Índice. Página. Práctica. Actividades. No. 1 Vectores 3. No. 2 Trabajo y Energía (Fricción) 7. No. 3 Poleas 10. No. 4 Segunda Ley de Newton 14

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Índice. Página. Práctica. Actividades. No. 1 Vectores 3. No. 2 Trabajo y Energía (Fricción) 7. No. 3 Poleas 10. No. 4 Segunda Ley de Newton 14"

Transcripción

1

2 Índice Página Práctica No. 1 Vectores 3 No. 2 Trabajo y Energía (Fricción) 7 No. 3 Poleas 10 No. 4 Segunda Ley de Newton 14 No. 5 Cantidad de Movimiento Angular 16 Actividades Actividad 1. Fricción 19 Actividad 2. Poleas 20 2 Colegio de Bachilleres de BCS

3 Práctica 1. Vectores Objetivo Resolver problemas de equilibrio de los cuerpos mediante el análisis de las variables que están involucradas en el sistema de fuerzas concurrentes, por el método del paralelogramo. Repaso de conceptos y habilidades La estática es la parte de la mecánica que estudia las condiciones bajo las cuales los cuerpos están en reposo. Según este criterio, la estática es un caso particular de la dinámica, es decir, estudia aquellos cuerpos o sistemas que no están en movimiento continuo. Un sistema de vectores es concurrente cuando la dirección o línea de acción de los vectores se cruza en algún punto, dicho punto constituye el punto de aplicación de los vectores. La resultante de un sistema de vectores es aquel vector que produce el mismo efecto de los demás vectores integrantes del sistema. El vector encargado de equilibrar un sistema de vectores recibe el nombre de equilibrante, tiene la misma magnitud y dirección que la resultante, pero con sentido contrario. Para sumar magnitudes vectoriales empleamos métodos gráficos, como el del paralelogramo o el del polígono, y métodos analíticos, porque los vectores no pueden sumarse aritméticamente por tener dirección y sentido. Materiales: Laboratorio: 3 dinamómetros 2 soportes universales 1 soporte de cruz 1 plomada. 3 trozos de piola o cordón. Alumnos: 3 hojas milimétricas 1 Lápiz 1 Calculadora 2 transportadores. 1 regla graduada 1 argolla metálica Experimento 1: Sujete tres cordones a la argolla metálica como se ve en la figura 1, que se muestra a continuación. Con ayuda de otros dos compañeros tire cada uno un extremo de los cordones, de tal manera que la argolla no se mueva. Cuál es su conclusión acerca de las fuerzas que actúan sobre la argolla? Enganche un dinamómetro a cada extremo de los cordones y registre la lectura de cada dinamómetro cuando el sistema quede en equilibrio. Colegio de Bachilleres de BCS 3

4 F1 F2 F3 FIGURA 1: Sistema de fuerzas concurrentes Coloque debajo de las argollas una hoja de papel y trace sobre ella las líneas correspondientes a las posiciones de los cordones. Anote en cada trazo el valor de la lectura de los dinamómetros en la tabla 1, así como el ángulo que forman entre sí, medido con su transportador. Con los trazos hechos en la hoja y mediante una escala conveniente, represente el diagrama vectorial. Considere la fuerza F 3, como la equilibrante de las otras dos fuerzas: F 1 y F 2. Compare el valor de F 3, leído en el dinamómetro, con el obtenido gráficamente al sumar F 1 y F 2 por el método del paralelogramo. TABLA 1: Recolección de datos FUERZAS ANGULO DINAMÓMETRO OBSERVACIONES ( ) (Kgf) F1 F2 F3 Experimento 2: Enganche un dinamómetro a cada extremo de los cordones y monte un dispositivo como el mostrado en la figura 2. Registre la lectura de cada dinamómetro cuando el sistema quede en equilibrio. FIGURA 2: Sistema de fuerzas concurrentes 4 Colegio de Bachilleres de BCS

5 Considere las fuerzas que están involucradas en la figura 2, las cuales se leen en cada uno de los dinamómetros y transportadores y anota las lecturas en la tabla 2. Mueve hacia la derecha y a la izquierda la plomada y los datos arrojados por el dinamómetro y el transportador anótalos en la tabla 2. Cálculos, mediciones y tablas: TABLA 2: Recolección de datos FUERZAS ANGULO FX FY Cuestionario: 1. Qué condición se debe cumplir para que un cuerpo esté en equilibrio? 2. Cómo se determina la resultante de dos fuerzas concurrentes en forma gráfica? 3. Cómo define a la resultante de un sistema de fuerzas? 4. Qué características tiene la equilibrante de un sistema de fuerzas? 5. Qué método gráfico utilizaría para sumar tres o más fuerzas concurrentes? 6. Por qué decimos que cualquiera de las fuerzas concurrentes puede considerarse como la equilibrante de las fuerzas que forman al sistema? Colegio de Bachilleres de BCS 5

6 7. Cómo se clasifican los sistemas de fuerzas? Conclusiones: ACREDITACION DE LA PRÁCTICA 1 FECHA: 6 Colegio de Bachilleres de BCS

