Problemas de VC para EDVC elaborados por C. Mora, Tema 3. , demostrar que su trayectoria está contenida en D(1, 1) y calcular

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Problemas de VC para EDVC elaborados por C. Mora, Tema 3. , demostrar que su trayectoria está contenida en D(1, 1) y calcular"

Transcripción

1 Problemas de VC para EDVC elaborados por C. Mora, Tema 3 Ejercicio Sean, : [, ] C dos curvas cerradas de clase C a trozos y z C tal que (t) (t) < z (t) t [, ]. Demostrar que Ind (z) = Ind (z). [Pista: considerar la curva (t) = (t) z, demostrar que su trayectoria está contenida en D(, ) y calcular (t) z Ind ()]. Solución La condición (t) (t) < z (t) t [, ] nos dice en particular que z (t) t [, ], luego la curva : [, ] C, (t) = (t) z está bien (t) z definida (el denominador nunca se anula) y es C a trozos por ser composición de funciones C a trozos. La hipótesis nos dice que (t) (t) z (t) < t [, ] con lo cual (t) = (t) z (t) z = (t) (t) (t) z <, luego T ray D(, ). En particular, está en la región no acotada de C \ T ray, ya que / D(, ), con lo cual, Ind () =. Así, luego = = (t) (t) dt = [ (t) (t) z (t) [ (t) z] [ (t) z] (t) (t) z [ (t) z] 2 (t) z dt ] (t) dt, (t) z 2πi Ejercicio 2 (t) (t) z dt = (t) 2πi (t) z dt es decir, Ind (z) = Ind (z). Sean a C \ {} y un camino cerrado que no pase por, a, /a. Demostrar que Ind / ( a ) = Ind (a) Ind ().

2 Solución 2 Antes de nada, se verifica que / es un camino porque no pasa por. Pongamos que está parametrizado en el intervalo [, β]. Se tiene Ind / ( a ) = 2πi ζ a dζ = β 2πi Pero también por otra parte, Ind (a) Ind () = 2πi como deseábamos. Ejercicio 3 = a 2πi β (t) a [ ζ a ζ (t) (t) 2 dt = (t) [(t) a] (t) dt, ] dζ = 2πi a β 2πi a (ζ a)ζ dζ (t) (t) a (t) dt. Sean un camino en C, su camino conjugado y f una función compleja continua en la trayectoria de. Demostrar que Solución 3 f(z)dz = f(z)dz. Pongamos que : [, β] C. Entonces : [, β] C definido por (t) = (t) es un camino y además es inmediato comprobar que (t) = (t). Por un lado se tiene f(z)dz = β f((t)) (t)dt = β f((t)) (t)dt. Y por otro, gracias a la observación anterior y a que f es continua en la trayectoria de, entonces f(z)dz = β y se tiene la igualdad buscada. f ( ) β (t) (t)dt = f((t)) (t)dt 2

3 Ejercicio 4 Calcular las siguientes integrales curvilíneas e ζ e ζ a) dζ; b) n dζ, n N; c) ζ(ζ ) ζ ζ =2 Solución 4 ζ = ζ = (ζ 2 ) 2 dζ. a) Se tiene la siguiente descomposición en fracciones simples: ; con lo cual, aplicando la fórmula integral de Cauchy, y denotando ζ ζ por C(, 2) a la circunferencia de centro y radio 2 recorrida en sentido positivo, entonces e ζ ζ =2 ζ(ζ ) dζ = e ζ C(,2) ζ dζ e ζ C(,2) ζ dζ = 2πie Ind C(,2) () 2πie Ind C(,2) () = 2πi(e ). ζ = ζ(ζ ) = b) Aplicando la fórmula integral de Cauchy para las derivadas a la función holomorfa f(z) = e z, se tiene que para cada natural n e ζ ζ n dζ = 2πi n dζ = ζ (n )! f n ) () = 2πi (n )!. C(,) c) Se tiene la siguiente descomposición en fracciones simples (ζ 2 ) = 2 4 ζ (ζ + ) 2 4 ζ + 4 (ζ ). 2 Es claro que las funciones ζ, ζ son holomorfas en un ζ+ (ζ+) 2 abierto que contiene a D(, ), con lo que su integral a lo largo de C(, ) es cero. Por otra parte, aplicando la fórmula integral de Cauchy a la función holomorfa ζ y a su derivada primera obtenemos que C(,) dζ = 2πi sen π = ; ζ Todo lo cual concluye que C(,) C(,) (ζ 2 dζ = iπ2 ) 2 2. (ζ ) 2 dζ = 2πiπ cos π = 2π2 i. 3

