Trabajo Práctico Nro. 3. Teorema de Cauchy. Fórmula integral de Cauchy. Funciones Armónicas.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Trabajo Práctico Nro. 3. Teorema de Cauchy. Fórmula integral de Cauchy. Funciones Armónicas."

Transcripción

1 Análisis III B - Turno mañana - Trabajo Práctico Nro. 3 Trabajo Práctico Nro. 3 Teorema de auchy. Fórmula integral de auchy. Funciones Armónicas.. alcular las siguientes integrales de línea: a) Re(z) a lo largo de las siguientes trayectorias: (d) z : semicircunf. superior de z = desde z = hasta z 2 =. 2 z +3 : segmento del eje real que une z = yz 2 =2. π exp(πz) : contorno del cuadrado formado por z =, z 2 =, z 3 =+i y z 4 =i, recorrido en sentido positivo. 2. Sea la circunferencia : z a = r e iθ ( θ 2π, r > ) recorrida en sentido 2π positivo. Demostrar que f(z) = ir f(a + r e iθ ) e iθ dθ. 3. Probar, sin calcular la integral, que: (a) z : segmento que une los puntos z =i y z 2 =. z z+ 8 3 π : circunferencia z = 2, recorrida en sentido positivo. 3 z 2 + π : circunferencia z = 2, en el primer cuadrante. 3 e iz (d) lím = : semicircunferencia superior de z =R. R + z 2 +a2

2 2 Análisis III B - Turno mañana - Trabajo Práctico Nro a) Enuncie el teorema de auchy Goursat. b) Explique cuándo es válido f(z) = f(z), para dos curvas :[a, b], λ:[a, b] tales que (a)=λ(a) y=λ (independencia del camino). Justificar. c) Es cierto que si D es un dominio en, yf H(D), entonces cualquiera sea el contorno cerrado D, resulta f(z) =? Justificar. d) Es cierto que si D es un dominio en,yf es continua en D, y si cualquiera sea el contorno cerrado D, resulta f(z) =, entonces f H(D)? λ Justificar. 5. alcular, en cada caso, la integral de línea de la función f a lo largo de los contornos indicados: (a) f(z)= ={z/ z =}. z 2 +2z+2 f(z)=z 3 f(z)=e z (d) f(z)=z sen(z 2 ) (i) = {z/ z =}, (ii) : recta que une los puntos z = y z =i, (iii) : arco de circunferencia de centro y radio que une los puntos z = y z =i. (i) = {z/ z =π}, (ii) : un contorno que une los puntos z = iπ y z =iπ. : contorno que une los puntos z = iπ y z =iπ. 6. a) Si f es holomorfa en D y sobre los contornos, y 2, pruebe que el valor de la integral de f sobre toda la frontera de D es cero. (Obs: Esto significa que, bajo ciertas condiciones, se puede extender el teorema de auchy a dominios múltiplemente conexos).

3 Análisis III B - Turno mañana - Trabajo Práctico Nro. 3 3 b) A partir del resultado anterior, analice bajo qué condiciones f(z) = f(z) siendo f(z) = (z a)(z b), y 2 como 2 se indican en el gráfico. 7. alcular las siguientes integrales: (a) : contorno que encierra al origen, recorrido una vez en sentido z antihorario. : contorno que encierra a z =2 i, recorrido una vez en sentido z 2+i antihorario. : contorno que encierra a z =c, recorrido una vez en sentido z c antihorario. Analice en qué varía el resultado si se recorre n-veces, n N. 8. Aplicando la fórmula integral de auchy, integrar la función f(z) = 2z2 4 z 2 + lo largo del círculo de radio con centro en: a (a) z =i z = z = i 2 (d) z = recorrido una vez en sentido antihorario. 9. alcular la integral de línea de las siguientes funciones: (i) f(z) = z3 z (z +) 2 (ii) f(z) = ez z n para n> (iii) f(z) = sobre el círculo de radio 2 y centro en: (a) z = z =2+i. alcular las siguientes integrales: z 2 +4 a) z z = z 4 (z ) 2 (z 3)

