición de la densidad de un compuesto sólido o la velocidad de la luz.

RESULTADOS. 4.1 ADAPTABILIDAD DEL SISTEMA. Los resultados de adaptabilidad del sistema cromatografico se detallan en la tabla 4.1

ANÁLISIS DE REGRESIÓN

Por: Rolando Oyola Derechos

TEMA 2 (1ra parte). Tratamiento de datos experimentales

Distribución Gaussiana o normal

Índice. TEMA 3. Evaluación de la incertidumbre típica. 1. Clasificación de las medidas: Ejemplos. 2. Función de transferencia.

UNIVERSIDAD DE LA COSTA LABORATORIO DE FÍSICA MECÁNICA TEORÍA DE ERRORES

X N USO DE LA ESTADÍSTICA

De vocabulario, cifras significativas, redondeos, mediciones y otras cosas. Elizabeth Hernández Marín Laboratorio de Física

"Guide to the expression of Uncertainty in Measurement (GUM) Norma IRAM 35050:2001

TEMA N 1.- ANÁLISIS DE REGRESIÓN Y MÉTODO DE MÍNIMOS CUADRADOS

VALOR MEDIO Y DESVIACION ESTANDAR DE UNA SERIE DE MEDIDAS. x 1, x 2, x 3,..., x N. La media aritmética de las N medidas (valor medio o promedio) será:

UNIVERSO QUE QUEREMOS ESTUDIAR

ASIGNATURA: ESTADISTICA II (II-055) Ing. César Torrez

Juan Carlos Colonia INFERENCIA ESTADÍSTICA

INCERTIDUMBRE DE LA MEDIDA

Introducción al tratamiento de datos

Vocabulario internacional de términos fundamentales y generales de metrología VIM:2008

TÉCNICAS DE MUESTREO, ANÁLISIS E INTERPRETACIÓN. Ingeniería Ambiental

Estadística. Carrera: AGM Participantes Representante de las academias de Ingeniería Agronomía de los Institutos Tecnológicos.

Herramientas estadísticas aplicadas a la validación de métodos analíticos.

ANÁLISIS CUANTITATIVO POR WDFRX

Estadística para Químicos

Práctica: realización y presentación de resultados

PRACTICA DE LABORATORIO NO. 1

Estimación. Diseño Estadístico y Herramientas para la Calidad. Estimación. Estimación. Inferencia Estadística

Información contenida en una recta. Panorama y objetivos de la validación

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

Tema 8: Regresión y Correlación

Unidad Temática 3: Estadística Analítica. Unidad 9 Regresión Lineal Simple Tema 15

Mediciones Indirectas

TRATAMIENTO DE DATOS. INFORME FINAL TRATAMIENTO DE DATOS. INFORME FINAL 1

INCERTIDUMBRE Y ERROR EN LAS MEDICIONES EXPERIMENTALES. Profesor: Iván Torres Álvarez Física, Nivel Medio LOGO

Webinario: Importancia de la Incertidumbre en las Calibraciones. Buenos Aires 09 de noviembre de 2017

Modelado y simulación en Ingeniería Química. Manuel Rodríguez

CRITERIOS Y RECOMENDACIONES. DETERMINACIÓN DE LA INCERTIDUMBRE DE MEDIDA DE AGENTES QUÍMICOS Incertidumbre del volumen de aire muestreado

VALIDACIÓN DE MÉTODOS DE ANÁLISIS VALIDACIÓN DE MÉTODOS 1

MEDIDAS. Error accidental. Error Sistemático. Cantidad de la magnitud A. Número, MEDIDA. Cantidad de la magnitud A tomada como referencia.

Probabilidades y Estadística Práctica N 5

DESCRIPCIÓN DE DATOS POR MEDIO DE GRÁFICAS

Tema 04: Medición y error

Qué es una regresión lineal?

Unidad V: Estadística aplicada

ESTIMACION INFERENCIA ESTADISTICA

Técnicas de Muestreo Métodos

OBJETIVOS Y/O ALCANCES DE LA ASIGNATURA:

ANÁLISIS DE FRECUENCIAS

Tests de Hipótesis basados en una muestra. ESTADÍSTICA (Q) 5. TESTS DE HIPÓTESIS PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA CONOCIDA

TERMINOLOGÍA ANALÍTICA - PROCESO ANALÍTICO - TÉCNICA ANALÍTICA - MÉTODO ANALÍTICO - PROCEDIMIENTO ANALÍTICO - PROTOCOLO ANALÍTICO

Teoría de la decisión

MEDICION DE HIDROCARBUROS LIQUIDOS, BALANCES VOLUMETRICOS E INSTRUMENTACION

Medición de la aceleración de la gravedad mediante plano inclinado

Regresión Lineal Simple y Múltiple Regresión Logística

CONCEPTOS BÁSICOS DE INFERENCIA

ESTADÍSTICA (Química) PRÁCTICA 4 Sumas de variables aleatorias

Tabla 1. Incertidumbres típicas en la calibración de recipientes volumétricos por el método gravimétrico. (Son consideradas como referencia).