4 Ejercicio 5 Sea la frontera del cuadrado determinado por las cuatro rectas x = ±2, y = ±2. Calcular cos ζ ζ cosh ζ a) ζ 2 dζ; b) dζ; c) + 8 2ζ + ζ 4 dζ. Solución 5 a) La función ζ cos ζ es holomorfa en C \ {i2 2, i2 2}, luego es ζ 2 +8 holomorfa en la componente acotada determinada por. Esto implica directamente cos ζ dζ =. ζ 2 +8 b) Por la fórmula integral de Cauchy, ζ 2ζ + dζ = ζ/2 dζ = 2πi /2 ζ + /2 2 Ind ( 2 ) = iπ 2. c) Sea la función entera f(z) = cosh ζ. Se verifica que el punto z = está en la componente acotada determinada por, luego Ind () =. Aplicamos la fórmula integral de Cauchy para las derivadas y obtenemos cosh ζ ζ 4 dζ = 2πi 3! f () =. Ejercicio 6 ζ z =R Sean Ω C un abierto, z Ω, R > tales que D(z, R) Ω, y f H(Ω). Demostrar que para todo entero n se verifica la siguiente igualdad (ζ z) dζ = f n) (ζ) n+ n! ζ z dζ. Solución 6 ζ z =R Si aplicamos a f la fórmula de Cauchy para las derivadas obtenemos que f n) (z) = n! dζ. 2πi (ζ z) n+ C(z,R) Pero si aplicamos a f n) la fórmula de Cauchy obtenemos que f n) (z) = f n) (ζ) 2πi ζ z dζ, de donde se concluye el resultado. C(z,R) 4

5 Ejercicio 7 Sea f H(D(, )) tal que para cada natural n se verifica C(, 2 ) ζ n dζ = 2πi. Hallar la expresión explícita de f. Solución 7 Como f H(D(, )) entonces f(z) = n= f n) () z n para cada z D(, ). n! Pero gracias a la hipótesis, la fórmula integral de Cauchy para las derivadas nos dice que f n) () n! = 2πi C(, 2 ) n+ dζ = para cada entero n. ζ Luego f(z) = n= z n = z. Ejercicio 8 Sea una curva cerrada simple cuya trayectoria coincida con la elipse de ecuación ( x 2 ( a) + y ) 2 b =, donde a, b > son dados. Usar dos modos distintos de calcular dζ para deducir la igualdad ζ Solución 8 2π 2π dt = a 2 cos 2 t + b 2 sen 2 t ab. Por un lado, directamente de la definición de índice se tiene ζ dζ = 2πiInd () = 2πi, ya que está en la componente acotada definida por. 5

6 Por otra parte, si efectuamos el cálculo de la integral curvilínea mediante la parametrización natural de la elipse (t) = a cos t + ib sen t, t [, 2π] entonces ζ dζ = = = 2π 2π 2π (t) 2π (t) dt = Juntando ambas cosas obtenemos 2πi = 2π (t) (t) (t) 2 dt (a cos t ib sen t)( a sen t + ib cos t) dt a 2 cos 2 t + b 2 sen 2 t (b 2 a 2 ) sen t cos t + iab dt. a 2 cos 2 t + b 2 sen 2 t (b 2 a 2 ) sen t cos t + iab dt, a 2 cos 2 t + b 2 sen 2 t y tomando partes imaginarias concluimos que 2π = ab 2π de donde se sigue el resultado buscado. Ejercicio 9 a 2 cos 2 t + b 2 sen 2 t dt, Sean R >, f H(D(, R)) y la circunferencia unidad recorrida en sentido positivo. Calcular (2 + ζ + ζ ) ζ dζ y deducir que Solución 9 2π ( + cos t)f(e it )dt = 2πf() + πf (). Como f es holomorfa en un entorno de D(, ), por la fórmula integral de Cauchy, (2 + ζ + ζ ) ζ dζ = 2 ζ dζ + dζ + ζ 2 dζ = 4πif() + 2πif (). 6

7 Por otra parte, si efectuamos el cálculo de la integral curvilínea mediante la parametrización natural de la circunferencia (t) = e it, t [, 2π] entonces (2 + ζ + 2π ζ ) ζ dζ = (2 + e it + e it ) f(eit ) ie it dt e it = 2i 2π ( + cos t)f(e it )dt. Juntando ambas cosas, y dividiendo por 2i obtenemos el resultado buscado. Ejercicio Dados a C, < r < R, f H(D(a, R)) y m Z, calcular Solución 2π f(a + re it )e mit dt. Sea el camino (t) = a + re it, t [, 2π]. Entonces 2π (ζ a) m dζ = ir m f(a + re it )e imt dt. Con esto, y usando la fórmula integral de Cauchy para la derivadas ya concluimos que 2π { si m f(a+re it )e imt dt = ir m (ζ a) m dζ = r m 2π f m) (a) si m. ( m)! Ejercicio Sea f una función holomorfa en un abierto Ω C tal que f(z) < para todo z Ω. Demostrar que para todo camino cerrado en Ω se verifica que f (z) dz =. f(z) 7