7 Práctica 2. Trabajo y Energía (Fricción) Temas Selectos de Física Objetivo Determinar cuantitativamente el trabajo que debe realizarse para mover un cuerpo (Caja de Madera), de un lugar a otro en un tiempo determinado. Repaso de conceptos y habilidades Cuando nosotros oímos hablar de trabajo, inmediatamente viene a nuestra mente algo que implique un esfuerzo fisiológico y que nos provoca cansancio; sin embargo, está interpretación poco tiene que ver con la forma de conceptuar el trabajo en Física. Se realiza trabajo cuando un cuerpo se mueve por la aplicación de una fuerza. Por lo tanto la definición de trabajo quedaría como sigue: El trabajo es una magnitud escalar producido sólo cuando una fuerza mueve un cuerpo en su misma dirección. Su valor se calcula multiplicando la magnitud de la componente de la fuerza localizada en la misma dirección en que se efectúa el movimiento del cuerpo, por el desplazamiento que éste realiza. T = F cosθ d En términos generales la energía se define como la capacidad que tienen los cuerpos para realizar un trabajo. Materiales: LABORATORIO 1 dinamómetro 1 cronómetro 1 flexometro ALUMNO 1 Caja de Madera 1 block Un trozo de cuerda de 8.5 m de longitud Un marcador de color negro Procedimiento 1. El profesor mostrará un lugar adecuado para instalar el equipo, para este caso se usará la cancha deportiva. 2. Primeramente trazar en el piso de la cancha una línea de 10 m con una indicación de cada metro hasta el final. 3. Colocar a una persona en cada marca de un metro con cuaderno, lápiz y cronometro para la toma de datos. 4. Colocar la caja de madera en posición de inicio, la cual deberá estar amarrada con la cuerda y graduada a cierto ángulo respecto al piso. 5. Al inicio de la cuerda y después de la caja colocar el dinamómetro. 6. Proceder a halar la caja de madera con el bloque en su parte interior mediante una fuerza aplicada al otro extremo de la cuerda. 7. Tomar las lecturas correspondientes y registrarlas en la siguiente tabla: Colegio de Bachilleres de BCS 7

8 Cálculos, mediciones y tablas: Distancia Angulo ( m ) ( ) Determinación del trabajo realizado Fuerza Fuerza Tiempo ( Kgf ) ( Nw) (s) Trabajo = F X d X cos Esquema: Caja de madera Ángulo Dinamómetro F Piso 10 m Cuestionario: 1. Cómo defines con tus propias palabras lo que es Trabajo mecánico? 2. Qué variables consideras importantes para calcular el trabajo mecánico? 8 Colegio de Bachilleres de BCS

9 3. En nuestra vida cotidiana, donde identificas que se realice un trabajo mecánico? 4. Crees que el trabajo que se realizó en está practica, la fuerza aplicada fue constante o variable? 5. Crees que un burro al llevar una carga de leña en el lomo, realiza un trabajo mecánico? Si o No. Porque: Conclusiones: ACREDITACION DE LA PRÁCTICA 2 FECHA: Colegio de Bachilleres de BCS 9

10 Práctica 3. Poleas Objetivo Encontrar la ventaja mecánica y la eficiencia de varios sistemas diferentes de poleas. Repaso de conceptos y habilidades Las poleas son máquinas simples que pueden utilizarse para cambiar la dirección de una fuerza, reducir la fuerza necesaria para mover una carga a cierta distancia o aumentar la rapidez a la cual la carga está movimiento, pero no cambian la cantidad de trabajo efectuado. Sin embargo, si se reduce la fuerza efectiva requerida, la distancia que recorre la carga disminuye en proporción a la distancia que recorre la fuerza. Los sistemas de poleas pueden contener una sola polea o combinación de poleas fijas y móviles. En una máquina ideal, en la que no hay fricción, toda la energía se transfiere y el trabajo de entrada del sistema es igual al trabajo de salida. El trabajo de entrada es igual a la fuerza multiplicada por la distancia que dicha fuerza recorre, F e d e. El trabajo de salida es igual a la fuerza de salida (carga) multiplicada por la distancia recorrida, F r d r. La ventaja mecánica ideal, VMI, del sistema de poleas puede encontrarse dividiendo la distancia producto de la fuerza entre la distancia que la carga se desplaza. De tal modo, VMI = d e / d r. La máquina ideal tienen una eficiencia de 100 %. En el mundo real, sin embargo, las eficiencias medidas son menores que 100%. La eficiencia se encuentra por medio de: Trabajo de salida Eficiencia = 100 % Trabajo de entrada Materiales: Laboratorio: - 2 poleas simples - 2 poleas dobles - conjunto de masas métricas con gancho - Dinamómetro - Soporte de polea Alumno: - Cuerda (2 m) - Metro Procedimiento 1. Monte el sistema de una polea fija, Como se muestra en la figura 1 (a). 2. Seleccione una masa que pueda medirse en su dinamómetro, Registre el valor de su masa en la tabla 1. Determine el peso, en newtons, de la masa que va a levantarse multiplicando su masa en kilogramos por la aceleración de la gravedad. Recuerde que W = mg. 10 Colegio de Bachilleres de BCS

11 Figura Levante con cuidado la masa jalándola con el dinamómetro. Mida la altura, en metros, que la masa se levanta. Anote este valor en la tabla 1. Calcule el trabajo de salida de la masa multiplicando su peso por la altura que se eleva. Registre este valor en la tabla Mediante el empleo del dinamómetro levante la masa a la misma altura que se elevó en el paso 3. Pida a su compañero de práctica que lea, directamente en el dinamómetro, la fuerza, en newtons, requerida para elevar la masa.. (Si su dinamómetro esta equilibrado en gramos, en lugar de newtons, calcule la fuerza multiplicando la lectura expresada en kilogramos por la aceleración de la gravedad). Anote en la tabla 1 como la fuerza del dinamómetro. Cuando usted esté levantando la carga con el dinamómetro, jale hacia arriba de manera lenta y uniforme, empleando la cantidad de fuerza mínima necesaria para mover la carga. Cualquier fuerza en exceso acelerará la masa y ocasionará un error en sus cálculos. 5. Mida la distancia, en metros, a lo largo de la cual la fuerza actuó para levantar la carga hasta la altura que se elevó. Registre este valor en la tabla 1 como la distancia, d, a lo largo de la cual actúa la fuerza. Determine el trabajo de entrada para levantar la masa multiplicando la lectura de la fuerza del dinamómetro por la distancia a lo largo de la cual actuó la fuerza. Anote el valor para el trabajo de entrada en la tabla Repita los pasos del 2 al 5 para una carga diferente. 7. Repita los pasos del 2 al 6 para cada uno de los diferentes arreglos de poleas en las figuras 1(b), 1 (c) y 1(d). Asegúrese de incluir la masa de la(s) polea(s) como parte de la masa levantada. 8. Cuente el número de hilos elevadores de la cuerda utilizados para soportar el peso o carga en cada arreglo, del (a ) al (d). Registre estos valores en la tabla 2. Colegio de Bachilleres de BCS 11