4 4 Análisis III B - Turno mañana - Trabajo Práctico Nro. 3 b) c) z =4 z z 3 (z 2 +)(z 2 +4) z = 3 2. alcular todos los posibles valores de la integral contornos cerrados que no pasen por: z (z 2 ) para diferentes (a) z = z = z = 2. Indicar, justificando en cada caso, si las siguientes afirmaciones son verdaderas o falsas: a) f(z) Si f(z) es holomorfa en int(), entonces (z a) = 2 f (z) (z a) a/, donde es un contorno cerrado en. b) Si f(z) es holomorfa en un dominio D del plano complejo, entonces la integral sobre un contorno con extremo inicial z y extremo final z,es independiente del camino. 3. Probar que si f(z) es holomorfa en un dominio D y si la circunferencia z a =R está en D, entonces: f(a) = 2π f(a + Re it ) dt. 2π Este resultado puede interpretarse como un teorema del valor medio que expresa el valor de f en el centro de la circunferencia como un promedio de los valores sobre la misma. 4. Sea f(z) una función holomorfa en z a <R.Si<r<R, demostrar que f (a) = 2π f(a + re it ) e it dt. 2πr 5. Es cierto que ninguna función holomorfa en, que no sea idénticamente nula, puede tener límite en? Funciones Armónicas 6. Determinar las condiciones que deben cumplir a, b y c R para que u(x, y) =ax 2 +2bxy + cy 2 sea armónica en. 7. Determinar si las siguientes funciones son armónicas indicando el dominio en que lo son. En caso afirmativo, hallar la conjugada armónica y la función holomorfa u + iv que las tiene como parte real u o imaginaria v.

5 Análisis III B - Turno mañana - Trabajo Práctico Nro. 3 5 (a) u(x, y) =x 2 y 2 u(x, y) =e x cos y v(x, y)=2x ( y) (d) u(x, y) =ln(x 2 +y 2 ) (e) u(x, y) =e x (x cos y y sen y) (f) v(x, y)=2y ( x) ( y (g) v(x, y) = arctan x) 8. a) Es cierto que si las funciones u(x, y) yv(x, y) son armónicas en un dominio D del plano entonces f(z) =u(x, y)+iv(x, y) es holomorfa en D? b) Es la suma de funciones armónicas en un dominio D una función armónica en D? Y el producto? Justificar. 9. a) Sea g 2 (R). Analice en cada caso, si existe una función armónica no constante u(x, y) del tipo indicado y, si existe, calcúlela: (i) u(x, y) =g(ax + by) (ii) u(x, y) =g(x 2 +y 2 ) b) Analice en cada uno de los casos anteriores y halle, si existe, la conjugada armónica, indicando el dominio de validez. 2. a) Probar que la ecuación de Laplace en coordenadas polares es: r 2 u rr + ru r + u ϕϕ =. b) Para cada n N sea u n (r, ϕ) =(a n cos nϕ + b n sen nϕ) r n. Probar que u n (r, ϕ) es armónica. c) Hallar la conjugada armónica ũ n (r, ϕ). 2. Aplicaciones sobre armónicas conjugadas: a) Hallar la ecuación de las líneas de fuerza en una región en que la distribución de potencial es: ( ) y (i) V (x, y) = arctg (ii) V (x, y) =2x 3 6xy 2 x + b) Encontrar el potencial complejo para un fluido moviéndose con velocidad constante v, en una dirección que forma un ángulo ϕ con el semieje real positivo. c) Determinar la ecuación de las líneas de corriente y de las líneas equipotenciales del problema anterior. d) Encontrar el potencial complejo debido a una línea cargada con una carga q por unidad de longitud, ubicada perpendicularmente al plano z por z =.

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z Demostrar que Re z + Im z z para todo z C. Encontrar las soluciones de z = z. 3 Representar cada uno de los siguientes conjuntos: (a) z + i =, (b) z + i 3, (c) Re(z i) =, (d) z i = 4. 4 Demostrar que si

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

Trabajo Práctico Nro. 2. Funciones Complejas. Funciones Holomorfas. Funciones Multiformes. Transformaciones Conformes.