8 Solución Definimos la función g : Ω C mediante g(z) = Log(f(z)). Entonces g H(Ω) puesto que nuestra hipótesis afirma que f(ω) D(, ), y la función Log es holomorfa en D(, ). Por tanto, g =. Pero y esto concluye lo que queremos. Ejercicio 2 g (z) = f (z) f(z) Sea f una función entera para la que existen constantes A, B, k > tales que f(z) A + B z k z C. Probar que f es un polinomio. De qué grado? Solución 2 Como f es una función entera, admite un desarrollo en serie de potencias f(z) = n= f n) () z n, z C. n! Ahora bien, por la fórmula integral de Cauchy para las derivadas, f n) () = n! n+ dζ para todo R >. 2πi ζ C(,R) Con esto y gracias a la hipótesis obtenemos la siguiente estimación f n) () n! 2π sup + BRk 2πR n!a n N, R >. R n ζ C(,R) ζ n+ En particular, si n > k, haciendo tender R se tiene que f n) () = para todo natural n [k] + donde [k] es la parte entera de k. Concluimos por tanto f(z) = [k] n= f n) () z n, n! z C y así f es un polinomio de grado menor o igual que [k]. 8

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z Problemas de VC para EDVC elaborados por C. Mora, Tema 1 Ejercicio 1 Escribir en forma binómica los siguientes números complejos: i n, n Z; ( 1 + i ) n, n N; ( ) ( ) 4 5 1 + i 3 i ; (1+i 3) 0 ; e 1/z 1

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

7. Teoría de Cauchy global.

7. Teoría de Cauchy global. 68 Funciones de variable compleja. Eleonora Catsigeras. 25 Abril 26. 7. Teoría de Cauchy global. 7.. Teorema de Cauchy global. Sea un abierto no vacío Ω C. Teorema 7... Teorema de Cauchy global. Sea f

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 2

Problemas de VC para EDVC elaborados por C. Mora, Tema 2 Problemas de VC para EDVC elaborados por C. Mora, Tema 2 Ejercicio 1 Demostrar que la función u(x, y cosh y sen x es armónica en el plano y construir otra función armónica v(x, y tal que u(x, y + iv(x,

Más detalles

6. Teoría de Cauchy local.

6. Teoría de Cauchy local. Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 59 6. Teoría de Cauchy local. Dado un abierto Ω C, se denota con R Ω a un rectángulo contenido en Ω. R indica el conjunto de puntos que

Más detalles

16. Ejercicios resueltos sobre cálculo de residuos.

16. Ejercicios resueltos sobre cálculo de residuos. 7 Funciones de variable compleja. Eleonora Catsigeras. 3 Junio 26. 6. Ejercicios resueltos sobre cálculo de residuos. En esta sección se dan ejemplos de cálculo de integrales de funciones reales, propias

Más detalles

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z Demostrar que Re z + Im z z para todo z C. Encontrar las soluciones de z = z. 3 Representar cada uno de los siguientes conjuntos: (a) z + i =, (b) z + i 3, (c) Re(z i) =, (d) z i = 4. 4 Demostrar que si

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 10 Aplicaciones de la Teoría de funciones analíticas.

MATEMATICAS ESPECIALES I PRACTICA 10 Aplicaciones de la Teoría de funciones analíticas. MATEMATICAS ESPECIALES I - 17 PRACTICA 1 Aplicaciones de la Teoría de funciones analíticas. Aplicaciones del Teorema de los residuos para calcular integrales reales. 1. Integrales del tipo π R(cos t, sin

Más detalles

15. Teoría de los residuos.

15. Teoría de los residuos. 162 Funciones de variable compleja. Eleonora Catsigeras. 12 Julio 2006. 15. Teoría de los residuos. 15.1. Residuos. Definición 15.1.1. Residuo de una función en una singularidad aislada. Dada una función

Más detalles

8. Consecuencias de la Teoría de Cauchy.

8. Consecuencias de la Teoría de Cauchy. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 2006. 77 8. Consecuencias de la Teoría de Cauchy. 8.1. Principio del módulo máximo. Definición 8.1.1. Sea f una función continua en Ω. Se dice

Más detalles

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS. FUNCIONES MEROMORFAS Definición.. Se dice que una función es meromorfa en un abierto Ω de C si f es holomorfa en Ω excepto

Más detalles

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2:

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2: 112 Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. TERCERA PARTE. SINGULARIDADES Y TEORÍA DE LOS RESIDUOS. Resumen Se estudian las singularidades aisladas: evitables, polos y esenciales