12 Observaciones y datos Tabla 1. Arreglo de poleas Masa levantada (kg) Peso (W) de la masa (N) Altura (h) que se levanta la masa (m) Fuerza (F) del dinamómetro (N) Distancia (d) a lo largo de la cual actúa la fuerza (m) (a) (b) (c) (d) Tabla 2. Arreglo de poleas Trabajo de salida (Wh) (J) Trabajo de entrada (Wh) (J) VMI (de/dr) VM Número de hilos elevadores Eficiencia (%) (a) (b) (c) (d) Análisis 1. Encuentre la eficiencia de cada sistema. Anote los resultados en la tabla2. Cuáles son algunas razones posibles por las cuales la eficiencia nunca es del 100 %? 2. Calcule la ventaja mecánica ideal, VMI, para cada arreglo dividiendo de entre dr. Registre los resultados en la tabla 2. Qué sucede con la fuerza F, cuando la ventaja mecánica se vuelve más grande? 12 Colegio de Bachilleres de BCS

13 3. Cómo afecta el aumento de la carga a la ventaja mecánica ideal y eficiencia del sistema de poleas? 4. De qué manera el incremento en el número de poleas afecta la ventaja mecánica ideal y la eficiencia del sistema de poleas? 5. La ventaja mecánica también puede determinarse a partir del número de hilos que soportan el peso o carga. Compare la VMI de la pregunta 2 con el número de vueltas de hilo o cuerda que usted contó. Concuerdan los resultados? 6. Explique por qué el siguiente enunciado es falso: una máquina reduce la cantidad de trabajo que usted tiene que efectuar. Indique qué máquina en realidad lo hace. Aplicación En el espacio de abajo, dibuje un sistema de poleas que pueda utilizarse para levantar un bote desde su remolque hasta las vigas de una cochera, tal que la fuerza efectiva se mueva una distancia de 60 m mientras que la carga se desplaza 10m. Conclusiones: ACREDITACION DE LA PRÁCTICA FECHA: Colegio de Bachilleres de BCS 13

14 Práctica 4. Segunda Ley de Newton Objetivo Comprobar que una aceleración o cambio de dirección de un objeto se produce cuando sobre él actúa una fuerza externa. Materiales y sustancias: Laboratorio 1 juego de pesas (pza. 16) 2 poleas (pzas. 12a. Y 12b) 1 carro de hall (pza. 20) 1 metro (pza. 19a) 1 para-choque(pza. 33) 2 nueces dobles (pzas. 53a. y 53b) 1 prensa de mesa (pza. 60a) 1 varilla con soporte (pza. 65) 1 trozo de hilo de cáñamo (pza. 64) Alumno Cronometro o reloj con segundero Las piezas marcadas entre paréntesis se encuentran en el equipo de mecánica. Procedimiento 1. Con el material enlistado, instala el dispositivo que aparece en la figura Sobre la mesa de trabajo coloque el carrito, el cuál deberá estar atado con un cordel suficientemente largo que pase por la garganta de las dos poleas fijas, instaladas en el extremo de la mesa. 3. Ata el otro extremo del cordel a un portapesas de 10 gr., se marca el punto de partida del carrito y, en el momento de partida se pone a funcionar el cronómetro hasta que llegue al lugar previamente marcado, por ejemplo 20 cm. 14 Colegio de Bachilleres de BCS

15 4. Repite el procedimiento anterior partiendo el carrito del punto inicial pero recorriendo ahora distancias mayores como 40 cm, 60 cm, etc. tomando los tiempos con el cronómetro. 5. En cada experiencia calcular la aceleración aplicando la siguiente formula. a = d 2 t donde : a = aceleración d = dis tancia t = tiempo Cálculos, mediciones y tablas: Experimento MASA DISTANCIA ( cm ) TIEMPO ( s ) TIEMPO ( s 2 ) ACELERACIÓN cm 2 s Cuestionario: 1 En qué unidades se puede expresar la aceleración? 2 Se cumple F = ma? ( F= fuerza; m= masa; a=aceleración ) 3 Porqué? Conclusiones: ACREDITACION DE LA PRÁCTICA FECHA: Colegio de Bachilleres de BCS 15

16 Práctica 5. Cantidad de movimiento angular Objetivo Investigar los momentos de torsión y la cantidad de movimiento angular. Materiales: Laboratorio: Alumno: - - Rueda de bicicleta como giroscopio - Banco giratorio o plataforma rotatoria - 2 masas de 3 kg Procedimiento Tenga cuidado mientras efectúa las siguientes actividades. Si usted se marea o siente náuseas es posible que pierda el equilibrio y caiga del banco o la plataforma. 1. Siéntese sobre el banco giratorio o permanezca de pie sobre la plataforma rotatoria y sostenga una masa grande en cada mano. Extienda sus brazos y pida a su compañero que lo haga girar suavemente. Observe qué sucede cuando usted contrae sus brazos hacia adentro. Registre sus observaciones en el punto 1 de la sección Observación y datos. 2. Mientras está sentado sobre el banco giratorio, o de pie en la plataforma, sostenga con ambas manos el eje de la rueda de la bicicleta, como se indica en la figura 1. Su compañero tiene que hacer girar la rueda. Lentamente rote la rueda hacia la derecha levantando su mano izquierda y bajando la derecha. Observe qué sucede. Registre sus observaciones en el punto Cambie posiciones con su compañero de práctica de modo que cada uno tenga un conjunto de observaciones. Figura 1. Se observará el efecto de inclinar una rueda giratoria. 16 Colegio de Bachilleres de BCS

