CAPÍTULO 11. Teoremas Integrales.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPÍTULO 11. Teoremas Integrales."

Transcripción

1 CAPÍTULO 11 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado el terreno para sembrar estos teoremas. Gran parte del trabajo ya fue realizado y lo único que falta es poner las piezas juntas. Resolvemos interesantes ejercicios de los teoremas de Green, Stokes y Gauss.

2 SECCIÓN 1. Teorema de Green. Esta primera sección nos presenta el teorema de Green con algunas de sus aplicaciones. En general no hay dificultades mayores ya que las integrales son curvilíneas y dobles, conceptos que ya hemos practicado en detalle en los capítulos 8 y 9. CONTENIDOS 1. Ejemplos del teorema de Green. 2. Aplicación al cálculo de áreas. 3. Teorema de Green para regiones múltiplemente conexas. 246

3 Problemas. Galería Elementos geométricos para aplicar el teorema de Green en nuestro ejercicio. (1) Calcular la circulación de F(x, y) = (x 2 + y 2, 3xy + ln(y 2 + 1)) a lo largo de la frontera de la región definida por 4x 2 + (y 1) 2 1 recorrida en sentido positivo. Solución. Comenzamos por dibujar la región y su curva frontera positivamente orientada. El cálculo directo de la integral de línea es difícil, pero aplicando el teorema de Green tenemos El cálculo de la circulación sobre C en el sentido indicado es muy difícil pero la integral doble sobre R es relativamente sencilla. C + ds = R Q x P y dx dy. Calculando tenemos Q x = 3y y P y = 2y. donde R es la región azul de la figura siguiente. 247

4 Luego debemos calcular la integral Luego, la respuesta el ejercicio es R y dx dy. C + ds = π 2. Para hallar esta integral introducimos el cambio de coordenadas Se puede ver la solución on-line clickeando aquí. x = 1 2 r cos(θ), y = 1 + r sen(θ). (2) Calcular el área de la región D R 2 definida por x 2 y 2 ( a ) + ( b ) 1 con a, b > 0 usando una integral de línea. El Jacobiano de esta transformación es J = r 2. Con esto nuestra integral doble se transforma en Solución. La igualdad del teorema de Green nos dice que 2π (1 + r sen(θ)). r 2 dr dθ = π 2. C + ds = R Q x P y dx dy. 248

5 Si conseguimos un campo F(x, y) = (P(x, y), Q(x, y)) tal que C + (0,x) ds = R 1 dx dy = A(R). Q x P y = 1 Podemos parametrizar C + en la forma entonces la integral doble del teorema de Green nos da el área de R. c(t) = (a cos(t), b sen(t)), t [0,2π]. Hay muchos campos con tal propiedad, por ejemplo F(x, y) = (0,x) Luego C + (0,x) ds = satisface Q x P y = 1. 2π 0 (0, a cos(t)) ( a sen(t), b cos(t)) dt = Por esto 2π 0 2π ab cos 2 (t) dt = ab cos 2 (t) dt = πab

6 es Por lo tanto, el área del interior de nuestra elipse Apliquemos el teorema de Green para regiones múltiplemente conexas. A(R) = πab. Se puede ver la solución on-line clickeando aquí. Consideremos una circunferencia de radio r > 1. Sea R la región comprendida entre la circunferencia de radio r con centro en el origen y la circunferencia de radio 1 con centro en el origen. Orientemos el borde de R como se muestra en el gráfico. (3) Sea F : R 2 {(0,0)} R 2 tal que F(x, y) = ((P(x, y), Q(x, y)). Si F C 1 y además (Q x P y )(x, y) = 4 en su dominio, calcular C + ds siendo C una circunferencia con centro en el origen y radio r sabiendo que para r = 1 el valor de dicha integral es 3π. Entonces, aplicando el teorema de Green para regiones múltiplemente conexas tenemos Cr ds + C1 ds = R Q x P y dx dy = Solución. El dominio de definición de F no es simplemente conexo, luego no podemos deducir que una integral de línea a lo largo de cualquier curva cerrada sea 0. R 4 dx dy = 4.A(R). Ahora bien, el área de R es π. r 2 π = π(r 2 1). 250