Más detalles

13. Series de Laurent.

13. Series de Laurent. Funciones de variable compleja. Eleonora Catsigeras. 3 Mayo 2006. 33 3. Series de Laurent. 3.. Definición de serie de Laurent y corona de convergencia. Definición 3... Serie de Laurent. Se llama serie

Más detalles

5. Funciones analíticas y teoría del índice.

5. Funciones analíticas y teoría del índice. Funciones de variable compleja. Eleonora Catsigeras. 25 Abril 2006. 47 5. Funciones analíticas y teoría del índice. 5.1. Definición y derivabilidad infinita de las funciones analíticas. Sea Ω un abierto

Más detalles

10. Otros resultados y ejercicios resueltos.

10. Otros resultados y ejercicios resueltos. Funciones de variable compleja. Eleonora Catsigeras. 5 Mayo 2006. 93 0. Otros resultados y ejercicios resueltos. 0.. Consecuencias del principio de módulo máximo. Ejercicio 0... Mínimos locales. Sea f

Más detalles

El teorema de los residuos

El teorema de los residuos Tema 2 El teorema de los residuos 2. Singularidades aisladas de una función Definición 2. Sea f: A C. Se dice que f tiene una singularidad aislada en el punto α A, si existe un E(α, r tal que la función

Más detalles

2. Teorema de Cauchy y aplicaciones.

2. Teorema de Cauchy y aplicaciones. 2. Teorema de auchy y aplicaciones. 2.1. Teorema de Goursat. Teorema 2.1.1 Sea Ω un abierto en y T Ω un triángulo cuyo interior está también contenido en Ω, entonces f(z)dz = 0 siempre que f sea holomorfa

Más detalles

Trabajo Práctico Nro. 3. Teorema de Cauchy. Fórmula integral de Cauchy. Funciones Armónicas.

Trabajo Práctico Nro. 3. Teorema de Cauchy. Fórmula integral de Cauchy. Funciones Armónicas. Análisis III B - Turno mañana - Trabajo Práctico Nro. 3 Trabajo Práctico Nro. 3 Teorema de auchy. Fórmula integral de auchy. Funciones Armónicas.. alcular las siguientes integrales de línea: a) Re(z) a

Más detalles

Examen de Funciones de Variable Compleja. Soluciones.

Examen de Funciones de Variable Compleja. Soluciones. Examen de Funciones de Variable Compleja. Soluciones. 5 de febrero de 0. Ejercicio. Sean a b dos complejos fijos no nulos, ambos con el mismo argumento igual a π/4, y tales que a < b. Parte a): Encontrar

Más detalles

Fórmula de Cauchy Fórmula de Cauchy

Fórmula de Cauchy Fórmula de Cauchy Lección 8 Fórmula de Cauchy Llegamos al que se puede considerar como punto culminante de la teoría local de Cauchy, probando el resultado que se conoce como fórmula de Cauchy. Nos da una representación

Más detalles

Series. Diremos que una serie de números complejos

Series. Diremos que una serie de números complejos Series Una sucesión de números complejos a, a 2, a 3,..., a n,... en C converge al número complejo a (a n a) si para cada ɛ > 0, existe un N tal que a n a < ɛ siempre que n N. Diremos que una serie de

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones 3 SOLUCIONES 1. La suma superior es: La suma inferior es:. La suma superior es: s ( P) = ( 1) 3 + (3 ) 10 = 3 + 10 = 13 La suma inferior es: s ( P) = ( 1) 1+

Más detalles

Práctica 6. ; hallar el desarrollo en serie de Laurent de f en cada uno z(z 1)(z 2) de los siguientes anillos:

Práctica 6. ; hallar el desarrollo en serie de Laurent de f en cada uno z(z 1)(z 2) de los siguientes anillos: MATEMATICA 4 Primer Cuatrimestre 2004 Práctica 6. Sea f entera y tal que lím f() = 0. Probar que f 0. b) Hallar todas las f enteras tales que lím f() = 5. 2. Sea f() = ; hallar el desarrollo en serie de

Más detalles

z 2 z 2 = i. Log z = Log z. 3. Sin utilizar la regla de L'Hospital hállese el valor del límite:

z 2 z 2 = i. Log z = Log z. 3. Sin utilizar la regla de L'Hospital hállese el valor del límite: Análisis Matemático VI Curso 005-006 Examen Final de Junio a convocatoria. Descríbase geométricamente el conjunto de puntos z C que satisfacen la ecuación: z z = i.. Sea Log z la rama principal del logaritmo.