FÍSICA GENERAL. Guía de laboratorio 01: Mediciones y cálculo de incertidumbres

Tema 10: Introducción a los problemas de Asociación y Correlación

Matemática Aplicada y Estadística - Farmacia Soluciones del Primer Examen Parcial - Grupo 3

REGRESIÓN Y ESTIMACIÓN TEMA 1: REGRESIÓN LINEAL SIMPLE

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

Las medidas y su incertidumbre

Transcripción:

Introducción al tratamiento de datos experimentales Aplicación en fisicoquímica

Medidas experimentales 1. 8.86 M H 2 O 2 100V 8.93M Titulación con KMnO 4 2. 8.78 M 3. 9.10 M Resultado promedio: 8.91 M

Error de medición Medir una propiedad supone admitir que la misma posee un valor definido, el cual llamaremos valor real (µ). Error de medición: diferencia del resultado frente al valor verdadero. Esta relacionado con la incertidumbre no con equivocación! Los errores son propios de cualquier proceso de medición.

Tipos de errores Errores sistemáticos: prácticamente no varían durante un ensayo pero se desvían con respecto al valor real. Errores accidentales: producen una variación al azar de los valores obtenidos. Error de método: utilización de una técnica de forma inadecuada.

Errores sistemáticos Error de instrumento: calibración, límite de precisión, perturbaciones del sistema. Falta de control sobre variables. Errores de operador. PUEDEN ELIMINARSE!

Errores accidentales Fluctuaciones inherentes al sistema de medición. Intervalo de error: fluctuación de las últimas cifras del resultado. Dispersión de los datos. Errores del operador.

Errores de método Uso de una técnica inadecuada. Uso de una técnica en condiciones donde no se cumplen las hipótesis de la misma.

Precisión y exactitud Medición exacta: los resultados no están sujetos a errores sistemáticos. Depende de la diferencia entre los valores medidos y el valor real. Medición precisa: los valores medidos tienen una buena reproducibilidad. Depende del grado de dispersión de los datos.

Precisión y exactitud µ µ µ No exacto Preciso Exacto No preciso Exacto Preciso

Tipos de medidas Medidas directas: el error depende de la precisión del aparato utilizado para medir. Medidas indirectas: el error depende de la precisión de todos los equipos o técnicas usadas.

Análisis estadístico La varianza (s 2 ) y la desviación estándar (s) son una medida de la dispersión de los valores observados. s 2 = n i= 1 ( x x) ( n 1) donde x i es cada valor medido, x es el promedio y n es el número de datos. El promedio de los datos (x) se toma como la mejor estimación del valor verdadero. i 2

Análisis estadístico Titulación de agua oxígenada con KMnO 4 8.86 M (x 1 ) Promedio (x): 8.91 M 8.78 M (x 2 ) n = 3 9.10 M (x 3 ) s = (8.86-8.91) 2 + (8.78-8.91) 2 + (9.10-8.91) 2 = 0.166 (3-1) Resultado 8.9 ± 0.2 M

Distribución de errores Ejemplo: Durante la determinación de la concentración de nitrato (µg/ml) presente en una muestra de agua se realizaron 50 mediciones. El resultado obtenido es 0.50 ± 0.02 µg/ml. Cómo están distribuidos los valores obtenidos?

Distribución de errores Histograma: gráfico de la frecuencia de aparición de cada valor obtenido. Nitrato (µg/ml) 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 Frecuencia 1 3 5 10 10 13 5 3 Frecuencia 14 12 10 8 6 4 2 0 Histograma 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 Nitrato (ug/ml)

Distribución de errores El error de una medición puede ser considerado como una magnitud aleatoria. El conjunto de mediciones se denomina población, si no hay errores sistemáticos la media de la población es el valor verdadero. Curvas de distribución: distribución normal, distribución t de student, distribución chicuadrado, etc.

Distribución Normal Distribución de gauss o normal.

Distribución Normal Relación entre la desviación estándar de la población (σ) y el valor real (µ).

Intervalos de confianza Es poco probable que la media de la muestra sea exactamente igual al valor verdadero. Es más útil proporcionar un intervalo de valores que contenga casi con seguridad el valor verdadero. Este intervalo depende de la precisión de las mediciones (s) y del número de mediciones (n).

Intervalos de confianza

Distribución t de student La distribución t de student tiene una media de cero, es simétrica respecto de la media y se extiende de - a +.

Distribución t de student 90% 95% 99% El valor de t 1-α (f) depende del número de grados de libertad (f =n-1) y se obtiene integrando entre los límites de confianza (±α/2). Si (1-α) es la probabilidad de que el intervalo (-µ 1 < µ < µ 1 ) contenga al valor verdadero de µ, se puede demostrar que este valor es igual a la probabilidad de encontrar al estadístico t en el intervalo (-t (1-α/2) < t < t (1-α/2) ). E acc = t 1 α ( f ) s 1 2 n

Intervalos de confianza Ejemplo: Se determinó el contenido de ion sodio de una muestra de orina y se obtuvieron los siguientes valores: 102, 97, 99, 98, 101, 106 mm. La media es 100.5 mm y la desviación estándar es 3.27 mm, con n=6. El valor de t 1-α (f) para un 95% de confianza (α=0.05) con 5 grados de libertad (f=6-1) es 2.57 (ver tabla). El error accidental es E acc = (2.57 x 3.27)/(6) 1/2 = 3.4 El valor real se encuentra entre 100.5 ± 3.4 mm con una confianza del 95%.