7 Entonces Se puede ver la solución on-line clickeando aquí. Cr ds + C1 ds = 4π(r 2 1). Galería Elementos geométricos para aplicar el teorema de Green para dominios simplemente conexos. Pero sabemos que la segunda integral es igual a 3π, entonces Cr ds 3π = 4π(r 2 1) luego obtenemos que para r > 1 Cr ds = 4πr 2 π. Dejamos como ejercicio análogo el caso r < 1 recomendando especial cuidado al sentido de las circunferencias. Para aplicar el teorema de Green al borde de la región R debemos orientar las curvas como se indica claramente en esta figura. 251

8 Agregamos también para una mejor comprensión la animación siguiente. Movie Sentido de circulación para aplicar el teorema de Green. Cuando el dominio es simplemente conexo debemos aplicar el teorema de Green como se muestra en esta animación. Obsérvese que para ambas curvas la región R queda a la izquierda. 252

9 SECCIÓN 2. Teorema de Stokes. En esta sección trabajamos con el teorema de Stokes que generaliza al de Green cambiando una integral de línea en el plano por una en el espacio y sustituyendo la integral doble por una integral de superficie. Por eso relaciona los capítulos 8 y 10. El tema de la orientación es un poco más difícil que en el teorema de Green y además la integral de superficie es en general más difícil que la integral doble. Los siguiente ejercicios, cuidadosamente seleccionados, nos ayudan a comprender este importante teorema. CONTENIDOS 1. Teorema de Stokes. 2. Rotor. 3. Orientacion de una superficie respecto de una curva para aplicar el teorema de Stokes. 253

10 Problemas. (1) Dado el campo F con matriz Jacobiana Pero al darnos la matriz Jacobiana, nos han dado las derivadas parciales de cada componente del campo. De aquí podemos calcular entonces el rotor del mismo. D(F(x, y, z)) = y 2 2xy z 2 2yz calcular la circulación de F a lo largo de la curva intersección del plano x + y + z = 4 con los planos coordenados, indicando en un gráfico el sentido de orientación de la curva., es Recordemos que el rotor de un campo vectorial C 1 F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)) Solución. Como no tenemos el campo es imposible calcular directamente Rot(F) = F = (R y Q z, P z R x, Q x P y ). En nuestro caso, tenemos entonces que C ds. Rot(F) = (z 2 0, 0 0, 0 2xy) = (z 2, 0, 2xy). Por lo tanto aplicando el teorema de Stokes tenemos 254

11 C ds = S Rot(F) n ds. ejercicio y actuar en consecuencia en la forma en que ponemos la normal a lo que llamaremos la superficie. Galería Orientación de los objetos geométricos para aplicar el teorema de Stokes. Comencemos por dibujar la curva C y una superficie S de la cual C es su borde. En la siguiente animación vemos el sentido en el cual debemos circular a lo largo de la curva si ponemos la normal como se indica. Ahora bien, nuestra superficie se puede parametrizar en la forma φ(x, y) = (x, y, 4 x y) (x, y) D Si circulamos sobre la curva C es el sentido indicado por las flechas debemos calcular el flujo del rotor a través de S con el sentido de la normal indicada. donde Pero debemos especificar el sentido en el cual se recorre C, que podemos elegirlo nosotros en este D = {(x, y) : 0 x 4 0 y 4 x}. 255

12 pues D es la proyección de nuestra superficie sobre el plano xy. = x (4 x y) 2 2xy dy dx = 0. Calculando tenemos φ x = (1, 0, 1) Se puede ver una solución on-line clickeando aquí. φ y = (0, 1, 1) (2) Calcular la circulación de un campo F cuyo rotor es luego F = (x y, y x, z) a lo largo de la curva parametrizada por n = φ x φ y = (1, 1, 1). g(t) = (3 cos(t), 3 sen(t), 6 3 cos(t) 3sen(t)), t [0,2π]. Por lo tanto Solución. Aplicando el teorema de Stokes tenemos C ds = S Rot(F) n ds = C ds = S Rot(F) n ds D ((4 x y) 2, 0, 2xy) (1, 1, 1) dydx = 256

13 donde C es la curva cuya parametrización es la función g y S es la parte acotada del plano x + y + z = 6 cuyo borde es la curva C. Galería Elementos geométricos involucrados para aplicar el teorema de Stokes. El asunto es obviamente colocar la normal a la superficie S como corresponde. Nuestra superficie se puede parametrizar así φ(x, y) = (x, y, 6 x y), (x, y) D siendo D = {(x, y) R 2 : x 2 + y 2 9}. Calculando tenemos como ya hemos hecho en el ejercicio anterior Ya que el sentido de circulación está prefijado de antemano debemos orientar la superficie con la normal como se indica en este gráfico. Vista 1. n = φ x φ y = (1, 1, 1) 257

14 normal cuyo sentido es correcto para aplicar el teorema de Stokes. Se puede ver una solución on-line clickeando aquí. Entonces C ds = S Rot(F) n ds = (3) Sea F(x, y, z) = (P(x, y, z), Q(x, y, z,) 2) un campo vectorial C 2 en la región R R 3 descripta por x 2 + y 2 + z 2 < 9. Suponiendo que F = 0 en R, calcular la circulación de F a lo largo de la curva σ(t) = (sen(t), 1, cos(t)), t [0,π]. D (x y, y x, 6 x y) (1, 1, 1) dydx D 6 x y dy dx = Solución. La curva es abierta y la clave del ejercicio es agregarle una parte a dicha curva para encerrar una superficie conveniente y poder aplicar el teorema de Stokes. = 6. D dx dy = 6.A(D) = 6.π.3 2 = 54π pues las integrales de x, y sobre D se anulan. (Hágase si hay dudas sobre este hecho). La curva que agregaremos y la superficie que elijamos deben estar contenidas en la región x 2 + y 2 + z 2 < 9 donde tenemos las hipótesis garantizadas. 258

15 Movie Curva abierta y cómo es recorrida. Procedemos a cerrar la curva con un segmento que va desde (0, 1, 1) hasta (0, 1, 1). Sea además S la parte del plano cuyo borde es la unión de la curva del ejercicio y nuestro segmento como mostramos a continuación. Ahora bien, si C denota la unión de la curva cuya parametrización es σ con el segmento τ antedicho y si S es la parte del plano que se ve en el gráfico con su normal entonces, una aplicación del teorema de Stokes nos da C ds = S Rot(F) n ds = S 0 n ds = 0. Debemos cerrarla para poder aplicar el teorema de Stokes. La curva del ejercicio es con su orientación la siguiente. Entonces, recordando lo que hemos llamado C tenemos Ahora bien, parecería natural completar la circunferencia. Pero esto no sirve. Si pudiéramos calcular lo completado casi podríamos calcular lo pedido directamente ya que es casi análogo. σ ds + τ ds =

16 Galería Elementos geométricos para aplicar el teorema de Stokes. 1 1 ds = (P, Q, 2) (0, 0, 1) dt = τ dt = 4. Por lo tanto σ ds + 4 = 0 σ ds = 4. Se puede ver una solución on-line clickeando aquí. Dos vistas de los elementos geométricos y sus orientaciones para aplicar correctamente el teorema de Stokes. A continuación una vista de atrás para una óptima comprensión. Ahora bien, el segmento τ se puede parametrizar en la forma c(t) = (0, 1, t), t [ 1,1]. Entonces 260

17 SECCIÓN 3. Teorema de Gauss. En esta última sección trabajamos con el teorema de Gauss o teorema de la divergencia. Este teorema relaciona una integral de superficie con una integral triple. Por eso conecta los capítulos 8 y 9 de la misma manera que el teorema de Stokes relaciona los capítulos 9 y 10. CONTENIDOS 1. Teorema de Gauss. 2. Divergencia. 3. Campos solenoidales. 261

18 Problemas. Galería Paralelepípedo. (1) Calcular, usando el teorema de Gauss, el flujo del campo F(x, y, z) = (xy, yz, xz) a través de la superficie frontera del paralelepípedo V = [0,1] [0,2] [0,3]. Solución. Sea S la superficie borde del volumen V. Sea vector normal que apunta hacia afuera de V. Sea n un Div(F) = P x + Q y + R z = y + z + x la divergencia del campo vectorial F. Para aplicar el teorema de Gauss debemos colocar las normales de las caras hacia afuera. Entonces, el teorema de Gauss nos permite escribir V x + y + z dx dy dz. S n ds = V Div(F) dv = Calculemos para empezar 262