Más detalles

FUNCIONES ANALITICAS (Curso 2011) Práctica 7. Clase 1 - Desarrollo de Laurent - Clasificación de singularidades aisladas

FUNCIONES ANALITICAS (Curso 2011) Práctica 7. Clase 1 - Desarrollo de Laurent - Clasificación de singularidades aisladas FUNCIONES ANALITICAS (Curso 2) Práctica 7 Clase - Desarrollo de Laurent - Clasificación de singularidades aisladas. Hallar los desarrollos de Laurent de + en > en las distintas coronas alrededor del origen

Más detalles

12. Ceros y singularidades aisladas.

12. Ceros y singularidades aisladas. 118 Funciones de variable compleja. Eleonora Catsigeras. 01 Julio 2006. 12. Ceros y singularidades aisladas. 12.1. Funciones racionales. Una función racional es un cociente de dos polinomios no idénticamente

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013.

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013. Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 3 de junio de 23..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su tipo:

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 1 Rodrigo Vargas. f n (z)dz = 0.

MAT2715 VARIABLE COMPLEJA II Ayudantia 1 Rodrigo Vargas. f n (z)dz = 0. PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 1 Rodrigo Vargas 1. Si f n : Ω C analítica y {f n } converge uniformemente en compactos de Ω, entonces

Más detalles

1. Ceros y singularidades de una función

1. Ceros y singularidades de una función TEMA 6 TEORÍA DE RESIDUOS. Ceros y singularidades de una función. Ceros de una función.2 Singularidades de una función.3 Relaciones entre ceros y singularidades.4 Singularidades y el punto del infinito

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

Funciones holomorfas Sesión 3

Funciones holomorfas Sesión 3 Funciones holomorfas Sesión 3 E. Cuesta 1 1 Departamento de Matemática Aplicada E.T.S.I. de Telecomunicaciones Universidad de Valladolid (España) Ampliación de Matemáticas Outline Derivabilidad de funciones

Más detalles

Tema 4: Integración en el plano complejo. Trayectorias (I) Trayectorias (II) Marisa Serrano, José Ángel Huidobro

Tema 4: Integración en el plano complejo. Trayectorias (I) Trayectorias (II) Marisa Serrano, José Ángel Huidobro Índice Tema 4: en el plano complejo Marisa Serrano, José Ángel Huidobro Universidad de Oviedo 2 3 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es Tema 4: en el plano complejo Tema 4: en el plano

Más detalles

Apellidos y Nombre: Hoja 1

Apellidos y Nombre: Hoja 1 Hoja 1 1 Hallar dos números complejos tales que su suma sea 1+6i y su cociente imaginario puro. Suponer, además que la parte real del que se tome como divisor al calcular el cociente es 1. Hallar los números

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

17. Síntesis de la tercera parte.

17. Síntesis de la tercera parte. Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. 185 17. Síntesis de la tercera parte. 17.1. Ceros y singularidades aisladas. Los detalles y demostraciones de esta parte se encuentran

Más detalles

B(1;1) Figura 5.1: Coronas de f(z) = (z 1)/z 2. La serie de Laurent en la bola B(1; 1) coincide con la serie de Taylor. Usamos la serie de g(z) = z 2,

B(1;1) Figura 5.1: Coronas de f(z) = (z 1)/z 2. La serie de Laurent en la bola B(1; 1) coincide con la serie de Taylor. Usamos la serie de g(z) = z 2, Capítulo 5 Series de Laurent Problema 5. Hallar las series de Laurent centradas en z = de la función fz = z /z. La función f es holomorfa salvo en z =. Por tanto, si centramos las series en z =, tendremos

Más detalles

Series Sucesiones y series en C

Series Sucesiones y series en C Series En este capítulo vamos a estudiar desarrollos en serie de funciones holomorfas, para lo cual vamos en primer lugar a revisar resultados de la teoría de series, adaptándolos a series de términos

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 5 de septiembre de 22..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su

Más detalles

Capítulo 5 Singularidades. Teorema de los Residuos.

Capítulo 5 Singularidades. Teorema de los Residuos. Capítulo 5 Singularidades. Teorema de los Residuos. La notable fórmula integral de Cauchy se generaliza en este importante capítulo y esta extensión se llama teorema de los residuos. Entre sus numerosas

Más detalles

Unidad 9 Integrales indefinidas

Unidad 9 Integrales indefinidas Unidad 9 Integrales indefinidas PÁGINA SOLUCIONES. La solución es: a) F ( ) + 8; F( ), 5 b) F() cos ; F( ) cos + c) F ( ) e + ; F( ) e d) F ( ) ln( + ) + 5; F( ) ln( + ). La solución en cada caso: a) F

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

Capítulo 3 Integración en el Campo Complejo.