Trabajo Práctico Nro. 2. Funciones Complejas. Funciones Holomorfas. Funciones Multiformes. Transformaciones Conformes. Análisis III B - Turno mañana - Trabajo Práctico Nro. 1 Trabajo Práctico Nro. Funciones Complejas. Funciones Holomorfas. Funciones Multiformes. Transformaciones Conformes. 1. Expresar cada una de las siguientes

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8 ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,

Más detalles

FUNCIONES ANALITICAS (Curso 2011) Práctica 7. Clase 1 - Desarrollo de Laurent - Clasificación de singularidades aisladas

FUNCIONES ANALITICAS (Curso 2011) Práctica 7. Clase 1 - Desarrollo de Laurent - Clasificación de singularidades aisladas FUNCIONES ANALITICAS (Curso 2) Práctica 7 Clase - Desarrollo de Laurent - Clasificación de singularidades aisladas. Hallar los desarrollos de Laurent de + en > en las distintas coronas alrededor del origen

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3 Hoja NúmerosComplejos.- Calcular todos los números z IC tales que: a) z = z 2 b) z = Rez + 2.- Obtener en forma binómica. a) b) c) 8 ( i) 5 (3 + 5i) (2 i) ( + i 3 ) ( + i) 3 3.- Obtener en forma binómica

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 10 Aplicaciones de la Teoría de funciones analíticas.

MATEMATICAS ESPECIALES I PRACTICA 10 Aplicaciones de la Teoría de funciones analíticas. MATEMATICAS ESPECIALES I - 17 PRACTICA 1 Aplicaciones de la Teoría de funciones analíticas. Aplicaciones del Teorema de los residuos para calcular integrales reales. 1. Integrales del tipo π R(cos t, sin

Más detalles

Trabajo Práctico Nro. 2. Funciones Complejas. Funciones Holomorfas.

Trabajo Práctico Nro. 2. Funciones Complejas. Funciones Holomorfas. Análisis III - Trabajo Práctico Nro. 1 Trabajo Práctico Nro. Funciones Complejas. Funciones Holomorfas. 1. Expresar cada una de las siguientes funciones en la forma u(x, y)+iv(x, y) donde u y v son funciones

Más detalles

El teorema de los residuos

El teorema de los residuos Tema 2 El teorema de los residuos 2. Singularidades aisladas de una función Definición 2. Sea f: A C. Se dice que f tiene una singularidad aislada en el punto α A, si existe un E(α, r tal que la función

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. Asignatura: álculo II PRUEBAS DE EVALUAIÓN NOTA: En todos los ejercicios se deberá justificar la respuesta eplicando el procedimiento seguido en la resolución del ejercicio. URSO 010 011 JUNIO URSO 10

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

Análisis Matemático I

Análisis Matemático I Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

Análisis Matemático I

Análisis Matemático I Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una

Más detalles

MATEMÁTICAS ESPECIALES I PRÁCTICA 8 - CLASE 1 Sucesiones y series de funciones. x n, si 0 x 1 1, si x 1. 0, si 0 x < 1

MATEMÁTICAS ESPECIALES I PRÁCTICA 8 - CLASE 1 Sucesiones y series de funciones. x n, si 0 x 1 1, si x 1. 0, si 0 x < 1 PRÁCTICA 8 - CLASE Sucesiones y series de funciones.. Considere la sucesión de funciones reales ϕ n (x) = x n, si 0 x, si x, n. (a) Demostrar que converge puntualmente a ϕ(x) = 0, si 0 x

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 3. , demostrar que su trayectoria está contenida en D(1, 1) y calcular

Problemas de VC para EDVC elaborados por C. Mora, Tema 3. , demostrar que su trayectoria está contenida en D(1, 1) y calcular Problemas de VC para EDVC elaborados por C. Mora, Tema 3 Ejercicio Sean, : [, ] C dos curvas cerradas de clase C a trozos y z C tal que (t) (t) < z (t) t [, ]. Demostrar que Ind (z) = Ind (z). [Pista:

Más detalles

Análisis Matemático para Estadística. Hoja 1

Análisis Matemático para Estadística. Hoja 1 Análisis Matemático para Estadística. Hoja Funciones de variable compleja. Teoremas básicos.. Describe el conjunto de puntos del plano complejo que cumplen la ecuación: (a) Im(z + 5i) = ; (b) Re(z + 3

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

Problemas de AMPLIACIÓN DE MATEMÁTICAS

Problemas de AMPLIACIÓN DE MATEMÁTICAS Problemas de AMPLIACIÓN DE MATEMÁTICAS Ingeniería Industrial. Curso 3-4. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema : Series. Problema. Halle la representación en serie de McLaurin

Más detalles

Problemas para la materia de Cálculo IV

Problemas para la materia de Cálculo IV Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica Problemas para la materia de álculo IV Febrero de 5 ompilación de problemas propuestos como parte de exámenes parciales

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

Capítulo 2 Funciones de Variable Compleja.

Capítulo 2 Funciones de Variable Compleja. Capítulo 2 Funciones de Variable Compleja. La teoría de funciones de variable compleja, es una de las más importantes de la matemática no sólo porque en esta variable se alcanza el más alto nivel, sino

Más detalles

gradiente de una función? Para esos valores, calcule la función potencial.

gradiente de una función? Para esos valores, calcule la función potencial. CAMPOS CONSERVATIVOS. FUNCIÓN POTENCIAL 1. Sea F = 4xy 3x ( z (, 2x (, 2x, z. Demuestre que Fdl trayectoria C. es independiente de la 2. Dado el campo vectorial F = 3x ( + 2y y ( e 3, 2x 2ye 3. Es posible

Más detalles

Capítulo 3 Integración en el Campo Complejo.

Capítulo 3 Integración en el Campo Complejo. Capítulo 3 Integración en el Campo Complejo. La teoría de la integración en el campo complejo es una de las más bellas y profundas de la matemática pura. Pero sus aplicaciones también son importantes e

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 1 Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 215-1 El material relativo al temario puede ser consultado en la amplia bibliografía que allí se menciona o en alguno de los muchísimos

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013 Matemáticas II Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica 4 de febrero de 0. Conteste las siguientes cuestiones: (a) (0. ptos.) Escriba en forma

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 Tema: Números Complejos (C). 1. Clasifica los siguientes números complejos en reales e imaginarios. Mencionar, para cada uno,

Más detalles

CÁLCULO VECTORIAL SEMESTRE

CÁLCULO VECTORIAL SEMESTRE SERIE # 3 ÁLULO VETORIAL SEMESTRE 009- ÁLULO VETORIAL SEMESTRE: 009-1 Página 1) Sea el campo vectorial F (x, y,z)= ( 3x+ yz)i+( x+ y ) j + ( xz) k F d r. alcular x = + y lo largo de la curva :, del punto

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:...

UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... UTN FRBA Final de Álgebra y Geometría Analítica 1/05/01 Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... La condición para aprobar esta evaluación es tener bien resueltos como mínimo tres ejercicios.

Más detalles

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto Capítulo 2 Funciones analíticas. Funciones armónicas. En este capítulo iniciamos el estudio de las funciones de variable compleja. Comenzamos con los conceptos de límite y continuidad en lc, conceptos

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z Problemas de VC para EDVC elaborados por C. Mora, Tema 1 Ejercicio 1 Escribir en forma binómica los siguientes números complejos: i n, n Z; ( 1 + i ) n, n N; ( ) ( ) 4 5 1 + i 3 i ; (1+i 3) 0 ; e 1/z 1

Más detalles

D. Teorema de Cauchy Goursat: Práctica 4

D. Teorema de Cauchy Goursat: Práctica 4 Analiticidad y transformaciones conformes ondiciones de auchy Riemann Transformaciones conformes Integración en el Plano omplejo Parametrización de arcos e integrales de contorno auchy, auchy Goursat y

Más detalles

2 Estudio local de funciones de varias variables.

2 Estudio local de funciones de varias variables. a t e a PROBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CURSO 2009 2010 2 Estudio local de funciones de varias variables. 2.1 Derivadas de orden superior. Problema 2.1 Sea

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos. a n (z z 0 ) n + n 1

MATEMATICAS ESPECIALES I PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos. a n (z z 0 ) n + n 1 MATEMATICAS ESPECIALES I - 207 PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos Teorema. Sean r y R números reales tales que 0 < r < R

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Integración sobre curvas

Integración sobre curvas Problemas propuestos con solución Integración sobre curvas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integral de línea de campos escalares 1

Más detalles

Series de Laurent. R n (z) = (z z 0) n C. ( z. Para probar esta afirmación partimos de la fórmula integral de Cauchy escrita convenientemente = 1

Series de Laurent. R n (z) = (z z 0) n C. ( z. Para probar esta afirmación partimos de la fórmula integral de Cauchy escrita convenientemente = 1 Semana 3 - lase 37 Series de Laurent. Otra vez Taylor y ahora Laurent Anteriormente consideramos series complejas de potencias. En esta sección revisaremos, desde la perspectiva de haber expresado la derivada

Más detalles

Ingeniería Civil Matemática Universidad de Valparaíso.

Ingeniería Civil Matemática Universidad de Valparaíso. * Ejercicios Álgebra Ingeniería Civil Matemática Universidad de Valparaíso. Prof: Gerardo Honorato CIRCUNFERENCIA. PREGUNTAS 1. 1) Escribir la ecuación de la circunferencia de centro C = ( 3, 7) y radio

Más detalles

FUNCIONES HOLOMORFAS

FUNCIONES HOLOMORFAS Capítulo 2 FUNCIONES HOLOMORFAS Problema 2.. Estudia en qué puntos son derivables en sentido complejo las siguientes funciones (z = x + iy): (a) f(z) = z α, con α > 0, (b) f(z) = xy, (c) f(z) = h(x), con

Más detalles

INTEGRACIÓN POR RESIDUOS

INTEGRACIÓN POR RESIDUOS Capítulo 6 INTEGRACIÓN POR RESIDUOS Problema 6. Halla todas las singularidades de las siguientes funciones y obtén sus correspondientes residuos: z 3 (z + 4), z 2 + 2z +, z 3 3, e z, sen z, (z 3)sen Problema

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 álculo diferencial e integral 4 Guía 4 1. alcular la divergencia y el rotacional de los siguientes campos vectoriales: a) V (x, y, z) = yzi + xzj + xyk. b) V (x, y, z) = x 2 i + (x + y) 2 j + (x + y +

Más detalles

1. Hallar la ecuación paramétrica y las ecuaciones simétricas de la recta en los siguientes casos:

1. Hallar la ecuación paramétrica y las ecuaciones simétricas de la recta en los siguientes casos: A. Vectores ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos, Superficies en el espacio Para terminar el 3 de septiembre.. Sean v = (0,, ) y w = (,, 4)

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada

a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada Matemáticas II - Curso - EJERCICIOS DE CÁLCULO DIFERENCIAL E INTEGRAL PROPUESTOS EN LAS PRUEBAS DE ACCESO COMUNIDAD DE MADRID (JUN ) Calcular la base y la altura del triángulo isósceles de perímetro 8

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2016-2017) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

Tema 2: Funciones anaĺıticas. Conjuntos abiertos y conjuntos cerrados. Ejemplos. Marisa Serrano. 6 de octubre de 2009

Tema 2: Funciones anaĺıticas. Conjuntos abiertos y conjuntos cerrados. Ejemplos. Marisa Serrano. 6 de octubre de 2009 Índice Universidad de Oviedo 6 de octubre de 2009 1 2 3 4 email: mlserrano@uniovi.es Conjuntos abiertos y conjuntos cerrados B(a, ɛ) = {z C : z a < ɛ} = D(a, ɛ). Dado A C se dice que un punto a C es interior

Más detalles

1. Conjuntos de números

1. Conjuntos de números 1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II PROBLEMAS RESUELTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 7.- MAGNETOSTÁTICA DE MEDIOS MATERIALES 7 Magnetostática

Más detalles

Práctico Expresar los siguientes números complejos de la forma x + iy, con x, y R: i 1 + i

Práctico Expresar los siguientes números complejos de la forma x + iy, con x, y R: i 1 + i Centro de Matemática Facultad de Ciencias Universidad de la República Práctico Análisis complejo - Curso 009. Expresar los siguientes números complejos de la forma x + iy, con x, y R: a)( + 3i) b)( + i)(i

Más detalles

PRACTICO A.M. II 2014

PRACTICO A.M. II 2014 PRATIO 4- - A.M. II 014 INTEGRALES DE LINEA INTEGRAL DE LINEA DE AMPOS ESALARES 1. alcule las siguientes integrales de línea a) f ds donde es el arco de parábola x 4 desde (-, -1) hasta (5, ), f está dada

Más detalles

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2 Ejemplos de parcial de Análisis Matemático II Los ítems E1, E, E3 E4 corresponden a la parte práctica Los ítems T1 T son teóricos (sólo para promoción) T1) Sea F : IR IR diferenciable tal que F(,) 00 =

Más detalles

Tarea 4-Integral de línea

Tarea 4-Integral de línea Tarea 4-Integral de línea I. alcular la integral de línea del campo vectorial f a lo largo del camino que se indica. (Apostol TomoII Pag. 37-10.5) 1. f (x, y) = (x xy)i + (y xy)j a lo largo de la parábola

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja Matemática D y D MATEMÁTICA D y D Módulo I: Análisis de Variable Compleja Unidad 0 Números Complejos Mag. María Inés Baragatti Números complejos. Generalidades Un número complejo es un par ordenado de

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2017-2018) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

, el versor. la curva C está parametrizada por α :[ a, b] normal a la misma es. y la integral N se puede. escribir:

, el versor. la curva C está parametrizada por α :[ a, b] normal a la misma es. y la integral N se puede. escribir: 1.ampo vectorial plano potencial complejo. onsideraremos campos vectoriales planos estacionarios. Esto significa primeramente que el campo es independiente del tiempo, en segundo lugar, que los vectores

Más detalles

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos Matemáticas I Ejercicios resueltos. Tema : Números Complejos 1. Calcula: ( + i)( i) (1 i)( i) c) i ( i)5i + i( 1 + i) (5 i) d) ( i)( + i) ( i) (+i)( i) (1 i)( i) i+i ( i i ) +i ( 1 5i) +1+i+5i 5 + i +

Más detalles

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la aritmética de Diofanto (año 275). 56 8i 14 + 10i 1. Trata la

Más detalles

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0) facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

Números Complejos. Contenido. Definición

Números Complejos. Contenido. Definición U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Números Complejos William La Cruz Números Complejos...3

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

2. Derivación y funciones holomorfas.

2. Derivación y funciones holomorfas. 18 Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 2. Derivación y funciones holomorfas. 2.1. Derivación de funciones complejas y funciones holomorfas. Sea Ω abierto contenido en C,

Más detalles

Análisis Complejo - Primer Cuatrimestre de 2018

Análisis Complejo - Primer Cuatrimestre de 2018 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Análisis Complejo - Primer Cuatrimestre de 018 Práctica N 1: Números Complejos, Esfera de Riemann y Homografías

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

1. Ceros y singularidades de una función

1. Ceros y singularidades de una función TEMA 6 TEORÍA DE RESIDUOS. Ceros y singularidades de una función. Ceros de una función.2 Singularidades de una función.3 Relaciones entre ceros y singularidades.4 Singularidades y el punto del infinito

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación

Más detalles

PROPUESTA A. 1 + x2 c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto)

PROPUESTA A. 1 + x2 c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto) Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado. Bachillerato L. O. G. S. E. Instrucciones: El alumno deberá contestar a una de las dos opciones propuestas A o B. Los ejercicios deben

Más detalles

Funciones Analíticas, Singularidades y Funciones Meromorfas

Funciones Analíticas, Singularidades y Funciones Meromorfas Funciones Analíticas, Singularidades y Funciones Meromorfas Rodrigo Vargas. Suponga que f es una función meromorfa en C y existen números positivos C, k y R tal que f(z) < C z k si z > R. Demuestre que

Más detalles

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares. FIUBA 07-05-11 Análisis Matemático II Parcial - Tema 1 1. Sea f(x, y) = { x y si x 3y si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.. Sea G(x, y) = (u(x, y),

Más detalles

Análisis Complejo Segundo Cuatrimestre 2011

Análisis Complejo Segundo Cuatrimestre 2011 Análisis Complejo Segundo Cuatrimestre 011 Práctica 1: Números complejos Números complejos 11 Expresar los siguientes números en la forma a + bi, con a, b R: (a) (i + 1)(i 1)(i + 3), (b) (3 i), (c) 1 1+3i,

Más detalles

Ejercicios típicos del segundo parcial

Ejercicios típicos del segundo parcial Ejercicios típicos del segundo parcial El segundo examen parcial consiste en tres ejercicios prácticos y dos teóricos, aunque esta frontera es muy difusa. Por ejemplo, el primer ejercicio de esta serie,

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) 1er. Cuatrimestre 2017 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable 1. Vericar que se

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

b E: base canónica de R 3, E = {1, x, x 2 } base de P 2 2) Analice la verdad o la falsedad de las siguientes proposiciones. Justifique sus respuestas.

b E: base canónica de R 3, E = {1, x, x 2 } base de P 2 2) Analice la verdad o la falsedad de las siguientes proposiciones. Justifique sus respuestas. UTN. FRBA ÁLGEBRA Y GEOMETRÍA ANALÍTICA de Mayo de01 Tema: 1 Apellido y nombres del alumno:...legajo:. 1 4 5 Calificación final La condición para aprobar el examen es tener como mínimo tres ejercicios

Más detalles

Unidad 7 Números Complejos! 1 PROBLEMAS PROPUESTOS (! "#$) Matemáticas 1. " Completa estas operaciones entre números complejos:

Unidad 7 Números Complejos! 1 PROBLEMAS PROPUESTOS (! #$) Matemáticas 1.  Completa estas operaciones entre números complejos: Unidad 7 Números Complejos! PROBLEMAS PROPUESTOS (! "#$) " Completa estas operaciones entre números complejos: (5-i)- z -+i (b) ( + i) ( - + 0i) z (c) -7i-i (-+5)z a) ( 5 i ) z - + i z 5 i + i 8 i. b)

Más detalles

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES Universidad Simón Bolívar Departamento de Matemáticas Puras Aplicadas Enero-Abril 4 EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES.- Compruebe que la función indicada sea una solución

Más detalles

Tema 1. Números Complejos

Tema 1. Números Complejos Tema 1. Números Complejos Prof. William La Cruz Bastidas 27 de septiembre de 2002 Capítulo 1 Números Complejos Definición 1.1 Un número complejo, z, es un número que se expresa como z = x + iy o, de manera

Más detalles

TERCER EXAMEN EJERCICIOS RESUELTOS

TERCER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).

Más detalles

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática. Análisis Complejo. Práctica N 1.

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática. Análisis Complejo. Práctica N 1. Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto de Matemática Análisis Complejo Práctica N Expresar los siguientes números complejos en la forma a + ib, con a, b R: (a) (i

Más detalles

GENERALIDADES DE LA LINEA RECTA

GENERALIDADES DE LA LINEA RECTA JOSE VICENTE CONTRERAS JULIO LICENCIADO EN MATEMATICAS Y FISICA http://www.jvcontrerasj.com http://www.jvcontrerasj.3a2.com/ Una línea recta es el conjunto de todos los puntos que se obtienen con la expresión

Más detalles