19 V x dx dy dz = x dz dy dx = 1 3x dy dx = 6x dx = 3. 0 a través del trozo de esfera de ecuación x 2 + y 2 + z 2 = 13, z 2 no depende de la función Q. Indicar en un gráfico la orientación elegida para el vector normal a la superficie. Se ve que análogamente Solución. V y dx dy dz = 6 y V z dx dy dz = 9. Para poder aplicar el teorema de Gauss precisamos una superficie cerrada. Luego agregamos a la parte de la esfera del ejercicio la tapa circular plana a altura z = 2 de radio 3. Llamemos a esta tapa T y sea el trozo de nuestra esfera S. Por lo tanto Entonces, aplicando el teorema de Gauss S n ds = V Div(F) dv = = 18. S T n ds = V Div(F) dv = V dv. (2) Demostrar que el flujo de F(x, y, z) = (x + ye z, Q(x, z), 5z) Por lo tanto 263

20 Galería Elementos geométricos para aplicar el teorema de Gauss. T n ds. La tapa T se puede parametrizar en la forma φ(x, y) = (x, y, 2), (x, y) D donde D = {(x, y) R 2 : x 2 + y 2 9}. El flujo a través de la esfera está indicado por la normal del gráfico para poder aplicar el teorema de la divergencia Calculando tenemos S n ds + T n ds = 6.Vol(V ). φ x = (1, 0, 0) φ y = (0, 1, 0) Calculemos ahora entonces 264

21 n = φ x φ y = (0, 0, 1). Galería Semiesfera y tapa Pero esta normal no apunta al exterior del volumen luego debemos tomar como normal n = (0, 0, 1). Con esto T n ds = T 5z ds = T 10 ds = Cerramos la semiesfera con un plano a altura z = 0. Vemos también las normales elegidas. Vista A(T ) = 10.π.3 2 = 90π. Luego tenemos hasta ahora Esto completa la prueba de que el flujo de F a través de S no depende de la función Q. Pero si queremos hallar el valor debemos calcular todavía Vol(V ). S n ds = 6.Vol(V ) + 90π. Es posible calcular Vol(V ) en coordenadas cilíndricas. En efecto, 265

22 Vol(V ) = 2π 2π r 2 r dz dr dθ = r 13 r 2 2r dr = 2π. 133/ Solución. Para aplicar el teorema de la divergencia precisamos una superficie cerrada. Como el campo F lo conocemos en el plano z = 0 resulta natural cerrar la semiesfera con dicho plano y orientando las normales como se indica en la figura. Sustituyendo este valor en Vol(V ) obtenemos el resultado final Sea entonces S nuestra semiesfera y sea T la parte del plano z = 0 que satisface la condición x 2 + y Entonces, aplicando el teorema de Gauss tenemos S n ds = 6.2π. 133/ π. S T n ds = V Div(F) dv Se puede ver una solución on-line clickeando aquí. (3) Calcular el flujo de F a través de la semiesfera de ecuación z = 25 x 2 y 2 sabiendo que existe un campo G C 2 (R 3 ) tal que F = Rot(G) y que F(x, y, 0) = (0, y, x 1). Indicar en un gráfico la orientación elegida para n. donde V es el volumen comprendido entre el plano y la semiesfera graficado. Ahora bien, no podemos calcular Div(F) pues no tenemos F pero sabemos que existe un G C 2 (R 3 ) tal que F = Rot(G). Entonces debemos calcular 266

23 Div(Rot(G)) = ( G). S n ds + T n ds = 0. Pero la divergencia de un rotor (con las condiciones C 2 del ejercicio) da 0. Es decir Pero la segunda integral la podemos calcular. Parametricemos la tapa T por medio de la función Div(Rot(G)) = ( G) = 0. φ(x, y) = (x, y, 0) (x, y) D Luego siendo S T n ds = V Div(F) dv = D = {(x, y) R 2 : x 2 + y 2 25}. V Div(Rot(G)) dv = V 0 dv = 0. Calculando tenemos Entonces φ x = (1, 0, 0) φ y = (0, 1, 0) luego 267

24 n = φ x φ y = (0, 0, 1). S n ds + 25π = 0, Pero de acuerdo al gráfico debemos tomar luego el resultado final Entonces n = (0, 0, 1). S n ds = 25π. Se puede ver una solución on-line clickeando aquí. T n ds = T (0, y, x 1) (0, 0, 1) ds = T 1 x ds = T 1 ds = A(T ) = π.5 2 = 25π. pues la integral de x en el disco se anula. (Hágase si hay duda sobre este hecho). Con todo esto tenemos 268

25 Este libro está dedicado a los alumnos de Análisis Matemático 2, a sus excelentes profesores, a mi familia, a mi mujer Julia y a quienes fueron mis docentes, particularmente a Daniel y a Héctor. cclxix

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy = TEOREMA E GREEN. 1. Calcular y dx x dy, donde es la frontera del cuadrado [ 1, 1] [ 1, 1] orientada en sentido contrario al de las agujas del reloj. Por el teorema de Green, si llamamos al interior del

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;

Más detalles

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil 1 / 32 Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 2 / 32 Motivación: muchas ecuaciones y propiedades fundamentales de la Física (y, en consecuencia, de aplicación

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,

Más detalles

Universidad Técnica Federico Santamaría

Universidad Técnica Federico Santamaría Integral de uperficie - Mate 4 UPEFICIE PAAMÉTICA e forma similar a como se describe una curva mediante una función vectorial r(t), en función de un parámetro t,se puede describir una superficie mediante

Más detalles

Los teoremas de Stokes y Gauss

Los teoremas de Stokes y Gauss Capítulo 13 Los teoremas de tokes y Gauss En este último capítulo estudiaremos el teorema de tokes, que es una generalización del teorema de Green en cuanto que relaciona la integral de un campo vectorial

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002.

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002. Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso -. Examen de Septiembre. 6 de Septiembre de. Primera parte Ejercicio. Un canal abierto cuya sección es un trapecio isósceles de bases horizontales,

Más detalles

CÁLCULO INTEGRAL. HOJA 13.

CÁLCULO INTEGRAL. HOJA 13. CÁLCULO INTEGRAL. HOJA 13. INTEGRALE OBRE UPERFICIE. TEOREMA E TOKE Y GAU. Una superficie es una variedad diferenciable de dimensión dos, que en este curso consideraremos siempre inmersa en el espacio

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

Cambio de variables. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1.

Cambio de variables. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1. Cambio de variables IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Cambio de variables 1 2.1. El teorema del cambio de variables

Más detalles

Guía n 0: Herramientas de Física y Matemáticas

Guía n 0: Herramientas de Física y Matemáticas Guía n 0: Herramientas de Física y Matemáticas Problema Dadas dos partículas en el espacio ubicadas en los puntos de coordenadas p = (0,5, 2) y p 2 = (2,3,). Hallar el vector posición de la partícula respecto

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 10. Cálculo vectorial.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 10. Cálculo vectorial. ÁLULO ngeniería ndustrial. urso 2009-2010. Departamento de Matemática Aplicada. Universidad de evilla. Lección 10. álculo vectorial. Resumen de la lección. 10.1. ntegrales de línea. ntegral de línea de

Más detalles

Análisis II - Primer Parcial Coloquio- Tema 1

Análisis II - Primer Parcial Coloquio- Tema 1 .5. Coloquio 1/08/03. Análisis II - Primer Parcial Coloquio- Tema 1 1. Hallar a de manera que sea máximo el flujo de campo F (x,y,z)= (x,y,z) a través del borde ( con tapas!) del cilindro elíptico descripto

Más detalles

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto.

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto. La integral múltiple Problemas resueltos. Sea f una función definida en I [, ] [, 4] del siguiente modo: { (x + y), x y x, f(x, y), en el resto. Indique, mediante un dibujo, la porción A del rectángulo

Más detalles

C 4 C 3 C 1. V n dσ = C i. i=1

C 4 C 3 C 1. V n dσ = C i. i=1 apítulo 2 Divergencia y flujo Sea V = V 1 i + V 2 j + V 3 k = (V 1, V 2, V 3 ) un campo vectorial en el espacio, por ejemplo el campo de velocidades de un fluido en un cierto instante de tiempo, en un

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

Breviario de cálculo vectorial

Breviario de cálculo vectorial Apéndice A Breviario de cálculo vectorial versión 16 de octubre de 2006 Este apéndice no pretende ser mas que un resumen de definiciones y fórmulas útiles acerca de la función delta de Dirac, cálculo vectorial

Más detalles

Tarea 9. H ds = E ds (2)

Tarea 9. H ds = E ds (2) Tarea 9. ea una supercie con frontera y suponga que E es un campo eléctrico que es perpendicular a - Muestre que el ujo magnético inducido a través de es constante en el tiempo. (Use la Ley de Faraday)

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

CAMPOS: CIRCULACIÓN Y FLUJO

CAMPOS: CIRCULACIÓN Y FLUJO AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que

Más detalles

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1) Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

Elementos de análisis

Elementos de análisis Elementos de análisis El estudio universitario del electromagnetismo en Física II requiere del uso de elementos de análisis en varias variables que el alumno adquirirá en la asignatura Análisis Matemático

Más detalles

Geometría de masas: Cálculos del tensor de Inercia

Geometría de masas: Cálculos del tensor de Inercia Departamento: Física Aplicada Mecánica acional (ngeniería ndustrial) Curso 007-08 eometría de masas: Cálculos del tensor de nercia Tensor de inercia de una varilla delgada. Calculo del tensor de inercia

Más detalles

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos ECUACIONES EN DERIVADAS PARCIALES Tópicos previos Para tomar el curso de ecuaciones en derivadas parciales es importante la familiaridad del alumno con los conceptos que se detallan a continuación. Sugerimos

Más detalles

TEMA 0: Herramientas matemáticas

TEMA 0: Herramientas matemáticas 1 TEMA 0: Herramientas matemáticas Tema 0: Herramientas matemáticas 1. Campos escalares y vectoriales 2. Gradiente 3. Divergencia 4. Rotacional 5. Teoremas de Gauss y de Stokes 5. Representación gráfica

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

1. Area de una Superficie

1. Area de una Superficie 1. Area de una Superficie Integrales de La idea para calcular el área de una superficie es sub-dividirla en regiones bastante pequeñas como para suponer que son planas, y aproximar el valor del área como

Más detalles

CÁLCULO INTEGRAL. HOJA 12.

CÁLCULO INTEGRAL. HOJA 12. ÁLULO INTEGRAL. HOJA 12. EL TEOREMA E GREEN. 1. efinición. iremos que una curva R 2 es regular a trozos si se puede parametrizar mediante un camino γ que a su vez puede escribirse como concatenación γ

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución:

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución: Problemas resueltos 1. Halle la longitud de la curva dada por la parametrización α(t) t ı + 4 3 t3/ j + 1 t k, t [, ]. α (t) (1, t 1/, 1 ), t [, ]. La curva α es de clase C 1 y, por tanto, es rectificable.

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07. Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo

Más detalles

Integral de superficie.

Integral de superficie. Tema 4 Integral de superficie. 4.1 uperficies. Definición 4.1 ean IR 2 un conjunto conexo y κ: IR 3 una función continua. La imagen = κ se llama superficie descrita por κ. También se dice que κ es una

Más detalles

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar.

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar. NOTAS DE LASE ÁLULO III Unidad 4: INTEGRALES DE LINEA, DE SUPERFIIE, TEOREMAS FUNDAMENTALES Guía de Estudio Doris Hinestroza 1 Índice 1. INTEGRALES DE LINEA, DE SUPERFIIE, TEO- REMAS FUNDAMENTALES DEL

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

Integrales dobles. Integrales dobles

Integrales dobles. Integrales dobles Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre:

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre: Nombre: Santiago, julio 6 del 26. Tercera Solemne Cálculo Varias Variables. 1. La temperatura en un punto (x, y) sobre una placa metalica es T (x, y) 4x 2 4xy + y 2. Una hormiga camina sobre la placa alrededor

Más detalles

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO . Universidad Tecnológica Nacional - Facultad Regional Rosario Álgebra y Geometría Analítica EL PLANO Autores: Lic. Martha Fascella Ing. Ricardo F. Sagristá 0 Contenido EL PLANO... 3.- Definición del plano

Más detalles

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 5 1. Hallar la ecuación del plano que

Más detalles

I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Tema 1

I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Tema 1 I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos 28-9-Tema 1 Departamento de Física 1) Dado el campo vectorial F = y i+x j, calcule su circulación desde (2,1, 1) hasta

Más detalles

2 Deniciones y soluciones

2 Deniciones y soluciones Deniciones y soluciones Sabemos que la derivada de una función y(x) es otra función y (x) que se determina aplicando una regla adecuada. Por ejemplo, la derivada de y = e 3x es dx = 6xe3x. Si en la última

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

INTEGRALES DE SUPERFICIE.

INTEGRALES DE SUPERFICIE. INTEGALE DE UPEFICIE. 31. Encontrar el área de la sperficie definida como intersección del plano x + y + z 1 con el sólido x + y 1. olción La sperficie dada se pede parametrizar por x cos v : y (/ ) sen

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial Primer Parcial Identifica los criterios de convergencia para determinar si una serie es convergente o no. 1,2 Representa una función mediante una serie de potencias estableciendo el intervalo de convergencia.

Más detalles

INTEGRAL LAPSO 2 008-2 751-1/ 6

INTEGRAL LAPSO 2 008-2 751-1/ 6 INTEGRAL LAPSO 8-751 - 1/ 6 Universidad Nacional Abierta CÁLCULO III ( 751 ) Vicerrectorado Académico Integral Área de Matemática Fecha 1/1/8 Lapso 8 MOELO E RESPUESTAS OBJ 1 PTA 1 a. etermine el dominio

Más detalles

Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea.

Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea. Universidad de Sevilla. GO y GERM. Matemáticas. Departamento de Matemática Aplicada. Guión del Tema 5: ntegrales de Línea. 1. ntegrales de línea. ntegral de línea de un campo escalar. Sea una curva parametrizada

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Teoremas de Stokes y Gauss

Teoremas de Stokes y Gauss Lección 9 Teoremas de Stokes y Gauss Presentamos a continuación los dos resultados principales del Cálculo Vectorial. Por una parte, el Teorema de Stokes generaliza la fórmula de Green, estableciendo la

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometría del espacio: problemas de ángulos y distancias; simetrías MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Ángulos

Más detalles

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES TRIGONOMÉTRICAS. La función f(x) = 1 x 2 es continua en el intervalo [ 1, 1]. Su gráfica como vimos es la semicircunferencia de radio uno centro el origen de coordenadas.

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

2. Derivación y funciones holomorfas.

2. Derivación y funciones holomorfas. 18 Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 2. Derivación y funciones holomorfas. 2.1. Derivación de funciones complejas y funciones holomorfas. Sea Ω abierto contenido en C,

Más detalles

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA

APLICACIONES DE LA INTEGRAL DEFINIDA CAPÍTULO XI. APLICACIONES DE LA INTEGRAL DEFINIDA SECCIONES A. Áreas de figuras planas. B. Cálculo de volúmenes. C. Longitud de curvas planas. D. Ejercicios propuestos. 37 A. ÁREAS DE FIGURAS PLANAS. En

Más detalles

Capítulo 8: Vectores

Capítulo 8: Vectores Capítulo 8: Vectores 1. Lección 30. Operaciones con vectores 1.1. Vectores El concepto de vector aparece en Física para describir magnitudes, tales como la fuerza que actúa sobre un punto, en las que no

Más detalles

1. Definición de campo vectorial

1. Definición de campo vectorial Universidad Nacional de La Plata Facultad de iencias Exactas ANÁLII MATEMÁTIO II (ibex - Física Médica) 214 egundo emestre GUÍA Nro. 6: AMPO VETORIALE 1. Definición de campo vectorial Durante el curso

Más detalles

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente

Más detalles

Ángulos, distancias, áreas y volúmenes

Ángulos, distancias, áreas y volúmenes UNIDAD 6 Ángulos, distancias, áreas y volúmenes e suelen llamar problemas afines a todos los S que se refieren a intersección (incidencia) y paralelismo de los elemento básicos del espacio: puntos, rectas

Más detalles

CONCEPTOS PRELIMINARES

CONCEPTOS PRELIMINARES CONCEPTOS PRELIMINARES Matemáticas II En R un conjunto abierto es la unión de intervalos abiertos. Tanto el concepto de conjunto abierto como de intervalo abierto se generaliza en el plano y en el espacio.

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Superficies paramétricas

Superficies paramétricas SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando

Más detalles

CALCULO DIFERENCIAL. GRUPO D

CALCULO DIFERENCIAL. GRUPO D CALCULO DIFERENCIAL. GRUPO D HOJA DE PROBLEMAS 1 1. En este ejercicio se trata de dibujar el siguiente subconjunto de R 3 llamado hiperboloide de una hoja (a, b, c > 0): } V = (x, y, z) R 3 : x a + y b

Más detalles

9. Aplicaciones al cálculo de integrales impropias.

9. Aplicaciones al cálculo de integrales impropias. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 26. 85 9. Aplicaciones al cálculo de integrales impropias. Las aplicaciones de la teoría de Cauchy de funciones analíticas para el cálculo de

Más detalles

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2 1. Usando la definición correspondiente demostrar que la función es diferenciable en todo R 2. z = f(x, y = 3x xy 2 Se debe verificar que para todo (a, b en R 2, existen funciones, de = x y k = y, ɛ 1

Más detalles

Campos conservativos. f(x) = f (x) = ( f x 1

Campos conservativos. f(x) = f (x) = ( f x 1 Capítulo 1 Campos conservativos En este capítulo continuaremos estudiando las integrales de linea, concentrándonos en la siguiente pregunta: bajo qué circunstancias la integral de linea de un campo vectorial

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

MATE-1207 Cálculo Vectorial Taller 2 - Preparación Segundo Parcial P2. (a) Si f(x,y), g(x,y) son dos funciones continuas en D, entonces

MATE-1207 Cálculo Vectorial Taller 2 - Preparación Segundo Parcial P2. (a) Si f(x,y), g(x,y) son dos funciones continuas en D, entonces Universidad de los Andes epartamento de Matemáticas MATE-27 Cálculo Vectorial Taller 2 - Preparación Segundo Parcial P2. Conteste Falso o Verdadero. Justifique matemáticamente. (a) Si f(x,y), g(x,y) son

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Algunas Aplicaciones de la Transformada de Laplace

Algunas Aplicaciones de la Transformada de Laplace Algunas Aplicaciones de la Transformada de Laplace Dr. Andrés Pérez Escuela de Matemática Facultad de Ciencias Universidad Central de Venezuela 11 de marzo de 2016 A. Pérez Algunas Aplicaciones de la Contenido

Más detalles

4. Integral de línea de funciones escalares de dos y tres variables

4. Integral de línea de funciones escalares de dos y tres variables Universidad Nacional de La Plata Facultad de iencias Exactas ANÁLISIS MATEMÁTIO II (ibex - Física Médica) (214 Segundo Semestre) GUÍA Nro. 5 (PARTE B) INTEGRAIÓN DE FUNIONES ESALARES DE VARIAS VARIABLES

Más detalles

a y Para aplicar el teorema de Stokes, calculamos en primer lugar el rotacional del campo vectorial: i j k / x / y / z

a y Para aplicar el teorema de Stokes, calculamos en primer lugar el rotacional del campo vectorial: i j k / x / y / z TEOREMA E TOKE. 1. Usar el teorema de tokes para calcular la integral de línea ( ) d + ( ) d + ( ) d, donde es la curva intersección de la superficie del cubo a, a, a el plano + + 3a/, recorrida en sentido

Más detalles

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 42 Índice. 1. Superficies. 2. El espacio eucĺıdeo tridimensional. Coordenadas Cartesianas. 3. Distancia entre

Más detalles

PROGRAMA DE ASIGNATURA CLAVE: 1211 SEMESTRE: 2 CÁLCULO VECTORIAL HORAS SEMESTRE CARACTER ECUACIONES DIFERENCIALES

PROGRAMA DE ASIGNATURA CLAVE: 1211 SEMESTRE: 2 CÁLCULO VECTORIAL HORAS SEMESTRE CARACTER ECUACIONES DIFERENCIALES UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN INGENIERÍA CIVIL ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: 1211 SEMESTRE:

Más detalles

* e e Propiedades de la potenciación.

* e e Propiedades de la potenciación. ECUACIONES DIFERENCIALES 1 REPASO DE ALGUNOS CONCEPTOS PREVIOS AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES 1. Cuando hablamos de una función en una variable escribíamos esta relación como y = f(x), esta

Más detalles

IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo de año 200 [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función a maximizar A (/2)(x)(y)

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide

Más detalles