Eliminación de datos Cuando un resultado de una serie de datos se desvía demasiado de la media sólo se puede eliminar mediante argumentos estadísticos. Q Test: el parámetro Q debe ser igual o mayor a valor de tablas Q c para justificar la eliminación de una medición. Q = (valor sospechoso)-(valor más cercano al sospechoso) (mayor valor)-(menor valor) N 3 4 5 6 7 8 9 10 Q c 0.94 0.76 0.64 0.56 0.51 0.47 0.44 0.41

Medidas experimentales Medida de una variable: temperatura. 28.2 ºC; 28.0 ºC; 28.5 ºC; 27.9 ºC; 27.8 ºC 28.1 ± 0.3 ºC Combinación de variables: densidad. Densidad = Masa / Volumen. Masa (g) 0.25 0.30 0.27 0.22 0.26 Volumen (L) 0.20 0.24 0.22 0.18 0.22 Masa = 0.26 ± 0.03 g Volumen = 0.21 ± 0.02 L Densidad?? 1.23 ±? g/l

Propagación de errores Cuando el valor de una propiedad se obtiene por medio de operaciones que involucran otras propiedades medidas, el error de la propiedad de interés debe calcularse teniendo en cuenta los respectivos errores de las propiedades implicadas. Si la propiedad de interés es Y=f(u,v), siendo u y v propiedades independientes que poseen sus respectivos errores, entonces la varianza de Y es s 2 (Y)=(dy/du) 2 s 2 (u)+(dy/dv) 2 s 2 (v).

Propagación de errores

Propagación de errores

Propagación de errores En una titulación, la lectura inicial en la bureta es de 3.51 ml y la lectura final es de 15.67 ml, ambas con una desviación estándar de 0.02 ml. Cuál es el volumen del titulante utilizado y cual es su desviación estándar? Volumen utilizado= (15.67-3.51) ml = 12.16 ml Desviación estándar= raíz{(0.02) 2 +(0.02) 2 }= 0.028 ml Resultado final 12.16 ± 0.03 ml

Ajuste de regresión lineal En algunos casos la propiedad de interés se obtiene a partir de una relación lineal entre dos variables. Para determinar cuan confiable es la recta obtenida se calcula el coeficiente de correlación (r 2 ). Cuando r 2 es cercano a 1 hay buena correlación lineal.

Ajuste de regresión lineal Ejemplo: Análisis de una serie de soluciones de fluoresceína en un fluorómetro. Fluoresceína (pg/ml) 0 2 4 6 Intensidad 2.1 5.0 9.0 12.6 Intensidad (UA) 30 25 20 15 10 y = 1.9304x + 1.5179 R 2 = 0.9978 8 17.3 5 10 12 21.0 24.7 0 0 2 4 6 8 10 12 14 Fluoresceína (pg/ml)

Ajuste de regresión lineal Ejemplo: Análisis de una serie de soluciones de fluoresceína en un fluorómetro. Fluoresceína (pg/ml) 0 Intensidad 0.1 40 35 30 y = 3.4786x + 1.3571 R 2 = 0.9758 2 4 6 8 10 8.0 15.7 24.2 31.5 33.0 Intensidad (UA) 25 20 15 10 5 0 0 2 4 6 8 10 12 Fluoresceína (pg/ml)

Ajuste de regresión lineal Corredor de errores Método estadístico para determinar el error de una recta de regresión. Permite calcular los errores de los parámetros de la recta de regresión. Criterio para decidir si un punto en particular debe o no ser tenido en cuenta en el ajuste de regresión.

Cifras significativas Las cifras con las que se expresa un resultado indican su precisión. 6051.78 ± 33 m/s X 6050 ± 30 m/s

Cifras significativas Ejemplo: El voltaje medido a través de un resistor es 15.4 ± 0.1 V y la corriente es 1.7 ± 0.1 A. El cálculo de la resistencia (R=V/I) arroja un valor de 9.0588235 ohms, con una incertidumbre de medición de 0.59 ohms. Es correcto este valor? Cuál es el valor correcto? R = 9.1 ± 0.6 ohms

Cifras significativas Reglas para expresar una medida y su error: 1. Todo resultado experimental o medida hecha en el laboratorio debe de ir acompañada del valor estimado del error de la medida y a continuación, las unidades empleadas. 2. Los errores se deben dar solamente con una única cifra significativa. Únicamente, en casos excepcionales, se pueden dar una cifra y media (la segunda cifra 5 ó 0). 3. La última cifra significativa en el valor de una magnitud física y en su error, expresados en las mismas unidades, deben de corresponder al mismo orden de magnitud (centenas, decenas, unidades, décimas, centésimas).

Comparación entre datos teóricos y datos experimentales Error Porcentual: E % = 100 - Valor experimental x 100 Valor teórico