17 Observaciones y datos Punto 1. Punto 2. Temas Selectos de Física Análisis 1. De acuerdo con las observaciones que registró en el punto 1, se conserva su cantidad de movimiento angular? Explique, empleando la ley de la conservación de cantidad de movimiento. 2. Bajo qué condiciones podría cambiar el momento angular de un sistema de masas banco estudiante aislado y cerrado? Describa una de tales condiciones. 3. Utilice sus observaciones del punto 2 para explicar qué sucede en términos de la ley de la conservación de la cantidad de movimiento. Aplicación Si un cilindro uniformemente lleno, tal como un cilindro de madera, y un cilindro hueco medio lleno, como una lata con tierra, ruedan hacia abajo por un plano inclinado, Esperaría usted que llegaran a la parte inferior al mismo tiempo? Inténtelo. Explique sus observaciones en términos de la inercia rotacional. Colegio de Bachilleres de BCS 17

18 Conclusiones: ACREDITACION DE LA PRÁCTICA FECHA: 18 Colegio de Bachilleres de BCS

19 Actividad: 1 TEMA(S): FRICCIÓN GLOBO AERÓBICO MATERIAL 1 CD 1 tapón de corcho 1 tubo vidrio 1 globo Cinta adhesiva PROCEDIMIENTO Inserte el tubo de vidrio en el tapón de corcho, péguelo al CD con la cinta adhesiva, ensamble el globo al tapón y posteriormente ínflelo, inmediatamente coloque el dispositivo sobre la mesa, dé un pequeño impulso al dispositivo, primero cuando el globo esta lleno de aire y después sin aire. Qué sucede en ambos casos? EXPLICACIÓN En el primer caso el dispositivo se desliza con gran facilidad, debido a que al dejar escapar el aire entre el CD y la superficie de la mesa se rompe la fricción que existe entre ellos; y en el segundo caso al no existir el colchón de aire, la fricción entre el CD y la superficie es mucho mayor, por lo tanto, se desliza con mayor dificultad. Tiempo de duración: 5 minutos Colegio de Bachilleres de BCS 19

20 Actividad: 2 TEMA(S): POLEAS DESPLAZA GRANDES PESOS EJERCIENDO FUERZAS PEQUEÑAS MATERIAL 2 Varillas 1 cuerda PROCEDIMIENTO Pida a cuatro compañeros que sujeten el mango de las varillas, una cerca de la otra. Amarre la cuerda en uno de los extremos y haga que esta cuerda pase alrededor de los mangos, como se indica en la figura de este problema. Pida, después, a sus compañeros que traten de separar las varillas, mientras que usted jala el extremo libre de la cuerda, tratando de aproximarlas. Observe que, fácilmente, usted vencerá en la competencia. Si se tiene en cuenta lo que fue analizado acerca del funcionamiento de las poleas, trate de explicar cómo y cuántas veces su fuerza se multiplico. Tiempo de duración: 5 minutos 20 Colegio de Bachilleres de BCS

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

FRICCIÓN TRABAJO Y POTENCIA.

FRICCIÓN TRABAJO Y POTENCIA. INSTITUTO POLITÉCNICO NACIONAL CECyT N 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA II PRÁCTICA No. 10 FRICCIÓN TRABAJO Y POTENCIA. NOMBRE. GRUPO. No. BOLETA. FECHA. EQUIPO No. ASISTENCIA. BATA. REPORTE.

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos.

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos. MECANISMOS A. Introducción. Un mecanismo es un dispositivo que transforma el movimiento producido por un elemento motriz (fuerza de entrada) en un movimiento deseado de salida (fuerza de salida) llamado

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas.

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas. Dos masas de 1 y 2 kg están unidas por una cuerda inextensible y sin masa que pasa por una polea sin rozamientos. La polea es izada con velocidad constante con una fuerza de 40 Nw. Calcular la tensión

Más detalles

EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO

EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO Se denomina péndulo simple (o péndulo matemático) a un punto material suspendido de un hilo inextensible y sin peso, que

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo)

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo) Existen ciertas magnitudes que quedan perfectamente determinadas cuando se conoce el nombre de una unidad y el numero de veces que se ha tomado.estas unidades se llaman escalares (tiempo, volumen, longitud,

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS SUMA DE VECTORES OBJETIVOS Usar la mesa de fuerzas

Más detalles

MOMENTO ANGULAR Y TORCAS COMO VECTORES

MOMENTO ANGULAR Y TORCAS COMO VECTORES MOMENTO ANGULAR Y TORCAS COMO VECTORES OBJETIVOS: Identificar la torca y el momento angular como magnitudes vectoriales. Examinar las propiedades matemáticas del producto cruz y algunas aplicaciones. Describir

Más detalles

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE Trabajo y energía 1. Trabajo y energía Hasta ahora hemos estudiado el movimiento traslacional de un objeto en términos de las tres leyes de Newton. En este análisis la fuerza ha jugado un papel central.

Más detalles

M E T R O L O G I A APUNTES DE PIE DE METRO.

M E T R O L O G I A APUNTES DE PIE DE METRO. 1 M E T R O L O G I A APUNTES DE PIE DE METRO. 2 M E T R O L O G I A PIE DE METRO. Es un instrumento para medir longitudes que permite lecturas en milímetros y en fracciones de pulgada, a través de una

Más detalles

VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto.

VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto. Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar

Más detalles

Equipo requerido Cantidad Observaciones Mesa de fuerzas 1 Poleas 3 Anillo de Plástico 1 Portapesa + hilo 3 Juego de Masas 1

Equipo requerido Cantidad Observaciones Mesa de fuerzas 1 Poleas 3 Anillo de Plástico 1 Portapesa + hilo 3 Juego de Masas 1 DEPARTAMENTO DE FISICA Y GEOLOGIA No 1 UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo General Encontrar la fuerza resultante de dos vectores por descomposición y por graficación.