Capítulo 3 Integración en el Campo Complejo. Capítulo 3 Integración en el Campo Complejo. La teoría de la integración en el campo complejo es una de las más bellas y profundas de la matemática pura. Pero sus aplicaciones también son importantes e

Más detalles

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3 Hoja NúmerosComplejos.- Calcular todos los números z IC tales que: a) z = z 2 b) z = Rez + 2.- Obtener en forma binómica. a) b) c) 8 ( i) 5 (3 + 5i) (2 i) ( + i 3 ) ( + i) 3 3.- Obtener en forma binómica

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 200-2002 HOJA 4 Ejercicio. Halla el orden del cero z 0 = 0 para la siguiente función: (e z e z2 log( z; Definción Sea f : G C holomorfa. Se dice que f(z tiene

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones PÁGINA 363 SOLUCIONES 1. La solución: Lo que nos pide el problema es hallar el área del recinto rayado. Este recinto es un trapecio y su area es:. Queda: x

Más detalles

Análisis Matemático para Estadística. Hoja 1

Análisis Matemático para Estadística. Hoja 1 Análisis Matemático para Estadística. Hoja Funciones de variable compleja. Teoremas básicos.. Describe el conjunto de puntos del plano complejo que cumplen la ecuación: (a) Im(z + 5i) = ; (b) Re(z + 3

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003 CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de Ejercicio 1. Calcular el volumen del elipsoide x a + y b + z c 1. Probar que el elipsoide de volumen máximo,

Más detalles

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 Tema: Números Complejos (C). 1. Clasifica los siguientes números complejos en reales e imaginarios. Mencionar, para cada uno,

Más detalles

INTEGRACIÓN EN EL PLANO COMPLEJO

INTEGRACIÓN EN EL PLANO COMPLEJO Capítulo 4 INTEGRACIÓN EN EL PLANO COMPLEJO Problema 4.. Calcula las integrales a) ) t i dt, b) /6 e it dt, c) e t dt Re < ). Solución: a) ) t i dt = dt i t t dt dt = t = + i ln = i ln4. i ln t b) /6 e

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos. a n (z z 0 ) n + n 1

MATEMATICAS ESPECIALES I PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos. a n (z z 0 ) n + n 1 MATEMATICAS ESPECIALES I - 207 PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos Teorema. Sean r y R números reales tales que 0 < r < R

Más detalles

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática. Análisis Complejo. Práctica N 1.

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática. Análisis Complejo. Práctica N 1. Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto de Matemática Análisis Complejo Práctica N Expresar los siguientes números complejos en la forma a + ib, con a, b R: (a) (i

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy 1 Es aplicable el teorema de Rolle a la función f(x) = x 1 en el intervalo [0, 2]? 2 Estudiar si la función f(x) = x x 3 satisface las

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013 Matemáticas II Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica 4 de febrero de 0. Conteste las siguientes cuestiones: (a) (0. ptos.) Escriba en forma

Más detalles

Problemas tipo examen

Problemas tipo examen Problemas tipo examen La división en temas no es exhaustiva. Las referencias (H n- m) indican el problema m de la hoja n y las referencias (A- cd), con A en números romanos indican un examen del mes A

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

Unidad 10 Integrales definidas. Aplicaciones

Unidad 10 Integrales definidas. Aplicaciones Unidad Integrales definidas. Aplicaciones PÁGINA 5 SOLUCIONES. Las áreas quedan: A u A u A 5 u. El área del recinto viene dada por : ( ) ( ) Área d,5 u PÁGINA 9 SOLUCIONES. La solución queda: Directo:

Más detalles

Práctica 2: Funciones de R n en R m

Práctica 2: Funciones de R n en R m Análisis I Matemática Análisis II (C) Análisis Matemático I (Q) er. Cuatrimestre - 207 Práctica 2: Funciones de R n en R m. Describir y gracar el dominio de denición para cada una de las siguientes funciones:

Más detalles

Funciones Analíticas, Singularidades y Funciones Meromorfas

Funciones Analíticas, Singularidades y Funciones Meromorfas Funciones Analíticas, Singularidades y Funciones Meromorfas Rodrigo Vargas. Suponga que f es una función meromorfa en C y existen números positivos C, k y R tal que f(z) < C z k si z > R. Demuestre que

Más detalles

Variable Compleja I Tema 12: El teorema general de Cauchy

Variable Compleja I Tema 12: El teorema general de Cauchy Variable Compleja I Tema 12: El teorema general de Cauchy 1 Índice 2 Cadenas y ciclos 3 Teorema general de Cauchy Índice de un punto con respecto a un camino cerrado Motivación a C, r R +, z C \C(a,r)

Más detalles

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x.

