Teoría de Lenguajes Teoría de la Programación 1 Soluciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teoría de Lenguajes Teoría de la Programación 1 Soluciones"

Transcripción

1 Ejercicio 1 Teoría de Lenguajes Teoría de la Programación 1 Soluciones a) Si L 1 y L 2 son dos lenguajes regulares, entonces (L 1.L 2 *)* = (L 1 L 2 )* FALSO: SI por ejemplo L 1 es el lenguaje vacío, al concatenar el vacío ( ) con cualquier lenguaje da el lenguaje vacío y por otro lado, la unión del lenguaje con cualquier lenguaje L 2, da ese lenguaje L 2. b) Si L 3 es un lenguaje finito y L 4 es recursivamente enumerable, no libre de contexto, entonces L 4 L 3 no es libre de contexto VERDADERO: Si L 3 es finito, (L3 L4) también es finito y por lo tanto regular. Se puede expresar ese lenguaje (el de la intersección) por medio de una expresión regular formada por un pipe de cada una de sus tiras. Como es regular, es libre de contexto (por Jerarquía de Chomsky). Suponemos L 4 L 3 libre de contexto entonces como L 4 = (L 4 L 3 ) U (L 3 L 4 ), por la propiedad de clausura de los lenguajes libres de contexto con la operación de unión, se deduce que L 4 es libre de contexto. Absurdo. Por tanto L 4 L 3 no puede ser libre de contexto. c) Si L 5 es libre de contexto pero no regular, entonces existen lenguajes regulares L 6 y L 7 tales L 6 L 5 L 7 VERDADERO: Sean L 6 = y L 7 = *. Si tomamos por ejemplo L 5 = 0 n 1 n n>0, este lenguaje no es regular (se demostró en teórico) y claramente verifica la propiedad (siendo ={0,1} ) d) Si L 8 es recursivamente enumerable, no libre de contexto, L 9 que es el resultado de quitar todos los símbolos a de las tiras de L 8 no es libre de contexto FALSO: Alcanza con considerar L 8 = a k b k # k k>0 que no es libre de contexto (por teórico). Si le quitamos a las tiras de este lenguaje los símbolos a, resulta el lenguaje b k # k k>0 es libre de contexto Ejercicio 2 a) El lenguaje es recursivamente enumerable, porque en la parte b) se construye una Máquina de Turing que lo reconoce. Utilizando el contrarrecíproco del Pumping Lemma, demostraremos que no es libre de contexto. Sea N la constante del PL, consideramos la tira z=a N d N b N c N+1 que pertenece a L Consideramos todas las descomposiciones z=uvwxy que cumplen vx >0, vwx N, y mostramos que en todas ellas existe algún i, para el que la tira uv i wx i y L Las descomposiciones son las siguientes

2 aa...aadd...ddbb...bbcc...ccc Caso 1 v x Caso 2 v x Caso 3 v x Caso 4 v x Caso 5 v x Caso 6 v x Caso 7 v x Caso 8 v x Caso 9 v x Caso 10 v x Caso 11 v x Caso 12 v x Caso 13 v x Caso 1: u=a j v=a k w=a l x=a m y=a N-m-l-k-j d N b N c N+1 Como k+m>0, entonces z 0 =uwy= a N-m-k d N b N c N+1 L, porque tiene menos a s que b s. El caso 8 es análogo. Caso 2 u=a j v=a k w=a m x=a N-m-k-j d l y= d N-l b N c N+1 (Suponemos que x a >0, sino estamos en el caso 1). z 0 L porque se desbalancean las a s con las b s. Los casos 3,10,11 son análogos. Caso 4 u=a j v=a k w= a N-j-k d l x=d m y= d N-l-m b N c N+1 Como k+m>0, entonces o k>0 o m>0. Si k>0, z 0 =a N-k d N b N c N+1 L porque las a y las b s se desbalancean. Si m>0, z 2 =a N d N b N+m c N+1 L porque la cantidad de c s es igual o menor a la cantidad de b s. Los casos 9 y 13 son similares. Caso 5 u=a N d k v=d j w= d l x=d m y= d N-l-m-j-k b N c N+1 Como j+m>0, entonces z 2 =a N d N+m+j b N c N+1 L porque hay mayor o igual cantidad de d s que de c s. Los casos 8 y 12 son análogos.

3 Caso 6 u=a N d k v=d j w= d m x=d N-m-j-k b l y= b N-l c N+1 (Suponemos x d >0, sino estamos en un caso ya estudiado). z 2 L porque hay al menos tantas d s como c s. El caso 7 es análogo. Como esas son todas las descomposiciones posibles que cumplen vx >0, vwx N, por el contrarecíproco del Pumping Lemma, demostramos que L NO es libre de contexto b)

4 Ejercicio 3 a) No es regular, se demuestra con el CR del pumping lemma para lenguajes regulares: Dado N la constante del pumping lemma, se elige z = a 3N b 6N Las descomposiciones z = uvw a estudiar que cumplen uv <= N y v >0 son: familia a 3N B 6N 1 v Familia 1: u=a p, v=a q, w=a 3N-(p+q) b 6N z i = a p a qi a 3N-(p+q) b 6N = a q(i-1) + 3N b 6N Para i = 0, z 0 = a 3N - q b 6N Dado que v >0, tenemos q>0 por lo que 2(3N-q) < 6N, y entonces z 0 L Esas son todas las familias que cumplen las condiciones uv <= N y v >0, con lo cual el lenguaje L NO es Regular. b) S --> S1 S2 S3 S1--> as3bbc S2--> aas3bbbbcc S3--> aaas3bbbbbb eps c)

5 Ejercicio 4 [Teoría de Lenguajes] a) S -> I R T F # genero igual cantidad de As y Bs R -> A B R epsilon # genero más Cs que Ds T -> C D T C T C # mezclo A B -> B A A C -> C A A D -> D A B A -> A B B C -> C B B D -> D B C A -> A C C B -> B C C D -> D C D A -> A D D B -> B D D C -> C D # transformo las variable en terminales I A -> a I I B -> b I I C -> c I I D -> d I # termino I F -> epsilon b) Sea el lenguaje L ={w / w {0,#}*, w de la forma #0 k #0 p #, k 0, p>0. i) Construya una gramática simplificada G / L =L(G ). S #A A 0A #B B 0B 0# Esta gramática está simplificada porque no tiene producciones epsilon, no tiene producciones unitarias y todos sus símbolos variables son útiles. ii) Defina la relación R L vista en el curso. Sea L un lenguaje definido sobre un cierto alfabeto, y sean 2 tiras x, y * se dice que x R L y si z * se cumple que: xz L yz L ó xz L yz L iii) Cuántas clases de equivalencia define R L para el lenguaje L? Justifique. Para poder saber la cantidad de clases de equivalencia que define la relación R L, intentamos construir el autómata mínimo. Con eso, hallamos las clases de R M, que como es mínimo, coinciden con las clases de R L. Construimos el siguiente autómata finito determinístico y lo minimizamos.

6 q0q1q2q3 q4 q0q1q2q3 q4 Esto comprueba que el autómata construido YA era el mínimo

7 c) Construya un autómata con salida M: (Q,,,,,q 0 ), que toma como entrada tiras del lenguaje L y genera como salida tiras con una a por cada par de 0 s. Considere: = a,# ; = 0,# ; : Q x ( { }) ( { }) Son ejemplos de tiras: #0000#000 #aa#a0 #0#00000 #0#aa0

8 Ejercicio 4 [Teoría de la Programación 1] Indique si la siguientes funciones son computables. Justifique. f(i, n, k) = 1 si <I x (i), n> no asigna el valor 1 a la variable X k. indef. en caso contrario g(i, k) = 1 si n N, <I x (i), n> asigna el valor 1 a X k. 0 en caso contrario 1. f no es computable. Supongamos que f es computable y existe la macro MF que la computa; podemos probar que K c es un conjunto recursivamente enumerable. Sea MT una macro que, dado un natural m y el índice i de un programa en P: PROGRAM(Xk) -- C -- - RESULT(Xj) retorna el índice del siguiente programa en P: PROGRAM(Xk) -- C -- Xm:=1 RESULT(Xj) Observar que si X m es una variable no utilizada anteriormente en ese programa, saber que a esa variable no se le asigna el valor uno equivale a que el programa entró en un ciclo infinito (ver el ejercicio 7 del práctico). Sea entonces la macro MM que, dado el índice de un programa de índice i, devuelve el máximo número de variable utilizada más uno (una variable sin utilizar por ese programa). Sea el siguiente programa de índice p: PROGRAM(X0) -- entrada índice i X1:=MM(X0); -- X1= variable no utilizada por i. X2:=MT(X1,X0); -- índice de j, programa i con la asignación a Xm X3:=MF(X2,X0,X1) -- se asigna 1 a Xm durante <Ix(j),i>? RESULT(X3) El resultado de este programa depende de su última sentencia: si MF termina, el programa devolverá uno como salida; en caso contrario, el resultado será indefinido.

9 Bajo qué condiciones converge Ix(p)? <Ix(p), i> 1 f(j,i,m)=1, con m=mm(i) y j=mt(m,i) 2 <I x (j), i> no asigna el valor 1 a la variable X m 3 <I x (j), i> 4 <I x (i), i> 5 i K c. 1. Por construcción de Ix(p) 2. Por definición de f. 3. Por construcción de MT(m,i), la asignación a Xm es la última sentencia. 4. Por construcción de MT(m,i), el código que diverge es el mismo que I x (i). 5. Definición de K c. Luego, el programa de índice p calcula la función característica parcial de K c, con lo que este conjunto sería r.e. Absurdo. 2. g no es computable. Supongamos que g es computable y existe la macro MG que la computa; probaremos que es computable. Sea MM la misma macro que la de la demostración anterior, y sea MR una macro que, dado un natural m y el índice i de un programa en P: PROGRAM(Xk) -- C -- - RESULT(Xj) retorna el índice del siguiente programa en P: PROGRAM(Xk) Xk:=i; -- C -- Xm:=1 RESULT(X1) Observar que este programa es constante, y sólo depende de la salida del programa Ix(i) con entrada i. Sea el siguiente programa en P de índice q: PROGRAM(X0) -- entrada índice i X1:=MM(X0); -- X1= variable no utilizada por i. X2:=MR(X1,X0); -- índice de j, programa i con la asignación a Xm X3:=MG(X2,X1) -- existe n que asigna 1 a Xm durante <Ix(j),n>? RESULT(X3) Este programa siempre retorna un resultado, pues MM, MR y MG siempre terminan. Además se cumple que: <Ix(q), i> 1 1 g(j, m)=1, con m=mm(i) y j=mr(m,i) 2 si n <I x (j), n> asigna el valor 1 a la variable X m 3 <I x (i), i> 4 (i)=1.

10 1. Por construcción de Ix(q) 2. Por definición de g. 3. Por construcción de MR(m,i), la asignación a Xm es la última sentencia, y el código que se ejecuta es el mismo que el de I x (i) con entrada i. 4. Definición de. Luego, el programa de índice q calcula la función. Absurdo. Ejercicio 5 [Teoría de la Programación 1] a) Defina la relación de transformación polinómica entre problemas (). b) Dé la definición del problema SAT. c) Cuál es la importancia de este problema? c) El problema SAT, fue el primero que se probó NP-Completo. A partir de él, no es necesario probar que todo problema se reduce a un tercero para probar que este último es NP-Completo; basta reducir SAT a él.

Teoría de Lenguajes. Teoría de la Programación I

Teoría de Lenguajes. Teoría de la Programación I Teoría de Lenguajes Soluciones Consideraciones generales i) Escriba nombre y C.I. en todas las hojas. ii) Numere todas las hojas. iii) En la primera hoja indique el total de hojas. iv) Comience cada ejercicio

Más detalles

Teoría de Lenguajes Solución 2do. Parcial Curso 2013

Teoría de Lenguajes Solución 2do. Parcial Curso 2013 Ejercicio 1 [Evaluación individual del obligatorio] Teoría de Lenguajes Solución 2do. Parcial Curso 2013 a) iv. Cuando se realiza un reduce b) ii. La gramática implementada en el archivo Sintactico.sin

Más detalles

Examen de Teoría de Autómatas y Lenguajes Formales

Examen de Teoría de Autómatas y Lenguajes Formales Examen de Teoría de Autómatas y Lenguajes Formales TAL 16 de Septiembre de 2008 (I) CUESTIONES: (Justifique formalmente las respuestas) 1. Pronúnciese acerca de la veracidad o falsedad de los siguientes

Más detalles

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003.

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Examen IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Este examen tiene

Más detalles

Teoría de la Computación y Leguajes Formales

Teoría de la Computación y Leguajes Formales y Leguajes Formales Prof. Hilda Y. Contreras Departamento de Computación hyelitza@ula.ve hildac.teoriadelacomputacion@gmail.com Contenido Tema 0: Introducción y preliminares: Conocimientos matemáticos

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes Tema 5: Propiedades de los Lenguajes Regulares. Luis Peña

Máquinas Secuenciales, Autómatas y Lenguajes Tema 5: Propiedades de los Lenguajes Regulares. Luis Peña Máquinas Secuenciales, Autómatas y Lenguajes Tema 5: Propiedades de los Lenguajes Regulares Luis Peña Lenguaje Regular Definición 1 (Lenguaje Regular) Un lenguaje L se denomina regular si y sólo si existe

Más detalles

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

Propiedades de lenguajes independientes del contexto

Propiedades de lenguajes independientes del contexto Capítulo 12. Propiedades de lenguajes independientes del contexto 12.1. Identificación de lenguajes independientes del contexto Lema de bombeo. 12.2. Propiedades Cierre, Complemento de lenguajes, Sustitución,

Más detalles

Def.- Un conjunto A N es recursivamente enumerable (r.e.) si. existe una función P-computable, sobreyectiva, total ef : N A

Def.- Un conjunto A N es recursivamente enumerable (r.e.) si. existe una función P-computable, sobreyectiva, total ef : N A CONJUNTOS RECURSIVAMENTE ENUMERABLES.- Def.- Un conjunto A N es recursivamente enumerable (r.e.) si A = o existe una función P-computable, sobreyectiva, total ef : N A Esto significa que por medio de una

Más detalles

Lenguaje Regular. Sumario. Lenguaje Regular. Autómatas y Lenguajes Formales. Capítulo 8: Propiedades de los Lenguajes Regulares

Lenguaje Regular. Sumario. Lenguaje Regular. Autómatas y Lenguajes Formales. Capítulo 8: Propiedades de los Lenguajes Regulares Lenguaje Regular Capítulo 8: Propiedades de los Lenguajes Regulares José Miguel Buenaposada Josemiguel.buenaposada@urjc.es Definición 1 (Lenguaje Regular) Un lenguaje L se denomina regular si y sólo si

Más detalles

Unidad 1 Introducción

Unidad 1 Introducción Unidad 1 Introducción Contenido 1.1 La importancia de estudiar los autómatas y lenguajes formales 1.2 Símbolos, alfabetos y cadenas 1.3 Operaciones sobre cadenas 1.4 Definición de lenguaje y operaciones

Más detalles

1. Probar pertenencia a Lenguajes libres de contexto

1. Probar pertenencia a Lenguajes libres de contexto Tarea 3 Curso : Teoría de la Computación Codigo : CC3102-1 Fecha : 8 de noviembre de 2017 Autor : Bastián Mail : mail@gmail.com 1. Probar pertenencia a Lenguajes libres de contexto 1.1. L 1 = {a m b n

Más detalles

Introducción TEORÍA DE LA COMPUTACIÓN INTRODUCCIÓN. Lógica

Introducción TEORÍA DE LA COMPUTACIÓN INTRODUCCIÓN. Lógica Introducción TEORÍA DE LA COMPUTACIÓN INTRODUCCIÓN Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx Página Web: www.matematicas.unam.mx/fhq

Más detalles

Examen de Computabilidad y Complejidad (CMC) 21 de enero de 2011

Examen de Computabilidad y Complejidad (CMC) 21 de enero de 2011 Examen de Computabilidad y Complejidad (CMC) 21 de enero de 2011 (I) CUESTIONES: (Justifique formalmente las respuestas) 1. Es el lenguaje {x {a,b,c}*: x a x b x c } incontextual? El lenguaje dado no es

Más detalles

1. Cadenas EJERCICIO 1

1. Cadenas EJERCICIO 1 LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada

Más detalles

Máquinas de Turing, recordatorio y problemas

Máquinas de Turing, recordatorio y problemas Máquinas de Turing, recordatorio y problemas Elvira Mayordomo, Universidad de Zaragoza 5 de diciembre de 2014 1. Recordatorio de la definición de máquina de Turing Una máquina de Turing, abreviadamente

Más detalles

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Prof. Hilda Y. Contreras Departamento de Computación hyelitza@ula.ve http://webdelprofesor.ula.ve/ingenieria/hyelitza Objetivo Lenguajes

Más detalles

Introducción TEORÍA DE LA COMPUTACIÓN INTRODUCCIÓN. Lógica

Introducción TEORÍA DE LA COMPUTACIÓN INTRODUCCIÓN. Lógica Introducción TEORÍA DE LA COMPUTACIÓN INTRODUCCIÓN Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx Página Web: www.matematicas.unam.mx/fhq

Más detalles

Reducibilidad. Se dice que f es computable si existe una MT que la computa y que siempre se detiene. f(w)

Reducibilidad. Se dice que f es computable si existe una MT que la computa y que siempre se detiene. f(w) Reducibilidad Def: Sean L 1, L 2 Σ se dirá que L 1 se reduce a L 2 (L 1 α L 2 ) si existe una función total computable (o recursiva) f: Σ Σ tal que Σ, L 1 f() L 2 Σ Σ L 1 L 1 f() f( ) Se dice que f es

Más detalles

Sea NxN = {(0,0), (0,1), (1,0), (0,2), (1,1), (2,0),... } el conjunto de pares de naturales,

Sea NxN = {(0,0), (0,1), (1,0), (0,2), (1,1), (2,0),... } el conjunto de pares de naturales, Ejercicio 1.- Sea NxN = {(0,0), (0,1), (1,0), (0,2), (1,1), (2,0),... } el conjunto de pares de naturales, y la función J : N 2 N definida por : J(m,n) = 1/2(m+n)(m+n+1) + m a) Es J inyectiva? Sobreyectiva?

Más detalles

Departamento de Tecnologías de la Información. Tema 5. Decidibilidad. Ciencias de la Computación e Inteligencia Artificial

Departamento de Tecnologías de la Información. Tema 5. Decidibilidad. Ciencias de la Computación e Inteligencia Artificial Departamento de Tecnologías de la Información Tema 5 Decidibilidad Ciencias de la Computación e Inteligencia Artificial Índice 5.1 Lenguajes reconocibles y decidibles 5.2 Problemas decidibles sobre lenguajes

Más detalles

3 Propiedades de los conjuntos regulares 3.1 Lema de Bombeo para conjuntos regulares

3 Propiedades de los conjuntos regulares 3.1 Lema de Bombeo para conjuntos regulares Curso Básico de Computación 3 Propiedades de los conjuntos regulares 3. Lema de Bombeo para conjuntos regulares El lema de bombeo es una herramienta poderosa para probar que ciertos lenguajes son no regulares.

Más detalles

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción

Más detalles

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007.

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007. Universidad de Puerto Rico Recinto de Mayagüez Facultad de Artes y Ciencias DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Programa de Autómata y Lenguajes Formales Curso: Autómata y Lenguajes Formales Codificación:

Más detalles

Los modelos abstractos de cómputo. Tema 1: Introducción. El modelo transductor. El modelo reconocedor. ordenador. datos. Modelo Abstracto de Cómputo

Los modelos abstractos de cómputo. Tema 1: Introducción. El modelo transductor. El modelo reconocedor. ordenador. datos. Modelo Abstracto de Cómputo Tema 1: Introducción Preliminares Los Modelos Abstractos de Cómputo El principio de inducción Palabras y Lenguajes Palabras Operadores sobre palabras Predicados sobre palabras Lenguajes Operadores sobre

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

Tema 2. Fundamentos de la Teoría de Lenguajes Formales

Tema 2. Fundamentos de la Teoría de Lenguajes Formales Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones

Más detalles

Diremos que una función f : N N es computable cuando existe un programa en P, Q, de índice q, tal que φq = f

Diremos que una función f : N N es computable cuando existe un programa en P, Q, de índice q, tal que φq = f ALGUNAS FUNCIONES NO COMPUTABLES.- Diremos que una función f : N N es computable cuando existe un programa en P, Q, de índice q, tal que φq = f Consideremos la función θ : N {0,1} definida por : θ(n) =

Más detalles

Ciencias de la Computación I

Ciencias de la Computación I Ciencias de la Computación I Nociones básicas de Computabilidad Problemas y Lenguajes Un problema se describe con un lenguaje Cuanto más formal el lenguaje, más precisa la formulación del problema Los

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

Máquinas de Turing. Definición 2

Máquinas de Turing. Definición 2 Definición 1 La Máquina de Turing (MT) es el modelo de autómata com máxima capacidad computacional: la unidad de control puede desplazarse a izquierda o derecha y sobreescribir símbolos en la cinta de

Más detalles

Teoría de la Computación y Lenguajes Formales

Teoría de la Computación y Lenguajes Formales Teoría de la Computación y Lenguajes Formales Propiedades de los Lenguajes Libres de Contexto (LLC) Prof. Hilda Y. Contreras Departamento de Computación hyelitza@ula.ve hildac.teoriadelacomputacion@gmail.com

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES

TEORÍA DE AUTÓMATAS Y LENGUAJES TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Francisco Vico departamento Lenguajes y Ciencias de la Computación área de conocimiento Ciencias de la Computación e Inteligencia Artificial ETSI Informática Universidad

Más detalles

Tema 5: Autómatas a pila. Teoría de autómatas y lenguajes formales I

Tema 5: Autómatas a pila. Teoría de autómatas y lenguajes formales I Tema 5: Autómatas a pila Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison Wesley.

Más detalles

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003 Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación

Más detalles

1 De niciones básicas

1 De niciones básicas Universidad Simón Bolívar Dpto. de Computación y Tecnología de la Información CI3721 - Traductores e Interpretadores Abril-Julio 2008 Profesor Luis astorga Apuntes sobre problemas de decisión y reducción

Más detalles

Temas. Objetivo. Símbolo, alfabeto. Hileras y operaciones con hileras. Operaciones con lenguajes

Temas. Objetivo. Símbolo, alfabeto. Hileras y operaciones con hileras. Operaciones con lenguajes 0 1 Temas Símbolo, alfabeto Hileras y operaciones con hileras Operaciones con lenguajes Objetivo Que el estudiante logre conocer, comprender y manejar conceptos vinculados con la Teoría de Lenguajes Formales

Más detalles

Curso Básico de Computación

Curso Básico de Computación Curso Básico de Computación 3 Propiedades de los conjuntos regulares Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) 3 Propiedades

Más detalles

INGENIERÍA EN INFORMÁTICA MODELOS ABSTRACTOS DE COMPUTO I SOLUCIONES

INGENIERÍA EN INFORMÁTICA MODELOS ABSTRACTOS DE COMPUTO I SOLUCIONES INGENIERÍA EN INFORMÁTICA MODELOS ABSTRACTOS DE COMPUTO I 19 de Enero de 2009 SOLUCIONES PREGUNTA 1 (2 puntos): Son siete cuestiones que debes responder y entregar en esta misma hoja. 1.1 Considera el

Más detalles

Fundamentos de Ciencias de la Computación

Fundamentos de Ciencias de la Computación Fundamentos de Ciencias de la Computación Clase 16: Problema de Primer Cuatrimestre de 2005 Departamento de Cs. e Ing. de la Computación Universidad Nacional del Sur Bahía Blanca, Argentina Un problema

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta.

Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta. Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta. (a) Es posible aceptar por stack vacío el lenguaje {0 i 1 j i = j o j = 2i} con un AA determinístico.

Más detalles

Tema 2: Lenguajes Formales. Informática Teórica I

Tema 2: Lenguajes Formales. Informática Teórica I Tema 2: Lenguajes Formales Informática Teórica I Teoría de Lenguajes Formales. Bibliografía M. Alfonseca, J. Sancho y M. Martínez. Teoría de Lenguajes, Gramáticas y Autómatas, R.A.E.C., Madrid, (1998).

Más detalles

2 Autómatas finitos y gramáticas regulares.

2 Autómatas finitos y gramáticas regulares. 2 Autómatas finitos y gramáticas regulares. Autómata RAE Instrumento o aparato que encierra dentro de sí el mecanismo que le imprime determinados movimientos. Algo autónomo que se comporta de determinada

Más detalles

2 Autómatas finitos y gramáticas regulares.

2 Autómatas finitos y gramáticas regulares. 2 Autómatas finitos y gramáticas regulares. Autómata RAE Instrumento o aparato que encierra dentro de sí el mecanismo que le imprime determinados movimientos. Algo autónomo que se comporta de determinada

Más detalles

Ejemplo de demostración de que cierto lenguaje es el lenguaje aceptado por un AFND.

Ejemplo de demostración de que cierto lenguaje es el lenguaje aceptado por un AFND. Ejemplo de demostración de que cierto lenguaje es el lenguaje aceptado por un AFND. Sea el siguiente autómata finito no determinista M: c q0 a b q1 b q2 Sea L = {x {a, b, c} /x es de la forma a(ba) k bc

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

Lenguajes y Gramáticas

Lenguajes y Gramáticas Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas

Más detalles

El lema de bombeo para lenguajes regulares

El lema de bombeo para lenguajes regulares El lema de bombeo para lenguajes regulares Lenguajes, Gramáticas y Autómatas, cuarto cuatrimestre (primavera) de Ingeniería en Informática http://webdiis.unizar.es/asignaturas/lga Rubén Béjar Hernández,

Más detalles

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas Gramáticas Introducción Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas En algunos lenguajes, una sucesión de símbolos depende del

Más detalles

Problemas Insolubles Ejemplos

Problemas Insolubles Ejemplos Problemas Insolubles Ejemplos A continuación enunciaremos una serie de problemas y demostraremos, mediante la técnica de reducibilidad, que los mismos son indecidibles (no solubles a través de una máquina

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales

Más detalles

Introducción a la Lógica y la Computación

Introducción a la Lógica y la Computación Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 7 de Noviembre de 2014 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/20 Lenguajes Formales

Más detalles

La Forma Normal de Chomsky

La Forma Normal de Chomsky La s Polinomiales para el Problema de la Palabra en CFL Universidad de Cantabria Esquema 1 2 3 Hemos visto hasta aquí como demostrar si una palabra esta dentro de un lenguaje libre de contexto (CFL). El

Más detalles

TEORÍA DE AUTÓMATAS I Informática de Sistemas. Soluciones a las cuestiones de examen del curso 2009/2010

TEORÍA DE AUTÓMATAS I Informática de Sistemas. Soluciones a las cuestiones de examen del curso 2009/2010 TEORÍA DE AUTÓMATAS I Informática de Sistemas Soluciones a las cuestiones de examen del curso 2009/2010 Febrero 10, 1ª semana 1. Considere la gramática de símbolos terminales {(, ), ;, 1, 2, 3}: S (A),

Más detalles

Teoría de Lenguajes. Propiedades y caracterizaciones de los lenguajes incontextuales

Teoría de Lenguajes. Propiedades y caracterizaciones de los lenguajes incontextuales Teoría de Lenguajes Propiedades y caracterizaciones de los lenguajes incontextuales José M. empere Departamento de istemas Informáticos y Computación Universidad Politécnica de Valencia Propiedades y caracterizaciones

Más detalles

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS Licenciatura en Sistemas de Información PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS UNSE FCEyT 1. DESCRIPCIÓN Este taller consta de tres partes. En cada una de ellas se especifican

Más detalles

Minimización de Aútomatas Finitos

Minimización de Aútomatas Finitos Minimización de Aútomatas Finitos Supongamos que para un AFD M = (Q, Σ, δ, q 0, F ) definimos la siguiente relación R M : xr M y ssi δ(q 0, x) = δ(q 0, y) Claramente, podemos notar que esta relación es

Más detalles

Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular:

Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular: Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Máquinas Secuenciales, Autómatas y Lenguajes Hoja de Problemas: Propiedades Lenguajes Regulares Nivel del ejercicio : ( ) básico, ( ) medio,

Más detalles

CLASES DE PROBLEMAS. 1) Introducción 2) Problemas de decisión, Lenguajes, Codificación. y la clase NP-Completa. 6) Otras clases de problemas NP-

CLASES DE PROBLEMAS. 1) Introducción 2) Problemas de decisión, Lenguajes, Codificación. y la clase NP-Completa. 6) Otras clases de problemas NP- CLASES DE PROBLEMAS 1) Introducción 2) Problemas de decisión, Lenguajes, Codificación. y la clase NP-Completa. 6) Otras clases de problemas Computers and Intractability NP- guide to the theory of 1. Introducción:

Más detalles

Propiedades de Lenguajes Regulares

Propiedades de Lenguajes Regulares de INAOE (INAOE) 1 / 44 Contenido 1 2 3 4 (INAOE) 2 / 44 Existen diferentes herramientas que se pueden utilizar sobre los lenguajes regulares: El lema de : cualquier lenguaje regular satisface el pumping

Más detalles

Máquinas de estado finito y expresiones regulares

Máquinas de estado finito y expresiones regulares Capítulo 3 Máquinas de estado finito y expresiones regulares En este tema definiremos y estudiaremos máquinas de estado finito, llamadas también máquinas de estado finito secuenciales o autómatas finitos.

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

Eliminación de Símbolos Inútiles

Eliminación de Símbolos Inútiles Eliminación de Símbolos Inútiles Veremos cómo eliminar los símbolos inútiles de una gramática. Lo haremos con dos algoritmos, que son definidos en la demostración de los siguientes lemas. Lema 1 Dada una

Más detalles

Tema 1: Introducción. Teoría de autómatas y lenguajes formales I

Tema 1: Introducción. Teoría de autómatas y lenguajes formales I Tema 1: Introducción Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison Wesley.

Más detalles

Teoría de Lenguajes - Primer Parcial

Teoría de Lenguajes - Primer Parcial Teoría de Lenguajes - Primer Parcial Primer cuatrimestre de 2002. (30 pts) Dado el autómata M = {q 0,q,q 2,q 3 },{a,b},δ,q 0,{q 3 } δ = a b q 0 {q 0,q } {q 0 } q {q 2 } q 2 {q 3 } q 3 a) Encontrar una

Más detalles

Semántica del Cálculo Proposicional

Semántica del Cálculo Proposicional Semántica del Cálculo Proposicional Revisiones: Abril y Mayo del 2005 - Abril 2006 Á 1. Valuación como función. Notación: Con Form se identifica al conjunto de todas las fómulas y Var al conjunto de todas

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

6 Propiedades de los lenguajes libres de contexto 6.1 El Lema de Bombeo para LLC

6 Propiedades de los lenguajes libres de contexto 6.1 El Lema de Bombeo para LLC 1 Curso ásico de Computación 6 Propiedades de los lenguajes libres de contexto 6.1 El Lema de ombeo para LLC El lema de ombeo para LLC nos dice que siempre existe dos subcadenas cortas muy juntas que se

Más detalles

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle CONJUNTOS REGULARES Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 19 de Octubre de 2008 Contenido Expresiones regulares Teorema de Kleene Autómatas

Más detalles

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila. 0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)

Más detalles

Jerarquía de Chomsky. 1. Clasificación de gramáticas. 2. Clasificación de lenguajes. 3. Gramáticas regulares. 5. Gramáticas dependientes del contexto

Jerarquía de Chomsky. 1. Clasificación de gramáticas. 2. Clasificación de lenguajes. 3. Gramáticas regulares. 5. Gramáticas dependientes del contexto Jerarquía de Chomsky 1. Clasificación de gramáticas 2. Clasificación de lenguajes 3. Gramáticas regulares 4. Gramáticas independientes del contexto 5. Gramáticas dependientes del contexto 6. Gramáticas

Más detalles

Un elemento de un monoide se dice que es inversible si tiene elemento inverso.

Un elemento de un monoide se dice que es inversible si tiene elemento inverso. Tema 1: Semigrupos 1 Tema 1: Semigrupos 1. Semigrupos: Conceptos fundamentales. Recordemos que un sistema algebraico es un conjunto S con una o varias operaciones sobre él, siendo una operación ó ley de

Más detalles

Introducción a la Complejidad Computacional

Introducción a la Complejidad Computacional Introducción a la Complejidad Computacional El análisis sobre decidibilidad que hemos hecho nos permite saber qué podemos hacer y qué no podemos hacer. Pero nada sabemos de qué tan difícil resolver los

Más detalles

5. Propiedades de los Lenguajes Recursivamente Enumerables y de los Lenguajes Recursivos.

5. Propiedades de los Lenguajes Recursivamente Enumerables y de los Lenguajes Recursivos. 5. Propiedades de los Lenguajes Recursivamente Enumerables y de los Lenguajes Recursivos. 5.1 Esquemas de representación de áquinas de Turing. 5.2 Propiedades de cierre. 5.3 Codificación de áquinas de

Más detalles

Coordinación de Ciencias Computacionales INAOE. Teoría de Autómatas y Lenguajes Formales. Temario detallado para examen de ingreso 2012

Coordinación de Ciencias Computacionales INAOE. Teoría de Autómatas y Lenguajes Formales. Temario detallado para examen de ingreso 2012 Coordinación de Ciencias Computacionales INAOE Teoría de Autómatas y Lenguajes Formales Temario detallado para examen de ingreso 2012 1. Autómatas 1.1. Por qué estudiar la teoría de autómatas? 1.1.1. Introducción

Más detalles

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total.

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total. U.R.J.C. Ingeniera Técnica en Informática de Sistemas Teoría de Autómatas y Lenguajes Formales Junio 2009 2do. Parcial Normas : La duración del examen es de 2 horas. Todos los ejercicios se entregarán

Más detalles

13.3. MT para reconocer lenguajes

13.3. MT para reconocer lenguajes 13.3. MT para reconocer lenguajes Gramática equivalente a una MT Sea M=(Γ,Σ,,Q,q 0,f,F) una Máquina de Turing. L(M) es el lenguaje aceptado por la máquina M. A partir de M se puede crear una gramática

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

SSL Guia de Ejercicios

SSL Guia de Ejercicios 1 SSL Guia de Ejercicios INTRODUCCIÓN A LENGUAJES FORMALES 1. Dado el alfabeto = {a, b, c}, escriba las palabras del lenguaje L = {x / x }. 2. Cuál es la cardinalidad del lenguaje L = {, a, aa, aaa}? 3.

Más detalles

Introducción a la Lógica y la Computación

Introducción a la Lógica y la Computación Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 4 de Noviembre de 2015 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/21 Lenguajes Formales

Más detalles

Capítulo 9. Introducción a los lenguajes formales. Continuar

Capítulo 9. Introducción a los lenguajes formales. Continuar Capítulo 9. Introducción a los lenguajes formales Continuar Introducción Un lenguaje es un conjunto de símbolos y métodos para estructurar y combinar dichos símbolos. Un lenguaje también recibe el nombre

Más detalles

Modelos Avanzados de Computación

Modelos Avanzados de Computación UNIVERSIDAD DE GRANADA Departamento de Ciencias de la Computación e Inteligencia Artificial Modelos Avanzados de Computación Práctica 2 Máquinas de Turing Curso 2014-2015 Doble Grado en Ingeniería Informática

Más detalles

Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como

Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como Universidad de la República Facultad de Ingeniería IMERL Sucesiones Curso Cálculo 1 2008 Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como a 1, a

Más detalles

Universidad de Valladolid

Universidad de Valladolid Universidad de Valladolid Departamento de Informática Teoría de autómatas y lenguajes formales. 2 o I.T.Informática. Gestión. Examen de primera convocatoria. 18 de junio de 29 Apellidos, Nombre... Grupo:...

Más detalles

Expresiones regulares, gramáticas regulares Unidad 3

Expresiones regulares, gramáticas regulares Unidad 3 Expresiones regulares, gramáticas regulares Unidad 3 Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes,

Más detalles

GRAMÁTICAS y LENGUAJES INDEPENDIENTES DEL CONTEXTO

GRAMÁTICAS y LENGUAJES INDEPENDIENTES DEL CONTEXTO Dpto. de Informática (ATC, CCIA y LSI). Universidad de Valladolid. TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES I Ingeniería Técnica en Informática de Sistemas. Curso 2011-12 GRAMÁTICAS y LENGUAJES INDEPENDIENTES

Más detalles

Hacia las Gramáticas Propias

Hacia las Gramáticas Propias Hacia las Gramáticas sin Ciclos Universidad de Cantabria Esquema 1 Introducción 2 3 Introducción Las gramáticas libres de contexto pueden presentar diferentes problemas. Ya hemos visto como eliminar los

Más detalles

Computabilidad y lenguajes formales: Sesión 17. Equivalencia entre Expresiones Regulares y Autómatas Finitos

Computabilidad y lenguajes formales: Sesión 17. Equivalencia entre Expresiones Regulares y Autómatas Finitos Computabilidad y lenguajes formales: Sesión 17. Equivalencia entre Expresiones Regulares y Autómatas Finitos Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia

Más detalles

09 Análisis léxico V Compiladores - Profr. Edgardo Adrián Franco Martínez

09 Análisis léxico V Compiladores - Profr. Edgardo Adrián Franco Martínez 2 Contenido Autómata Definición formal de autómata Representación de un autómata Mediante tablas de transiciones Mediante diagramas de estados Autómata finito Definición formal de autómata finito Lenguaje

Más detalles

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars)

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad

Más detalles

Alfabetos y cadenas (1) Alfabetos y cadenas (2) Lenguajes. Propiedades de la concatenación:

Alfabetos y cadenas (1) Alfabetos y cadenas (2) Lenguajes. Propiedades de la concatenación: Alfabetos y cadenas (1) 0 b b 0 1 Alfabeto: Un alfabeto Σ es un conjunto finito y no vacío de símbolos. Cadena sobre un alfabeto Σ: Es una sucesión de caracteres tomados de Σ. Cadena vacía: Cadena sin

Más detalles

Hacia las Gramáticas Propias II

Hacia las Gramáticas Propias II Hacia las Hacia las II Gramáticas sin Ciclos Universidad de Cantabria Outline Hacia las 1 Hacia las 2 3 Definición Hacia las Definición Diremos que una gramática libre de contexto G := (V, Σ, Q 0, P) es

Más detalles

Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado.

Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado. Universidad Rey Juan Carlos Curso 2010 2011 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 12 Propiedades de L.I.C. Nivel del ejercicio : ( ) básico,

Más detalles

Teoría Matemática de la Computación Segundo Problemario Prof. Miguel A. Pizaña 13 de julio de 2016

Teoría Matemática de la Computación Segundo Problemario Prof. Miguel A. Pizaña 13 de julio de 2016 Teoría Matemática de la Computación Segundo Problemario Prof. Miguel A. Pizaña 13 de julio de 2016 I Máquinas de Turing. 1. Qué es un a Máquina de Turing? Cómo se define? Cómo se llaman las teorías que

Más detalles