Más detalles

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de cualquier modelo en el software Algor. La preparación de un modelo,

Más detalles

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CAPITULO 7 FISICA I CUARTA, QUINTA Y SEXTA EDICION SERWAY Raymond A. Serway Sección 7.1 Trabajo hecho por una fuerza constante Sección 7. El producto escalar de dos

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura. Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una

Más detalles

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 Prueba de Acceso para Mayores de 25 años Para que un adulto mayor de 25 años pueda incorporarse plenamente en los estudios superiores de la Física

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

6. Carro de medida. Notas del maestro. Ciencia Energía Fuerzas Fricción Mediciones no estándar

6. Carro de medida. Notas del maestro. Ciencia Energía Fuerzas Fricción Mediciones no estándar Notas del maestro 6. Carro de medida Ciencia Energía Fuerzas Fricción Mediciones no estándar Diseño y tecnología Montaje de componentes Evaluación Uso de mecanismos Vocabulario Precisión Ángulo Distancia

Más detalles

GUÍA DE LOS MAESTROS ACTIVIDAD: MIDE EL PESO USANDO UNA BALANZA DE MUELLE

GUÍA DE LOS MAESTROS ACTIVIDAD: MIDE EL PESO USANDO UNA BALANZA DE MUELLE GUÍA DE LOS MAESTROS ACTIVIDAD: MIDE EL PESO USANDO UNA BALANZA DE MUELLE Tiempo Sugerido: 150 minutos (tres períodos de 50 minutos) Objetivo General: Reconocer que el peso es una fuerza. Objetivos Específicos:

Más detalles

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA Objetivos 1. Definir las energías cinética, potencial y mecánica. Explicar el principio de conservación de la energía mecánica

Más detalles

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que:

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que: Las fuerzas concurrentes son todas las fuerzas que actúan cuyas líneas de acción pasan a través de un punto común. Las fuerzas que actúan sobre un objeto puntual son concurrentes porque toas ellas pasan

Más detalles

LABORATORIO DE MECANICA FUERZA CENTRÍPETA

LABORATORIO DE MECANICA FUERZA CENTRÍPETA 8 LABORATORIO DE MECANICA FUERZA CENTRÍPETA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Comprobar experimentalmente la relación entre la fuerza centrípeta

Más detalles

Segunda Ley de Newton

Segunda Ley de Newton Segunda Ley de Newton Laboratorio de Mecánica y fluidos Objetivos El alumno entenderá la relación entre las fuerzas de la naturaleza y el movimiento. El estudiante encontrará la relación entre las fuerzas

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010 PROBLEMAS RESUELOS DE PLANO INCLINADO Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 010 Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com

Más detalles

Guía 7 4 de mayo 2006

Guía 7 4 de mayo 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 7 4 de mayo 2006 Conservación de la energía mecánica

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg.

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg. CAPIULO 1 COMPOSICIO Y DESCOMPOSICIO DE VECORES Problema 1.2 SEARS ZEMASKY Una caja es empujada sobre el suelo por una fuerza de 20 kg. que forma un ángulo de con la horizontal. Encontrar las componentes

Más detalles

Materiales: (Preparación previa) Para cada subgrupo: 6 pedazos de cinta adhesiva de 20 cm 1 carro de batería Concepto: Movimiento (rapidez,

Materiales: (Preparación previa) Para cada subgrupo: 6 pedazos de cinta adhesiva de 20 cm 1 carro de batería Concepto: Movimiento (rapidez, GUÍA DE LOS MAESTROS ACTIVIDAD: )CUÁL LLEGARÁ PRIMERO? Tiempo Sugerido: 200 minutos (cuatro períodos de 50 minutos) Objetivo General: Analizar el movimiento de los cuerpos. Objetivos Específico: a. Definir

Más detalles

MECANISMOS. Veamos los distintos tipos de mecanismos que vamos a estudiar uno a uno.

MECANISMOS. Veamos los distintos tipos de mecanismos que vamos a estudiar uno a uno. MECANISMOS En tecnología, cuando se diseña una máquina, lo más normal es que esté movida por un motor, que tiene un movimiento circular, pero a veces no es ese el tipo de movimiento que necesitamos. En

Más detalles

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé?

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé? 2do Medio > Física Ley de Hooke Resortes y fuerzas Analiza la siguiente situación Aníbal trabaja en una fábrica de entretenimientos electrónicos. Es el encargado de diseñar algunas de las máquinas que

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

Qué es una fuerza? Cómo se relaciona con el movimiento?

Qué es una fuerza? Cómo se relaciona con el movimiento? Qué es una fuerza? Cómo se relaciona con el movimiento? Prof. Bartolomé Yankovic Nola, 2012 1 Cuando pateamos una pelota o empujamos una mesa, podemos afirmar que se está ejerciendo o se ha ejercido una

Más detalles

Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012

Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012 Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012 Unidad 1: Fuerzas Programa analítico Medidas de una fuerza. Representación gráfica de fuerzas. Unidad de

Más detalles

Para el primer experimento: 10 hojas de papel tamaño carta u oficio cinta adhesiva. Para el segundo experimento: Una toma de agua (grifo) Una manguera

Para el primer experimento: 10 hojas de papel tamaño carta u oficio cinta adhesiva. Para el segundo experimento: Una toma de agua (grifo) Una manguera Muchas veces observamos a las aves volar y entendemos que lo hacen por su misma naturaleza, y en algunas ocasiones vemos a los aviones (aves de metal) que hacen lo mismo que las aves: también vuelan, pero

Más detalles

Péndulo simple. Curso 2010/11. Comprobar los factores que determinan el periodo de un péndulo simple.