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x. Derivadas Definición Reglas de derivación jercicio Calcula la tangente de las siguientes curvas en los puntos dados: a) y = en el origen + b) y = cos() en ( c) y = + en (3, 0) π, 0) d) y = en (, ) Solución

Más detalles

14. Funciones meromorfas y teoremas de aproximación.

14. Funciones meromorfas y teoremas de aproximación. Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. 145 14. Funciones meromorfas y teoremas de aproximación. 14.1. Funciones meromorfas. Definición 14.1.1. Funciones meromorfas. Una función

Más detalles

Análisis Complejo Segundo Cuatrimestre 2011

Análisis Complejo Segundo Cuatrimestre 2011 Análisis Complejo Segundo Cuatrimestre 011 Práctica 1: Números complejos Números complejos 11 Expresar los siguientes números en la forma a + bi, con a, b R: (a) (i + 1)(i 1)(i + 3), (b) (3 i), (c) 1 1+3i,

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I Para Grados en Ingeniería Capítulo : Cálculo diferencial de una variable Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo

Más detalles

Análisis Complejo - Primer Cuatrimestre de 2018

Análisis Complejo - Primer Cuatrimestre de 2018 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Análisis Complejo - Primer Cuatrimestre de 018 Práctica N 1: Números Complejos, Esfera de Riemann y Homografías

Más detalles

Soluciones de los ejercicios del examen de Análisis Matemático Primer curso de Ingeniería Informática - Febrero de 2005

Soluciones de los ejercicios del examen de Análisis Matemático Primer curso de Ingeniería Informática - Febrero de 2005 Soluciones de los ejercicios del examen de Primer curso de Ingeniería Informática - Febrero de 25 Ejercicio. A Dados los puntos A, y 2,2, calcula el camino más corto para ir de A a pasando por un punto

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas 1. Sea u : C R una función armónica positiva. Pruebe que u es constante. Solución:

Más detalles

Capítulo 8 Transformada de Laplace.

Capítulo 8 Transformada de Laplace. Capítulo 8 Transformada de Laplace. La transformada de Laplace es informalmente una rotación en 90 de la transformada de Fourier y este capítulo está dedicado a ella. Su principal aplicación es a la resolución

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

Problemas de AMPLIACIÓN DE MATEMÁTICAS

Problemas de AMPLIACIÓN DE MATEMÁTICAS Problemas de AMPLIACIÓN DE MATEMÁTICAS Ingeniería Industrial. Curso 3-4. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema : Series. Problema. Halle la representación en serie de McLaurin

Más detalles

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior Cálculo infinitesimal Grado en Matemáticas Curso 2004/5 Clave de soluciones n o 6 Derivadas de orden superior 70. Hallar los polinomios de Taylor del grado indicado y en el punto indicado para las siguientes

Más detalles

INTEGRACIÓN POR RESIDUOS

INTEGRACIÓN POR RESIDUOS Capítulo 6 INTEGRACIÓN POR RESIDUOS Problema 6. Halla todas las singularidades de las siguientes funciones y obtén sus correspondientes residuos: z 3 (z + 4), z 2 + 2z +, z 3 3, e z, sen z, (z 3)sen Problema

Más detalles

Solución Primer Parcial Matemática

Solución Primer Parcial Matemática Solución Primer Parcial Matemática 1-01 1 Dados los puntos P 1 (5, 4) y P (, 4) hallar: (a) Ecuación, elementos y gráfico de la parábola con vértice en P 1 y foco en P. El eje de la parábola es paralelo

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

Contenidos. Concepto de aplicación Dominio e Imagen Igualdad Función Compuesta Función Inversa Crecimiento. Decrecimiento Función Acotada

Contenidos. Concepto de aplicación Dominio e Imagen Igualdad Función Compuesta Función Inversa Crecimiento. Decrecimiento Función Acotada Contenidos Concepto de aplicación Dominio e Imagen Igualdad Función Compuesta Función Inversa Crecimiento. Decrecimiento Función Acotada Máximo, mínimo Función par o impar Función periódica Función Potencial

Más detalles

{ 0} - Dominio de. f(x) f(x) g(x) g(x) = f(x) = g(x) x 16. f g. Solución: Para hallar el punto de equilibrio basta resolver el sistema: + =

{ 0} - Dominio de. f(x) f(x) g(x) g(x) = f(x) = g(x) x 16. f g. Solución: Para hallar el punto de equilibrio basta resolver el sistema: + = Funciones Se ha hecho un estudio de mercado en el que la curva de oferta de un determinado producto viene dada por la función,7 8 la curva de demanda por, -. Si el punto de corte de ambas curvas es el

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

Formas Modulares. Seminario de Teoría de Números. Sebastián Muñoz Thon (PUC) 1 de Junio de 2018

Formas Modulares. Seminario de Teoría de Números. Sebastián Muñoz Thon (PUC) 1 de Junio de 2018 Formas Modulares Seminario de Teoría de Números Sebastián Muñoz Thon (PUC) 1 de Junio de 2018 Sebastián Muñoz Thon (PUC) Formas Modulares 1 de Junio de 2018 1 / 32 Un poco de historia Jacobi y Eisenstein

Más detalles

Tema 5. Series de Potencias

Tema 5. Series de Potencias Tema 5. Series de Potencias Prof. William La Cruz Bastidas 21 de noviembre de 2002 Tema 5 Series de Potencias Definición 5.1 La sucesión de números complejos {z n } tiene un límite o converge a un número

Más detalles

CAPÍTULO 11. Teoremas Integrales.

CAPÍTULO 11. Teoremas Integrales. CAPÍTULO 11 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

Problemas de Cálculo Matemático E.U.A.T. CURSO Primer cuatrimestre

Problemas de Cálculo Matemático E.U.A.T. CURSO Primer cuatrimestre 1 Problemas de Cálculo Matemático EUAT CURSO 00-003 Primer cuatrimestre Problemas del Tema 5 Teoremas relativos a funciones derivables y aplicaciones 1 La función f(x) = 1 3 x se anula para x 1 = 1 y para

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 6 Rodrigo Vargas. { 1 para 0 < θ < π r 1 1 para π < θ < 2π. P(r, θ t)u(e it )dt.

MAT2715 VARIABLE COMPLEJA II Ayudantia 6 Rodrigo Vargas. { 1 para 0 < θ < π r 1 1 para π < θ < 2π. P(r, θ t)u(e it )dt. PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 6 Rodrigo Vargas 1. Halle una función armónica u(z) definida en D tal que { 1 para < θ < π lím u(reiθ

Más detalles

Olimpiada Iberoamericana de Matemática Universitaria 2012 Problemas, soluciones y criterios

Olimpiada Iberoamericana de Matemática Universitaria 2012 Problemas, soluciones y criterios Olimpiada Iberoamericana de Matemática Universitaria 202 Problemas, soluciones y criterios. Problemas. (3 puntos) Sea Z el anillo de los enteros. Los conjuntos Z, 2Z y 3Z son semigrupos con respecto a

Más detalles

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy = TEOREMA E GREEN. 1. Calcular y dx x dy, donde es la frontera del cuadrado [ 1, 1] [ 1, 1] orientada en sentido contrario al de las agujas del reloj. Por el teorema de Green, si llamamos al interior del

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Variable Compleja I ( ) Ejercicios resueltos. Convergencia de series. Series de potencias

Variable Compleja I ( ) Ejercicios resueltos. Convergencia de series. Series de potencias Variable Compleja I (04-5) Ejercicios resueltos Convergencia de series. Series de potencias Ejercicio Calcule el radio de convergencia de la serie de potencias ( ) n z n3. Solución. Observemos primero

Más detalles

Teorema de Mittag-Leffler

Teorema de Mittag-Leffler UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS, MATEMÁTICAS Teorema de Mittag-Leffler Cristian Alejandro Pulido Quintero 4 de junio de 205 En este documento se desarrolla la teoría y se exponen algunos

Más detalles

1. Curvas Regulares y Simples

1. Curvas Regulares y Simples 1. Regulares y Simples en R n. Vamos a estudiar algunas aplicaciones del calculo diferencial e integral a funciones que están definidas sobre los puntos de una curva del plano o del espacio, como por ejemplo

Más detalles

Matemática Aplicada - Licenciatura de Farmacia- HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1. x = x + 5 si x < 0.

Matemática Aplicada - Licenciatura de Farmacia- HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1. x = x + 5 si x < 0. Matemática Aplicada - Licenciatura de Farmacia- HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1 1. Estudiemos cada caso: a) El único número que verifica la condición es x = 5, ya que: x = x + 5 { x

Más detalles

Cálculo Infinitesimal: grupo piloto

Cálculo Infinitesimal: grupo piloto Tema : La derivada. Cálculo Infinitesimal: grupo piloto Curso 6/7 A. Objetivos. Al finalizar el tema, los estudiantes deberán ser capaces de: Calcular la derivada de una función utilizando la definición

Más detalles

El Teorema del Modulo Máximo

El Teorema del Modulo Máximo Capítulo 5 El Teorema del Modulo Máximo. El Principio del Máximo. Pruebe el siguiente Principio del Mínimo. Si f es una función analítica no constante sobre un conjunto abierto G acotado y es continua

Más detalles

Un i d a d 2. Co n t i n U i da d. Objetivos. Al inalizar la unidad, el alumno:

Un i d a d 2. Co n t i n U i da d. Objetivos. Al inalizar la unidad, el alumno: Un i d a d Co n t i n U i da d Objetivos Al inalizar la unidad, el alumno: Identificará cuándo una función es continua en un punto y en un intervalo. Aplicará las operaciones de las funciones continuas

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles