Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen"

Transcripción

1 Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones ultiplemente conexas; Aplicaciones del Teorema de Green, Cálculo de áreas usando Teorema de Green Integrales de uperficie de 1er Tipo y 2do Tipo; cálculo de área, masa y centro de masa de una uperficie; Flujo de un campo de vectores Teorema de tokes y Teorema de la Divergencia 1. Teorema de Green Teorema 1.1 (Teorema de Green) ea R R 2 acotado por una curva suave, simple, cerrada y sea F = (P, Q) de clase C 1 en un dominio que contiene a R en su interior. e cumple: ( dq P dx + Q dy = dx dp ) da dy siempre que se recorra en sentido positivo Problemas Planteados 1. Usando la definición de integral de línea, calcular (x + y)dx + (x + y 2 )dy siendo Γ la frontera del trapecio con vérices ( 2, 0), (2, 0), (1, 1) y ( 1, 1). Es posible aplicar el Teorema de Green? Γ R 0 2. ea (P (x, y), Q(x, y)) un campo vectorial definido para todo (x, y) (±3, 0), con Q x = P y + 2. Considere C1 : x 2 + y 2 = 25 C2 : (x 3) 2 + y 2 = 1 C3 : (x + 3) 2 + y 2 = 1 orientados en sentido contrario a las manecillas del reloj. Calcule P dx + Qdy C3 1

2 Universidad Técnica Federico anta aría sabiendo que C1 P dx + Qdy = a; C2 P dx + Qdy = b a b 46π. 3. Calcule la integral de línea donde C 1 C 2 ydx + xdy x 2 + y 2, C 1 : x 2 + y 2 = 1, C 2 : (x 2) 2 + y 2 = 16. Ambas curvas recorridas en sentido positivo. 4π. 4. Calcule la integral de línea ydx + (x + arctan(1 + y 2 ) sinh 2 (y))dy donde C = {(x, y) : x 2 + y 2 = 1, y 0} C π. 5. ea R una región plana de frontera R. Demostrar que (aydx bxdy) = (b a)a(r), donde A(R) es el área de R. R 6. ea F = (P, Q) un campo vectorial de clase C 1 definido en Ω = R 2 {(0, 0)} que satisface P y = Q x en todo punto de su dominio. ea Γ una curva cerrada simple que encierra el origen (0, 0). Pruebe que P dx + Qdy = C 1 siendo C 1 una constante que resulta ser independiente de Γ. Γ 7. Use el Teorema de Green para calcular el área de la región encerrada por un arco de la cicloide con a > 0 ; 0 t 2π y el eje x. x(t) = a(t sen(t)) y(t) = a(1 cos(t)) 3a 2 π 8. Calcule y 2 dx Donde corresponde a la lemniscata r = 1 + sen θ recorrida en sentido positiva. 5π 2 2

3 Universidad Técnica Federico anta aría 9. ea τ la curva en el primer cuadrante, determinada por la ecuación r = sen(3θ), recorrida en sentido positivo. Calcular τ x 3 dy y 3 dx 3π ea R la región acotada por las rectas x = 0, y = 0, x + y = 4 y el arco de la circunferencia x 2 + y 2 = 1 correspondiente al primer cuadrante. Calcular (x 2 + y 2 ) da R Use el Teorema de Green para calcular el área de la región encerrada por la lemniscata (x 2 + y 2 ) 2 = a 2 (x 2 y 2 ) a Resolver (1 x 2 )ydx + x(1 + 4y 2 )dy i corresponde a la elipse x 2 + 4y 2 = 4 y se recorre en sentido negativo. 4π 13. Calcular, usando el Teorema de Green: (xy + x + y)dx + (xy + x y)dy C C : x 2 + y 2 = 2x recorrida en sentido positivo. a3 π 8 2. Integrales de uperficie Proposición 2.1 (Integral de uperficie de Primer Tipo) ea f : A superficie suave en R 3 parametrizada por ϕ : U R 2 R 3 (u, v) (x(u, v), y(u, v), z(u, v)) donde U es un abierto de R 2, tal que A. e cumple: f(x, y, z) d = f(ϕ(u, v)) ϕ u ϕ v du dv U R 3 R continua. ea una abto 3

4 Universidad Técnica Federico anta aría Proposición 2.2 (Integral de superficie de egundo Tipo) ea F : A R 3 R 3 un campo de vectores abto continuo. ea una superficie suave en R 3 parametrizada por ϕ : U R 2 R 3 (u, v) (x(u, v), y(u, v), z(u, v)) donde U es un abierto de R 2, tal que A. e cumple: F = F (x, y, z) n d = F (ϕ(u, v)) ϕu ϕ v du dv U 2.1. Problemas Planteados 1. ea la parte del cono z 2 = x 2 + y 2 que está entre los planos z = 1 y z = 3. Calcule la integral: x 2 z 2 d 2. Calcular: xy d 2 π(3 6 1) 6 donde es la porción del cilindro x 2 +z 2 = 1 ubicada en el primer octante y que está acotada por los planos y = 0 e y = x. 3. Calcule el área del pedazo del cilindro x 2 +y 2 = 8y, que se encuentra dentro de la esfera x 2 +y 2 +z 2 = Encontrar el área del pedazo de la silla z = xy que está dentro del cilindro x 2 + y 2 = a 2. 2π 3 [ (1 + a2 ) 3/2 1] 5. Calcular x d donde es la porción del cilindro x 2 + y 2 = 2x entre las dos hojas del cono z 2 = x 2 + y Determine el flujo del campo F = (yz, x, z 2 ) hacia el exterior, a través del cilindro parabólico y = x 2 con 0 x 1 y 0 z 4. Resp; 2 4

5 Universidad Técnica Federico anta aría 7. ea la porción de la semiesfera x 2 + y 2 + z 2 = 4 con z 0, que se encuentra al interior del cilindro x 2 + y 2 = 1. Calcular de tres formas distintas: Donde F = (xy, yz, xz) y n apunta hacia arriba. 3. Teorema de tokes F n d 0 Teorema 3.1 (Teorema de tokes) ea una superficie en R 3, suave o suave a pedazos, orientada según el vector normal unitario n, con borde una curva suave o suave a pedazos, cerrada, simple, orientada positivamente según n (regla de la mano derecha). ea F : A abto R 3 R Problemas Planteados un campo de vectores de clase C 1, con F = (P, Q, R), tal que A. e cumple F n d = P dx + Qdy + Rdz 1. Calcule la integral de línea (2xy 3 + yz)dx + (3x 2 y 2 + xz) + xzdz Γ donde Γ es la curva cerrada que se obtiene al intersectar las esferas x 2 + y 2 + z 2 = r 2, x 2 + y 2 + (z r) 2 = r ea la parte del paraboloide z = 9 x 2 y 2, para z 0, n es la normal unitaria a la superficie que apunta hacia afuera. Verificar el teorema de tokes si F = 3z i + 4x j + 2y k a) Desarrollar la integral de superficie b) Desarrollar la integral de línea 36π 3. ea la parte de la superficie z = 1 x 2 y 2 comprendida en el 1er octante y sea la curva cerrada que encierra a dicha superficie. Usando el Teorema de tokes calcular la integral z dx + x dy + y 2 dz i la curva se recorre en sentido positivo, mirado desde el plano xy. π 5

6 Universidad Técnica Federico anta aría 4. Considerar la curva, intersección de la esfera x 2 + y 2 + z 2 = a 2 y el cilindro x 2 + y 2 = ax, con a > 0, recorrida en sentido positivo. Calcular la integral y 2 dx + z 2 dy + x 2 dz a) Parametrizando directamente la curva. b) Usando el Teorema de tokes. 5. Use el teorema de tokes para calcular la integral de linea (y 2 + z 2 )dx + (x 2 + z 2 )dy + (x 2 + y 2 )dz a3 π 4 donde es la intersección del hemisferio superior de la esfera x 2 + y 2 + z 2 8x = 0 (z 0) y el cilindro x 2 + y 2 2x = 0. 8π 6. ea el triángulo de vértices los puntos (1,0,0), (0,1,0), y 80,0,1), orientado en el orden indicado por estos puntos. Calcular dx + x dy + y dz Teorema de la Divergencia Teorema 4.1 (Teorema de la Divergencia) ea un sólido en R 3, acotado por una superficie cerrada, suave (suave a pedazos). = ea F : A abto R 3 R 3 un campo de vectores de clase C 1, tal que A. e cumple. F n d = div( F ) dv donde n es vector normal a la superficie que apunta hacia afuera Problemas Planteados 1. ea D la región limitada por la superficie x 2 + y 2 + (z 1) 2 = 9, entre 1 z 4 y el plano z = 1. Verifique el teorema de la divergencia si F = x i + y j + (z 1) k. a) Desarrollar la integral triple b) Desarrollar la integral de superficie 54π 6

7 Universidad Técnica Federico anta aría 2. Calcular F n d donde F (x, y, z) = (x, y, e x2 +y 2 ) y corresponde al manto del cilindro x 2 + y 2 z = x + 6 y z = y 8. = 1, entre los planos 28π 3. Considerar el campo F (x, y, z) = ( ) ( ) xy 2 + cosh(y) arc cos(z) i + x 2 y + sinh(x) arcsin(z) j + (x 2 + y 2 ) k Calcular, usando el teorema de la divergencia, la integral: 1 F n d donde n es el vector normal unitario exterior a 1 y 1 es el manto del cilindro z 2 = x 2 + y 2, entre los planos z = 2 y z = 4 8π 4. Calcular el flujo del campo F (x, y, z) = (xy 2, yz, zx 2 ), a través de la superficie determinada por las ecuaciones 1 x 2 + y 2 4 y 1 < z < 4 135π 4 5. ea F (x, y, z) = ( y z, yz, xz ). Considerar la superficie que consta de 4 caras del cubo determinado por las ecuaciones: 0 x 2, 0 y < 2, 0 z < 2. Calcular usando el Teorema de la divergencia: F n d donde la superficie esta orientada por la normal exterior ea F (x, y, z) = (x 3, y 3, z 3 ) y el hemisferio superior de la esfera unitaria x 2 + y 2 + z 2 = 1, con z 0. Calcular F n d donde n es vector normal unitario con tercera coordenada positiva. 6π 5 7

8 Universidad Técnica Federico anta aría 7. Considere la región Ω dada por x 2 + y 2 + 4z 2 1, z 0, y el campo vectorial P x + Q y = 3, R(x, y, z) = x 2 + y 2. Calcular F n d F = (P, Q, R) con donde es la porción del elipsoide x 2 + y 2 + 4z 2 = 1, z 0, y n es el vector normal unitario que apunta hacia afuera. 3π 2 8. Considerar la porción, de la esfera x 2 + y 2 + z 2 = 4 con z 1. Calcular la integral (x 3, y 3, z 3 ) n d a) Directamente usando una parametrización. b) Usando el Teorema de la divergencia de Gauss. Aquí n representa la normal exterior a Varios 96π[3 3 1] 1. ea la superficie del cubo con centro en el origen, de aristas paralelas a los ejes y de longitud 2, orientado exteriormente. Considerar las funciones u(x, y, z) = cos(πx) + 9z 2 4 y v(x, y, z) = 3x + y 2. Calcular u dv d n d Donde n es vector normal unitario que apunta hacia afuera ea V (t) el volumen de la Bola B t (a), con centro en a R 3 (fijo) y radio t > 0. ea (t) su frontera y sea F un campo vectorial de clase C 1. i n es la normal exterior unitaria a (t) demuestre que: div( F )(a) = lím t 0 (t) F n d 3. Calcule ( F ) n d. a) Usando el Teorema de tokes. b) Usando el Teorema de la Divergencia. 8

9 Universidad Técnica Federico anta aría donde F (x, y, z) = (x 2 yz, yz 2, z 3 e xy ) y es la parte de la esfera x 2 + y 2 + z 2 = 5 que se encuentra sobre el plano z = 1 y n esta orientado hacia afuera. 4π 4. Considerar el campo de vectores F (x, y, z) = ( ) y ( x 2 )2 + y 2, x ( x 2 )2 + y 2, f(z), donde f : R R derivable. ea la parte del paraboloide truncado, 16 z = x 2 + y 2 con 0 z 7, orientado por la normal exterior n. i la frontera de es: = 1 + 2, donde 1 corresponde a la circunferencia de radio menor y 2 la de radio mayor, ambas orientadas en el sentido inducido por la normal n. Usando el Teorema de tokes calcular F d r 1 9

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple El Teorema de Green Una curva dada por r(t) x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) r(d) si c d. urva simple urva no simple urva orientada positivamente La curva

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 10. Cálculo vectorial.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 10. Cálculo vectorial. ÁLULO ngeniería ndustrial. urso 2009-2010. Departamento de Matemática Aplicada. Universidad de evilla. Lección 10. álculo vectorial. Resumen de la lección. 10.1. ntegrales de línea. ntegral de línea de

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003 CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de Ejercicio 1. Calcular el volumen del elipsoide x a + y b + z c 1. Probar que el elipsoide de volumen máximo,

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,

Más detalles

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3 4.3 Teorema de la ivergencia Gauss) ea = F r ) una supercie cerrada que limita una región en el espacio R 3 El teorema de la divergencia tambien conocido como teorema de Gauss) es una generalización del

Más detalles

Clase 4. Campos Vectorialesy OperadoresDiferenciales

Clase 4. Campos Vectorialesy OperadoresDiferenciales lase 4. ampos Vectorialesy Operadoresiferenciales Un campo vectorial en R n es una función F : R n R n. i F es un campo vectorial, una línea de flujo (línea de corriente o curva integral) para F es una

Más detalles

1.5. Integral de línea de un campo Vectorial.

1.5. Integral de línea de un campo Vectorial. .5. Integral de línea de un campo Vectorial. Sea F ( xyz,, un campo vectorial continuo sobre R donde F representa un campo de fuerzas aplicado sobre una partícula cuya trayectoria puede ser descrita por

Más detalles

Integral de superficie.

Integral de superficie. Tema 4 Integral de superficie. 4.1 uperficies. Definición 4.1 ean IR 2 un conjunto conexo y κ: IR 3 una función continua. La imagen = κ se llama superficie descrita por κ. También se dice que κ es una

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

gradiente de una función? Para esos valores, calcule la función potencial.

gradiente de una función? Para esos valores, calcule la función potencial. CAMPOS CONSERVATIVOS. FUNCIÓN POTENCIAL 1. Sea F = 4xy 3x ( z (, 2x (, 2x, z. Demuestre que Fdl trayectoria C. es independiente de la 2. Dado el campo vectorial F = 3x ( + 2y y ( e 3, 2x 2ye 3. Es posible

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables.

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables. AMPLIACIÓN DE MATEMÁTICA. Curso 2015/16. Integración en varias variables. 1. Calcular para = [0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcular las integrales dobles

Más detalles

Ejercicios típicos del segundo parcial

Ejercicios típicos del segundo parcial Ejercicios típicos del segundo parcial El segundo examen parcial consiste en tres ejercicios prácticos y dos teóricos, aunque esta frontera es muy difusa. Por ejemplo, el primer ejercicio de esta serie,

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral de junio de 11 (Soluciones) Cuestiones C 1 La respuesta es que la función es integrable, como consecuencia del Teorema 1.1 de los apuntes, o el Teorema del Capítulo 5 del

Más detalles

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección.

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Universidad de Santiago de Chile Cálculo odrigo Vargas do semestre 1 PEP Nombre: Nota: esponda de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Sección 1. 1. Use coordenadas esféricas

Más detalles

MÉTODOS MATEMÁTICOS II

MÉTODOS MATEMÁTICOS II MÉTODOS MATEMÁTICOS II (Licenciatura de Física. Curso 2007-2008) Boletín de problemas a evaluar correspondientes a los Temas I y II Fecha de entrega: Viernes, 23 de Noviembre de 2007 1. Calcula los siguientes

Más detalles

Campos vectoriales - Parte B

Campos vectoriales - Parte B apítulo 6 ampos vectoriales - Parte B 6.6 Teorema de Green El Teorema de Green relaciona una integral de línea a lo largo de una curva cerrada en el plano, con una integral doble sobre la región encerrada

Más detalles

INTEGRALES MÚLTIPLES. 9 xy c) 4

INTEGRALES MÚLTIPLES. 9 xy c) 4 de 6 TRABAJO PRÁCTICO Nº A.M. II - INTEGRALES MÚLTIPLES INTEGRALES DOBLES - Calcule las siguientes integrales: a d d d d d b d d sen e 6 d d --. Grafique la región de integración eprese la integral invirtiendo

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Universidad Técnica Federico Santamaría

Universidad Técnica Federico Santamaría Integral de uperficie - Mate 4 UPEFICIE PAAMÉTICA e forma similar a como se describe una curva mediante una función vectorial r(t), en función de un parámetro t,se puede describir una superficie mediante

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 000 Primera parte Ejercicio 1. Entre todos los rectángulos del plano YOZ,inscritos en la parábola z = a y (siendo a>0) yconbaseenelejeoy

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

PRÁCTICAS DE ANÁLISIS VECTORIAL

PRÁCTICAS DE ANÁLISIS VECTORIAL PRÁCTICAS E ANÁLISIS VECTORIAL epartamento de Análisis Matemático Curso 24/25 Profesores responsables Pablo Galindo Aníbal Moltó Práctica 1 Integral de línea. Superficies y áreas de superficie............

Más detalles

Lección 3. Cálculo vectorial. 5. El teorema de Stokes.

Lección 3. Cálculo vectorial. 5. El teorema de Stokes. GRADO DE INGENIERÍA AEROESPAIAL. URSO. 5. El teorema de Stokes. En esta sección estudiaremos otro de los teoremas clásicos del análisis vectorial: el teorema de Stokes. Esencialmente se trata de una generalización

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. Solución: ( )

Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. Solución: ( ) SERIE DE ÁLULO VETORIAL 1 PROFESOR: PEDRO RAMÍREZ MANNY TEMA 1 Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. f x, y = x + y 6x + 6y + 8 1) (

Más detalles

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican:

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican: INTEGACION EN VAIAS VAIABLES: Integrales dobles.. Evaluar las siguientes integrales iteradas: (x y + y )dy dx xye x+y dy dx ( x ln y)dy dx ln [((x + )(y + )] dx dy. 3 ; ; ; ln. 5. Sea I = [, ] [, 3]. Calcular

Más detalles

PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES. Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles.

PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES. Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles. PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles. a. El área de una región plana R. b. El volumen de un sólido V, de altura z = f(x,y).

Más detalles

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto.

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto. La integral múltiple Problemas resueltos. Sea f una función definida en I [, ] [, 4] del siguiente modo: { (x + y), x y x, f(x, y), en el resto. Indique, mediante un dibujo, la porción A del rectángulo

Más detalles

Integración múltiple: integrales dobles

Integración múltiple: integrales dobles Problemas propuestos con solución Integración múltiple: integrales dobles ISABEL MAEO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice. Integrales iteradas 2. Teorema

Más detalles

R se puede descomponer en un número finito de regiones simples (ó de tipo 3, como en matemáticas 5), El Teorema de Green

R se puede descomponer en un número finito de regiones simples (ó de tipo 3, como en matemáticas 5), El Teorema de Green El Teorema de Green 1 El Teorema de Green Enunciaremos el teorema de Green primero para un tipo especial de región de que llamaremos simple luego se extenderá a regiones más generales que se puedan descomponer

Más detalles

Integral de superficie

Integral de superficie 2 Métodos Matemáticos I : Integral de superficie Tema 4 Integral de superficie 4.1 uperficies Definición 114.- ean IR 2 un conjunto coneo y κ: IR 3 una función continua. La imagen = κ se llama superficie

Más detalles

Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica

Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica http://www.cidse.itcr.ac.cr 7 de junio de 008 . Para cada una de las funciones que se

Más detalles

Vector Tangente y Vector Normal

Vector Tangente y Vector Normal Vector Tangente y Vector Normal enición. ada una supercie S = f) descrita por la función f : R 2 R 3 fu, v) = xu, v), yu, v), zu, v)) de clase c con u, v) y dado un punto u, v ) denimos los vectores f

Más detalles

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución:

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución: Problemas resueltos 1. Halle la longitud de la curva dada por la parametrización α(t) t ı + 4 3 t3/ j + 1 t k, t [, ]. α (t) (1, t 1/, 1 ), t [, ]. La curva α es de clase C 1 y, por tanto, es rectificable.

Más detalles

Superficies parametrizadas

Superficies parametrizadas 1 Universidad Simón Bolívar.. Preparaduría nº 1. christianlaya@hotmail.com ; @ChristianLaya Superficies parametrizadas Superficies parametrizadas: Una superficie parametrizada es una función donde D es

Más detalles

CÁLCULO INTEGRAL. HOJA 13.

CÁLCULO INTEGRAL. HOJA 13. CÁLCULO INTEGRAL. HOJA 13. INTEGRALE OBRE UPERFICIE. TEOREMA E TOKE Y GAU. Una superficie es una variedad diferenciable de dimensión dos, que en este curso consideraremos siempre inmersa en el espacio

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

Definir la Integral del campo vectorial F sobre una superficie S como una suma de Riemann.

Definir la Integral del campo vectorial F sobre una superficie S como una suma de Riemann. .7. Integral de superfície de campos vectoriales. Otra de las aplicaciones importantes de la integral de superficies, es cuando se integra un campo vectorial sobre ella. El significado que adquiere este

Más detalles

Superficies Parametrizadas y Áreas

Superficies Parametrizadas y Áreas Superficies Parametrizadas y Áreas 1 Superficies Parametrizadas y Áreas Hasta ahora hemos estudiado (tema de matemáticas 5) superficies definidas como gráficas de funciones de la forma z = f (x, y). El

Más detalles

Parametrización de curvas Integrales de linea. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de curvas Integrales de linea. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de curvas Integrales de linea h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Curvas en el espacio En el espacio, una curva se define por el corte de dos superficies. La forma más general

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

6. El teorema de la divergencia.

6. El teorema de la divergencia. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. Lección. Cálculo vectorial. 6. El teorema de la divergencia. Ya vimos una versión del teorema de Green en el plano que expresa la igualdad entre la integral doble

Más detalles

7.1. CAMPOS VECTORIALES EN DEFINICIONES

7.1. CAMPOS VECTORIALES EN DEFINICIONES 7 n 7.. AMPO VETOIALE EN 7.. 7.. DEFINIIONE 7.. 7.. POPIEDADE 7.. 7.4. AMPO VETOIALE 7.4. ONEVATIVO 7.5. INTEGALE DE LÍNEA 7.6. TEOEMA DE GEEN 7.7. INTEGAL DE LÍNEA PAA EL ÁEA DE UNA EGIÓN PLANA 7.8. INTEGALE

Más detalles

Plano Tangente y Vector Normal

Plano Tangente y Vector Normal Plano Tangente y Vector Normal enición 1. ada una supercie S = φ) descrita por la función φ : R 2 R 3 φu, v) = xu, v), yu, v), zu, v)) de clase c 1 con u, v) y dado un punto u, v ) denimos los vectores

Más detalles

ACTIVIDADES GA ACTIVIDAD

ACTIVIDADES GA ACTIVIDAD ACTIVIDADES GA ACTIVIDAD 1: (Mié-12-Feb-14) a) Conteste Qué es y para qué sirve un Sistema de referencia? b) Conteste Qué es y para qué sirve un Sistema de coordenadas? c) Conteste Es lo mismo 'sistema

Más detalles

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2 Ejemplos de parcial de Análisis Matemático II Los ítems E1, E, E3 E4 corresponden a la parte práctica Los ítems T1 T son teóricos (sólo para promoción) T1) Sea F : IR IR diferenciable tal que F(,) 00 =

Más detalles

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS Análisis Matemático I (Ing. de Telecomunicación), 29-1 Examen final, 26 de enero de 21 RESPUESTAS A AMBOS MODELOS Primera Parte Las preguntas 1 14 son de tipo test. Se pide elegir una única respuesta en

Más detalles

Integrales sobre superficies

Integrales sobre superficies Capítulo 12 Integrales sobre superficies En este capítulo estudiaremos la noción de área de superficies en R 3, y las integrales de campos escalares y vectoriales definidos sobre éstas. Una superficie

Más detalles

Tema 4: Integración de funciones de varias variables

Tema 4: Integración de funciones de varias variables Departamento de Matemáticas. Universidad de Jaén. Análisis Matemático II. Curso 29-21. Tema 4: Integración de funciones de varias variables 1. Evaluar las siguientes integrales iteradas e) f ) g) 1 2 1

Más detalles

INTEGRALES DE FUNCIONES DE VARIAS VARIABLES

INTEGRALES DE FUNCIONES DE VARIAS VARIABLES INTEGALES DE FUNCIONES DE VAIAS VAIABLES [Versión preliminar] Prof. Isabel Arratia Z. Integrales dobles sobre rectángulos La integral de iemann para una función f de dos variables se define de manera similar

Más detalles

Guía n 0: Herramientas de Física y Matemáticas

Guía n 0: Herramientas de Física y Matemáticas Guía n 0: Herramientas de Física y Matemáticas Problema Dadas dos partículas en el espacio ubicadas en los puntos de coordenadas p = (0,5, 2) y p 2 = (2,3,). Hallar el vector posición de la partícula respecto

Más detalles

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP.

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP. Wilson Herrera 1 Vectores 1. Dados los puntos P (1, 2), Q( 2, 2) y R(1, 6): a) Representarlos en el plano XOY. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo

Más detalles

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Integrales Dobles Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 76 CONTENIDO Integrales Dobles Introducción

Más detalles

6. Integrales triples.

6. Integrales triples. GRADO DE INGENIERÍA AEROESPACIAL. CRSO 0. Lección. Integrales múltiples. 6. Integrales triples. Integral triple en un prisma. El proceso para definir la integral triple f ( xyzdv,, ), de una función continua

Más detalles

Tarea 8. (xdy ydx) (1) A = 1 2. Por lo tanto el área es; [(Rcos(θ))(Rcos(θ)) (Rsin(θ))(Rsin(θ))] dθ (2) Reduciendo la expresiónnalmentese obtiene;

Tarea 8. (xdy ydx) (1) A = 1 2. Por lo tanto el área es; [(Rcos(θ))(Rcos(θ)) (Rsin(θ))(Rsin(θ))] dθ (2) Reduciendo la expresiónnalmentese obtiene; Tarea 8 1. Encuentre el área de el disco de radio R usando el teoréma de Green. e acuerdo con el teorema de Green, el área de la región es; A = 1 (xdy ydx) (1) Como es un discmo con centro en (, ) de radio

Más detalles

Práctica

Práctica UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE MATEMATICA HPV/ Práctica. 5141. Problema 1. Determinar el área de la región comprendida entre los gráficos de las ecuaciones

Más detalles

Los teoremas de Stokes y Gauss

Los teoremas de Stokes y Gauss Capítulo 13 Los teoremas de tokes y Gauss En este último capítulo estudiaremos el teorema de tokes, que es una generalización del teorema de Green en cuanto que relaciona la integral de un campo vectorial

Más detalles

Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea.

Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea. Universidad de Sevilla. GO y GERM. Matemáticas. Departamento de Matemática Aplicada. Guión del Tema 5: ntegrales de Línea. 1. ntegrales de línea. ntegral de línea de un campo escalar. Sea una curva parametrizada

Más detalles

CAMPOS: CIRCULACIÓN Y FLUJO

CAMPOS: CIRCULACIÓN Y FLUJO AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que

Más detalles

LA INTEGRAL DEFINIDA. APLICACIONES

LA INTEGRAL DEFINIDA. APLICACIONES 13 LA INTEGRAL DEFINIDA. APLICACIONES REFLEXIONA Y RESUELVE Dos trenes Un Talgo y un tren de mercancías salen de la misma estación, por la misma vía y en idéntica dirección, uno tras otro, casi simultáneamente.

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial.

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial. Tema 12: Teoremas de Integración del Cálculo Vectorial El operador nabla e conoce como operador nabla al pseudo-vector = ( x, y, ) Juan Ignacio Del Valle Gamboa ede de Guanacaste Universidad de Costa Rica

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

LECCIÓN 7. INTEGRALES DE SUPERFICIE

LECCIÓN 7. INTEGRALES DE SUPERFICIE LECCIÓN 7. INTEGRALE E UPERFICIE Matemáticas III GIC y GITI, curso 2015 2016 1. UPERFICIE PARAMETRIZAA. ÁREA E UNA UPERFICIE Hemos visto antes que si es una región X o Y -proyectable, su área viene dada

Más detalles

Tarea 9. H ds = E ds (2)

Tarea 9. H ds = E ds (2) Tarea 9. ea una supercie con frontera y suponga que E es un campo eléctrico que es perpendicular a - Muestre que el ujo magnético inducido a través de es constante en el tiempo. (Use la Ley de Faraday)

Más detalles

regiones elementales teorema de gauss ejemplos Teorema de Gauss Jana Rodriguez Hertz Cálculo 3 IMERL 28 de mayo de 2015

regiones elementales teorema de gauss ejemplos Teorema de Gauss Jana Rodriguez Hertz Cálculo 3 IMERL 28 de mayo de 2015 Teorema de Gauss Jana Rodriguez Hertz Cálculo 3 IMERL 28 de mayo de 2015 regiones elementales región elemental región elemental R R 3 región elemental del espacio (x, y) D región elemental del plano γ

Más detalles

Parametrización de superficies Integrales de superficie. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de superficies Integrales de superficie. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de superficies Integrales de superficie h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de una superficie en R 3 ea un dominio del espacio R 2, donde los puntos están definidos

Más detalles

Teorema de la Divergencia (o de Gauss) y la Ecuación de

Teorema de la Divergencia (o de Gauss) y la Ecuación de E.E.I. CÁLCULO II Y ECUACIONE IFEENCIALE Curso 2016-17 Lección 13 (Lunes 13 mar 2017) Teorema de la ivergencia (o de Gauss) y la Ecuación de ifusión. 1. Teorema de la ivergencia (o Teorema de Gauss). 2.

Más detalles

SERIE # 2 CÁLCULO VECTORIAL

SERIE # 2 CÁLCULO VECTORIAL SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo

Más detalles

Integrales Curvilíneas.

Integrales Curvilíneas. CAPÍTULO 7 Integrales Curvilíneas. Este capítulo abre la segunda parte de la materia : el cálculo integral vectorial. Las integrales de línea de campos escalares y vectoriales tienen aplicaciones a la

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

Remark Las mismas definiciones podemos dar para el caso de : I R 2 t t xt, yt a la que denominaremos curva plana.

Remark Las mismas definiciones podemos dar para el caso de : I R 2 t t xt, yt a la que denominaremos curva plana. Profesor: Roque Molina Legaz Tema 3. LA INTEGRAL DE LÍNEA. APLICACIONES. Como ya hemos visto, el concepto de integral simple de Riemann se estableció para funciones reales definidas y acotadas en un intervalo

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002.

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002. Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso -. Examen de Septiembre. 6 de Septiembre de. Primera parte Ejercicio. Un canal abierto cuya sección es un trapecio isósceles de bases horizontales,

Más detalles

El teorema de Stokes. 1. Integración de formas en variedades

El teorema de Stokes. 1. Integración de formas en variedades Capítulo 12 El teorema de Stokes 1. Integración de formas en variedades En esta sección definimos la integral de una k-forma diferencial ω definida en una variedad diferenciable en R n de dimensión k,

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,

Más detalles

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1 Editorial Mc Graw Hill. Edición 007 Respuestas faltantes en ejercicios edición 007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4- R r + x + y Ejercicio 4-3 + R x + y + z Ecuaciones: x +

Más detalles

Cálculo de Geodésicas en Superficies de Revolución

Cálculo de Geodésicas en Superficies de Revolución Cálculo de Geodésicas en Superficies de Revolución Superficies de Revolución Sea S R 3 la superficie de revolución obtenida al girar una curva regular del plano XZ que no corte al eje Z alrededor del mismo.

Más detalles

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002.

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002. FAULTAD DE IENIAS DEL MAR. FUNDAMENTOS MATEMÁTIOS II. onvocatoria Extraordinaria de Diciembre de. xydx x y dy a lo largo de la elipse.- alcular + ( ) contrario al de las agujas del reloj. x y + = recorrida

Más detalles

GUIA DE EJERCICIOS PARA MATEMATICAS 5

GUIA DE EJERCICIOS PARA MATEMATICAS 5 GUIA DE EJERCICIOS PARA MATEMATICAS 5 La presente guía representa una herramienta para el estudiante para que practique los temas dictados en matemáticas 5. Al final están las soluciones a los ejercicios

Más detalles

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,

Más detalles

Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos

Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos 1. Efectuar cada una de las operaciones indicadas. a) (35 + 25i) + ( 12 5i) b) ( 75 i) + (34 + 42i) c)

Más detalles