Péndulo simple. Curso 2010/11. Comprobar los factores que determinan el periodo de un péndulo simple. Prácticas de laboratorio de Física I 1 Objetivos Péndulo simple Curso 2010/11 Comprobar los factores que determinan el periodo de un péndulo simple. Determinar la aceleración de la gravedad a través del

Más detalles

Trabajo, energía y potencia

Trabajo, energía y potencia Empecemos! Si bien en semanas anteriores hemos descrito las formas en las que se puede presentar la energía y algunas transformaciones que pueden darse en el proceso de producción, distribución y uso de

Más detalles

10: 28,29,30 11: 30,31,32 12: 32,33,34 13: 34,35,36 14: 36,37,38 15: 38,39,40

10: 28,29,30 11: 30,31,32 12: 32,33,34 13: 34,35,36 14: 36,37,38 15: 38,39,40 90: 28,29 100: 30,31, 110: 31.50, 32 120: 33,34 130: 34.50, 35 140: 36,37,38.50 150: 38,39 160: 40, 40.50 170: 41,42,42.50 180: 44,45,46,47 11: 30,31 12: 32,33,34 13: 34,35,36 14: 36,37,38 15: 38,39,40

Más detalles

Movimiento en dos y tres dimensiones. Teoría. Autor:

Movimiento en dos y tres dimensiones. Teoría. Autor: Movimiento en dos y tres dimensiones Teoría Autor: YeissonHerney Herrera Contenido 1. Introducción 1.1. actividad palabras claves unid 2. Vector posición 2.1. Explicación vector posición 2.2. Animación

Más detalles

Cilindros Rodantes cilindros Rodantes

Cilindros Rodantes cilindros Rodantes M E C Á N I C A Cilindros Rodantes cilindros Rodantes M E C Á N I C A Relacionados con el movimiento de rotación de un sólido existen en el Centro Principia varios módulos. El orden, más conveniente, de

Más detalles

Actividad principal: Piso Loco Notas para el profesor

Actividad principal: Piso Loco Notas para el profesor Objetivos de aprendizaje A lo largo de esta actividad, los estudiantes construirán y pondrán a prueba modelos que incorporan las siguientes técnicas asociadas al uso de poleas: Reducción de la velocidad

Más detalles

Guía 9 Miércoles 14 de Junio, 2006

Guía 9 Miércoles 14 de Junio, 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional

Más detalles

Programa Tracker : Cómo generar Vectores y sumarlos

Programa Tracker : Cómo generar Vectores y sumarlos Programa Tracker : Cómo generar Vectores y sumarlos Esta guía explica cómo usar vectores, la posibilidad de sumarlos, presentar los resultados directamente en pantalla y compararlos de forma gráfica y

Más detalles

Procesos de Fabricación I. Guía 2, 3 0. Procesos de Fabricación I

Procesos de Fabricación I. Guía 2, 3 0. Procesos de Fabricación I Procesos de Fabricación I. Guía 2, 3 0 Procesos de Fabricación I Procesos de Fabricación I. Guía 2, 3 1 Facultad: Ingeniería Escuela: Ingeniería Mecánica Asignatura: Procesos de Fabricación 1 Tema: Uso

Más detalles

EJERCICIOS DE MECANISMOS

EJERCICIOS DE MECANISMOS DEPARTAMENTO DE TECNOLOGÍA I.E.S. Iturralde EJERCICIOS DE MECANISMOS CURSO: DEPARTAMENTO DE TECNOLOGÍA 0 PALANCAS EJERCICIOS DE ELECTRICIDAD PALANCAS 1. Enumera la ley de la palanca y escribe su fórmula

Más detalles

Electrostática: ejercicios resueltos

Electrostática: ejercicios resueltos Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

Protocolo de Experiencias de Mecánica

Protocolo de Experiencias de Mecánica Torreón de la Física de Cartes y Aula Espacio Tocar la Ciencia J. Güémez Aula de la Ciencia Universidad de Cantabria Septiembre 9, 2010 Protocolo de Experiencias de Mecánica La mecánica tiene que ver con:

Más detalles

Máquinas Simples. Cuando hablamos de palancas podemos considerar 4 elementos importantes:

Máquinas Simples. Cuando hablamos de palancas podemos considerar 4 elementos importantes: Robótica Educativa WeDo Materiales Didácticos Tecnológicos Multidisciplinarios Palancas Constituyen los primeros ejemplos de herramientas sencillas. Desde el punto de vista técnico es una barra rígida

Más detalles

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas

Más detalles

Colegio : Liceo Miguel de Cervantes y Saavedra Dpto. Física (3 ero Medio) Profesor: Héctor Palma A.

Colegio : Liceo Miguel de Cervantes y Saavedra Dpto. Física (3 ero Medio) Profesor: Héctor Palma A. Tópico Generativo: La presión en vasos comunicantes. Aprendizajes Esperados: 1.-Aplicar la definir conceptual de presión y aplicarla a vasos comunicante. 2.- Caracterizar la presión en función de la fuerza

Más detalles

VARIACIONES COOPERATIVAS para PATINES, ESQUÍES, BICICLETA.

VARIACIONES COOPERATIVAS para PATINES, ESQUÍES, BICICLETA. VARIACIONES COOPERATIVAS para, ESQUÍES, BICICLETA. Como podréis comprobar, no se trata de deportes en sentido estricto Más bien son variaciones en torno a algunos deportes, de manera que sean menos competitivos,

Más detalles

Equipo requerido Cantidad Observaciones Mesa de fuerzas 1 Poleas 3 Anillo de Plástico 1 Portapesa + hilo 3 Juego de Masas 1

Equipo requerido Cantidad Observaciones Mesa de fuerzas 1 Poleas 3 Anillo de Plástico 1 Portapesa + hilo 3 Juego de Masas 1 DEPARTAMENTO DE FISICA Y GEOLOGIA No 1 UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo General Encontrar la fuerza resultante de dos vectores por descomposición y por graficación.

Más detalles

INDICE INTRODUCCIÓN. CONCEPTOS FUNDAMENTALES. PALANCAS. POLEAS. RUEDA Y EJE. Transmisiones de Banda Simples. Engranajes

INDICE INTRODUCCIÓN. CONCEPTOS FUNDAMENTALES. PALANCAS. POLEAS. RUEDA Y EJE. Transmisiones de Banda Simples. Engranajes Departamento de Física Universidad de Jaén INTRODUCCIÓN A LAS MÁQUINAS SIMPLES Y COMPUESTAS Aplicación a la Ingeniería de los capítulos del temario de la asignatura FUNDAMENTOS FÍSICOS I (I.T.MINAS): Tema

Más detalles

ESPECIALIDADES : GUIA DE PROBLEMAS N 3

ESPECIALIDADES : GUIA DE PROBLEMAS N 3 ASIGNATURA : ESPECIALIDADES : Ing. CIVIL Ing. MECANICA Ing. ELECTROMECANICA Ing. ELECTRICA GUIA DE PROBLEMAS N 3 2015 1 GUIA DE PROBLEMAS N 3 PROBLEMA Nº1 Un carro de carga que tiene una masa de 12Mg es

Más detalles

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA FÍSICA II: Fundamentos de Electromagnetismo PRÁCTICA 1: LEY DE COULOMB

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA FÍSICA II: Fundamentos de Electromagnetismo PRÁCTICA 1: LEY DE COULOMB 1 CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA FÍSICA II: Fundamentos de Electromagnetismo PRÁCTICA 1: LEY DE COULOMB 1.1 OBJETIVO GENERAL - Verificación experimental de la ley de Coulomb 1.2 Específicos:

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

EJERCICIOS SOBRE : NÚMEROS ENTEROS

EJERCICIOS SOBRE : NÚMEROS ENTEROS 1.- Magnitudes Absolutas y Relativas: Se denomina magnitud a todo lo que se puede medir cuantitativamente. Ejemplo: peso de un cuerpo, longitud de una cuerda, capacidad de un recipiente, el tiempo que

Más detalles

Consejos Prácticos Pro. Determine la potencia del motor DC. Selección del motor DC. Cargas lineales. Cargas giratorias.

Consejos Prácticos Pro. Determine la potencia del motor DC. Selección del motor DC. Cargas lineales. Cargas giratorias. Motor brushless DC con reductora planetaria de 52 mm de diámetro, freno de seguridad y encoder. Junto con una electrónica de control formaría un servosistema. Entonces la unidad se denominaría servomotor.

Más detalles

Quién ejerce la fuerza? Quién la recibe?

Quién ejerce la fuerza? Quién la recibe? Araucaria2000 Fuerza www.araucaria2000.cl Si observamos a los seres humanos, vemos que generalmente están en constante movimiento: caminan, corren, bailan, hacen deporte. También podemos observar la nieve

Más detalles

+ f - 2.0 3.4 5.2 6.7 8.0 9.2 1.7 2.3 2.9 3.6 4.3 5.0 2.0 2.5 3.6 4.9 6.1 7.3 2.0 2.9 4.6 5.7 6.9 8.0 2.5 2.2 7.5 3.9 5.6 7.4 9.

+ f - 2.0 3.4 5.2 6.7 8.0 9.2 1.7 2.3 2.9 3.6 4.3 5.0 2.0 2.5 3.6 4.9 6.1 7.3 2.0 2.9 4.6 5.7 6.9 8.0 2.5 2.2 7.5 3.9 5.6 7.4 9. MOVER - M A TIEMPO B EN TMU C Mano en Mov. en B. PESO CORRECCIÓN DE PNE- LBS. Hasta Factor Constante TMU CASO Y DESCRIPCIÓN

Más detalles

TRABAJO Y ENERGIA MECANICA

TRABAJO Y ENERGIA MECANICA TRABAJO Y ENERGIA MECANICA 1. Si una persona saca de un pozo una cubeta de 20 [kg] y realiza 6.000 [J] de trabajo, cuál es la profundidad del pozo? (30,6 [m]) 2. Una gota de lluvia (3,35x10-5 [kg] apx.)

Más detalles

PROPORCIONALIDAD - teoría

PROPORCIONALIDAD - teoría PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos

Más detalles

Capítulo 10. Gráficos y diagramas

Capítulo 10. Gráficos y diagramas Capítulo 10. Gráficos y diagramas 1. Introducción Los gráficos y diagramas que se acostumbran a ver en libros e informes para visualizar datos estadísticos también se utilizan con propósitos cartográficos,

Más detalles

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton Leyes de movimiento Leyes del movimiento de Newton La mecánica, en el estudio del movimiento de los cuerpos, se divide en cinemática y dinámica. La cinemática estudia los diferentes tipos de movimiento

Más detalles

Unidad: Representación gráfica del movimiento

Unidad: Representación gráfica del movimiento Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce

Más detalles

La forma algebraica de la ecuación producto cruz es más complicada que la del producto escalar. Para dos vectores 3D y,

La forma algebraica de la ecuación producto cruz es más complicada que la del producto escalar. Para dos vectores 3D y, Materia: Matemática de 5to Tema: Producto Cruz Marco Teórico Mientras que un producto escalar de dos vectores produce un valor escalar; el producto cruz de los mismos dos vectores produce una cantidad

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

Aprenda Tejer. Visite neustro sitio web para obtener diseños gratis y consultar información util. Página 1

Aprenda Tejer. Visite neustro sitio web para obtener diseños gratis y consultar información util. Página 1 Aprenda Tejer Visite neustro sitio web para obtener diseños gratis y consultar información util. Página 1 Contenido Contenido...2 1. Para tejer debe conocer varios tipos de puntos...4 2. El punto al derecho...

Más detalles

No hay resorte que oscile cien años...

No hay resorte que oscile cien años... No hay resorte que oscile cien años... María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA - 1999 Resumen: En el presente trabajo nos proponemos

Más detalles

PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO

PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO 1- OBJETIVO Y FUNDAMENTO TEORICO A efectos de cálculo, el comportamiento paraxial de un sistema óptico puede resumirse en el

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

Bloque II: Principios de máquinas

Bloque II: Principios de máquinas Bloque II: Principios de máquinas 1. Conceptos Fundamentales A. Trabajo En términos de la física y suponiendo un movimiento rectilíneo de un objeto al que se le aplica una fuerza F, se define como el producto

Más detalles

Actividad principal: Kart Notas para el profesor

Actividad principal: Kart Notas para el profesor Objetivos de aprendizaje A lo largo de esta actividad, los estudiantes construirán y pondrán a prueba modelos que incorporan las siguientes estructuras: Eje solidario único Ejes independientes Para poder

Más detalles

Práctica 1. MEDIDAS DE PRECISIÓN

Práctica 1. MEDIDAS DE PRECISIÓN Práctica 1. MEDIDAS DE PRECISIÓN OBJETIVOS Manejo de aparatos de precisión que se utilizan en el laboratorio. Medir dimensiones de diferentes cuerpos y a partir de éstas sus volúmenes. MATERIAL Aparatos

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN Un coche de 50 kg (con el conductor incluido) que funciona con gasolina está situado en una carretera horizontal, arranca y acelerando uniformemente, alcanza

Más detalles

PRÁCTICA NÚMERO 8 EL POLARÍMETRO Y LA ACTIVIDAD ÓPTICA

PRÁCTICA NÚMERO 8 EL POLARÍMETRO Y LA ACTIVIDAD ÓPTICA PRÁCTICA NÚMERO 8 EL POLARÍMETRO Y LA ACTIVIDAD ÓPTICA I. Objetivos. 1. Estudiar el efecto que tienen ciertas sustancias sobre la luz polarizada. 2. Encontrar la gráfica y ecuación de la concentración

Más detalles

La Pirámide Humana. En el Norte de Ecuador hay una tradición. Cada 18 de septiembre los hombres del pueblo entre 22 y 30 años hacen una pirámide.

La Pirámide Humana. En el Norte de Ecuador hay una tradición. Cada 18 de septiembre los hombres del pueblo entre 22 y 30 años hacen una pirámide. La Pirámide Humana En el Norte de Ecuador hay una tradición. Cada 18 de septiembre los hombres del pueblo entre 22 y 30 años hacen una pirámide. Esta pirámide es una torre de varias personas. Cada persona

Más detalles

Ecomundo Centro de Estudios. Taller para la segunda unidad del mes de Mayo del presente año 2010.

Ecomundo Centro de Estudios. Taller para la segunda unidad del mes de Mayo del presente año 2010. Taller para la segunda unidad del mes de Mayo del presente año 2010. Instrucciones: Realizar el taller en hoja papel milimetrado. Utilice el número necesario de hojas, no olvide engrapar su trabajo. Utilice

Más detalles

Examen de TEORIA DE MAQUINAS Junio 94 Nombre...

Examen de TEORIA DE MAQUINAS Junio 94 Nombre... Examen de TEORIA DE MAQUINAS Junio 94 Nombre... El robot plano de la figura transporta en su extremo una masa puntual de magnitud 5M a velocidad constante horizontal de valor v. Cada brazo del robot tiene

Más detalles

El generador de Van de Graaff

El generador de Van de Graaff Cuando se introduce un conductor cargado dentro de otro hueco y se ponen en contacto, toda la carga del primero pasa al segundo, cualquiera que sea la carga inicial del conductor hueco Teóricamente, el

Más detalles

Análisis de propuestas de evaluación en las aulas de América Latina

Análisis de propuestas de evaluación en las aulas de América Latina Este trabajo de evaluación tiene como objetivo la caracterización de figuras del espacio. Para ello el alumno debe establecer la correspondencia entre la representación de la figura y algunas de sus propiedades.

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

Prueba de Período 1 Ciencias Naturales Unidad Ciencias físicas y químicas CUARTO AÑO BÁSICO 2013

Prueba de Período 1 Ciencias Naturales Unidad Ciencias físicas y químicas CUARTO AÑO BÁSICO 2013 Prueba de Período 1 Ciencias Naturales Unidad Ciencias físicas y químicas CUARTO AÑO BÁSICO 2013 Mi nombre Mi curso Nombre de mi escuela Fecha 1. Los siguientes cubos tienen distinto tamaño pero poseen

Más detalles

Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE. Objetivos. Teoría

Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE. Objetivos. Teoría Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE Objetivos 1. Medir la distancia recorrida y la velocidad de un objeto que se mueve con: a. velocidad constante y b. aceleración constante,. Establecer

Más detalles

TEMA 8 CAMPO ELÉCTRICO

TEMA 8 CAMPO ELÉCTRICO TEMA 8 CAMPO ELÉCTRICO INTERACCIÓN ELECTROSTÁTICA Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros. Todos estamos familiarizados con los efectos

Más detalles

Conservación de la Energía

Conservación de la Energía Conservación de la Energía Objetivo Estudiar empíricamente la conservación de la Energía Mecánica realizando experimentos de conversión de Energía Potencial de un resorte en Energía Cinética de masas en

Más detalles

Otras tareas y actividades: Preguntas y problemas

Otras tareas y actividades: Preguntas y problemas FISICA MECANICA DOCUMENTO DE CONTENIDO TALLER DE EJERCICIOS LAPIZ Y PAPEL Otras tareas y actividades: Preguntas y problemas A continuación usted encontrara preguntas y problemas que debe resolver para

Más detalles

OBJETIVO MATERIAL. 1 resorte, 1 soporte, 1 regla de un metro, 1 gancho, 5 pesas ranuradas de 20 gf, 2 pesas de 50 gf y 4 balanzas TEORÍA

OBJETIVO MATERIAL. 1 resorte, 1 soporte, 1 regla de un metro, 1 gancho, 5 pesas ranuradas de 20 gf, 2 pesas de 50 gf y 4 balanzas TEORÍA OBJETIVO Comprobar experimentalmente la ley de Hooke y examinar la ley de conservación de energía en un proceso de interacción entre un resorte que se ha estirado y una masa suspendida del resorte a cierta

Más detalles

NOMBRE:. AREA: FISICA. GRADO:10 FECHA:

NOMBRE:. AREA: FISICA. GRADO:10 FECHA: NOMBRE:. AREA: FISICA. GRADO:10 FECHA: A.SELECCIONA LA RESPUESTA CORRECTA: 1. las unidades básicas del Sistema Internacional son: a. metro, kilogramo, minutos. b. centímetro, gramo, segundo. c. metro,

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles