Métodos y Diseños utilizados en Psicología

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Métodos y Diseños utilizados en Psicología"

Transcripción

1 Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos de la realidad humana que se desean conocer, en este material se encontrarán los diseños de investigación más utilizados, los conceptos fundamentales, las características particulares de cada uno, con sus respectivas ventajas y desventajas, las divisiones. Además, la utilidad de dichos diseños en el momento de abordar conocimiento científico para encontrar las soluciones a los problemas humanos presentados. Objetivos generales 1- Que el alumno mediante los contenidos teóricos estudiados, las lecturas y actividades realizadas puedan identificar los diferentes tipos de diseños utilizados en la investigación aplicada en Psicología. 2- Que el alumno pueda ser capaz de comprender los diferentes diseños, sus utilidades y a partir de de ello puedan interpretar críticamente una investigación psicológica. Objetivos específicos - Comprender la importancia del proceso de adquisición de conocimientos científicos, su utilidad, sus ventajas y limitaciones en el momento de hacer ciencia. - Conocer y conceptualizar los modelos de diseños clásicos utilizados en Psicología. - Reconocer la estructura básica del proceso de investigación Contenido teórico Conceptos generales relacionados a los Métodos y Diseños de Investigación - Diseños Experimentales. Tipos al Azar y Pareado

2 - Diseños Experimentales de dos grupos: 1) Diseño de dos grupos independientes o al azar. 2) Diseño de dos grupos igualados o pareados (Correlaciones y Diseños Experimentales) c) Tratamiento Estadístico. d) Ventajas y Desventajas de los Diseños Experimentales de dos grupos. - Diseños Experimentales. Tipos Intragrupo y de Replicación Intrasujeto a) Diseños Experimentales para grupos de tratamientos repetidos o Intrasujeto. -Concepto - Características - Tipos - Evaluación. b) Diseño Experimental: Investigación de un solo sujeto (N=1) o de Replicación Intrasujeto - Estrategias de Investigación - AEC- Paradigmas para diseños experimentales N=1 Evaluación -Diseño Cuasi_Experimental a) Búsqueda de soluciones a problemas sociales. Ciencia Pura vs. Aplicada Aplicación. b) Tipos de Diseño Cuasi - Experimental. - Evaluación. Recursos: Material en PDF que contiene el resumen de los diseños clásicos utilizados en Psicología, conceptos, utilidad, estadísticos, ventajas y limitaciones. Power point que contiene los diseños clásicos. Webquest

3 Diseños clásicos utilizados en Investigación Psicológica Diseño Experimental Diseños de dos grupos independientes Se asignan los participantes aleatoriamente a los grupos independientes con lo que se forma un diseño de dos grupos aleatoriamente. Al emplear el método de la observación sistemática, seleccionamos dos grupos ya formados con características diferentes. La prueba t es adecuada para analiza estadísticamente los datos de cada diseño. Se puede referir a los dos valores asignados a la variable independiente como dos condiciones, tratamientos o métodos. Prueba paramétrica Análisis estadístico: Pasos: 1. Determinar el promedio o media aritmética de cada grupo de población. 2. Calcular las varianzas de cada grupo, a fin de demostrar la homogeneidad de varianzas mediante la prueba de X 2 de Bartlett. 3. Calcular la suma de cuadrados de cada grupo: Suma de cuadrados (SC) = S(X - ) Calcular la desviación estándar ponderada (sp) de ambos grupos. 5. Obtener la diferencia absoluta entre los grupos ( 1-2).

4 6. Aplicar la fórmula y obtener el valor estadístico de t. 7. Calcular los grados de libertad (gl). gl = N 1 + N Obtener la probabilidad del valor t en la tabla. 9. Decidir si se acepta o rechaza la hipótesis. Pruebas no paramétricas PRUEBAS PARA DOS MUESTRAS INDEPENDIENTES Los contrastes que se presentan a continuación permiten comprobar si dos muestras aleatorias e independientes proceden de una misma población. El único requisito para aplicar estos contrastes es que la variable esté medida al menos en una escala ordinal. Algunas de las pruebas que pueden realizarse con el programa SPSS son: la prueba U de Mann-Whitney, la prueba Z de Kolmogorov-Smirnov y la prueba de rachas de Wald-Wolfowitz. PRUEBA U DE MANN-WHITNEY La hipótesis nula del contraste es que las dos muestras, de tamaño n1 y n2, respectivamente, proceden de poblaciones contínuas idénticas:. La hipótesis alternativa puede ser unilateral o bilateral y únicamente supone que la tendencia central de una población difiere de la otra, pero no una diferencia de forma o de dispersión. Por esta razón esta prueba es el equivalente no paramétrico de la prueba t para la diferencia de dos medias cuando las muestras son independientes pero no puede suponerse la normalidad de las poblaciones de origen. Para realizar el contraste se ordenan conjuntamente las observaciones de las dos muestras, de menor a mayor, y se les asignan rangos de. Si la tendencia central de ambas poblaciones es la misma los rangos deberían distribuirse aleatoriamente entre las dos muestras y el rango medio

5 correspondiente a las observaciones de una muestra debería ser muy similar al correspondientes a las observaciones de la otra. El estadístico de prueba U de Mann-Whitney se construye a partir de la suma de rangos de una de las muestras, Ri, elegida arbitrariamente: Para tamaños de muestra pequeñas la distribución del estadístico U, bajo el supuesto de que la hipótesis nula sea cierta, es discreta y está tabulada. Si los tamaños son suficientemente grandes la distribución del estadístico se aproxima a una normal de parámetros: El estadístico de prueba es el valor Z: La región de rechazo de H0 se localiza en las dos colas de la normal tipificada si H1 no es direccional o en una de las colas si H1 es direccional. Diseños Igualados o pareados - Diseños Correlacional Este tipo de diseño nos permite producir una investigación no experimental, en la que las variables independientes no son manipuladas propositivamente. Se puede decir que es la afirmación de una posible relación entre dos o más variables. Es bastante común que se correlacionen variables organísmicas como la estatura y la inteligencia. La manera más efectiva de cuantificar la relación entre dos variables:

6 Coeficiente de correlación producto momento de Pearson: se simboliza por r, y su valor preciso indica el grado en que dos valores se relacionan linealmente. Fórmula: Los valores pueden fluctuar entre: +1.0 y Donde +1.0 indicaría una correlación positiva perfecta y -1.0 indicaría una correlación negativa perfecta. Dadas las medidas de dos variables por cada individuo, existe una correlación positiva si a medida que el valor de una variable se incrementa, también lo hace el valor de la otra. Por otro lado, una correlación negativa implica que el valor de una variable decremente, mientras que el valor de la segunda variable aumente. Diagramas de Dispersión: consiste en una gráfica de la relación entre las dos medidas de los mismos individuos. Correlaciones perfectas: (r=1.0), a medida que se incrementa el valor de una variable también lo hace el valor de la segunda. - Correlaciones confiables menores de Correlaciones orden cero: que la mayoría de las variables no estén correlacionadas. - Relaciones curvilíneas: Los datos de ambas variables se ajustan a una línea recta. Una desventaja de procedimiento del diseño de igualación que ocurre en muchos casos, es que al utilizar los ensayos iniciales de una tarea de aprendizaje como variable de igualación.

7 Ventaja: que los pretests de igualación aseguran equidad aproximada de ambos grupos antes del inicio del experimento. - Diseño experimental de Grupos Igualados A diferencia de los grupos asignados al azar, en este caso se utilizan los puntajes de una variable de igualación. La estrategia es formar dos grupos que sean iguales. Diseños Experimentales para grupos que usan tratamientos repetidos Diseño de tratamiento repetidos o intragrupos: en que dos o más valores de la variable independiente se administran alternadamente a los mismos participantes. Ventajas del Diseño de los grupos igualados: es que los pretest de igualación aseguran equidad aproximada de ambos grupos antes del inicio del experimento. Desventaja: se pierden grados de libertad cuando se utiliza este diseño. Diseños Experimentales para grupos que usan tratamientos repetidos Diseños entre grupos: Dos o más valores de la variable independiente y en el experimento se administra un valor a cada grupo. Luego al calcular para cada grupo la media de los valores de las variable dependiente, se calcula también la diferencia promedio entre los grupos y así se evalúa el efecto de manipular la variable independiente. Diseño de tratamientos repetidos o intragrupo en que dos o más valores de la variable independiente se administran, alternadamente, a los mismos participantes.

8 En los diseños de tratamientos repetidos, los mismos individuos son tratados diferencialmente en momentos distintos, y sus puntajes son comparados como una función de los diferentes tratamientos experimentales. Diseño de dos tratamientos repetidos Se obtiene una medida de cada participante cuando actúa bajo una condición experimental. Luego se calcula la diferencia promedio entre cada par de medidas y se prueba para determinar si es confiablemente diferente de cero Diseños de varios tratamientos repetidos: consiste en que dos tratamientos experimentales son administrados a los mismos participantes puede extenderse indefinidamente. - Diseño experimental de un solo sujeto (N=1) Se lo conoce como el mismo sujeto como su propio control. En lugar de estudiar a un número relativamente grande de participantes por un breve periodo de tiempo, Skinner proponía estudiar a un participante a lo largo de un periodo prolongado. Luego replicaba el experimento con uno o más participantes adicionales. La estrategia consiste en reducir la variable de error. El éxito de la investigación de caso único depende de obtener una línea de base estable. La variabilidad excesiva de la línea de base hace muy difícil determinar si un tratamiento es efectivo para cambiar la tasa de respuesta. Análisis gráfico Proceso visual por el cual los cambios conductuales se atribuyen a cambios sistemáticos en la variable independiente; esa conclusión depende de si los cambios conductuales son suficientemente grandes para ser observados de un vistazo.

9 Registro acumulativo respuesta. Frecuencia total de una operante y el momento preciso en que ocurrió dicha Tasa frecuencia de respuestas dentro de un tiempo dado e indica la probabilidad de que una respuesta sea dada en la ocasión apropiada: Como los procedimientos de caso único requieren que se hagan observaciones conductuales repetidas durante un periodo, forman una subclase de los diseños de tratamientos repetidos conocidos como diseños de series de tiempo. Diseño de retirada: tratamiento experimental que se induce después del período de línea base es luego retirado. El tratamiento puede presentarse y retirarse. También presentarse y retirarse de varias formas. Paradigma ABA: donde A es la condición de línea de base y B es la condición de tratamiento y regresa a la línea de base cuando la variable independiente o tratamiento es descontinuado, se incrementa la probabilidad de que el cambio en la respuesta sea una función de la variable independiente. Diseños de tratamientos alternados: no se requiere línea de base, en lugar de ello A-B son dos tratamientos diferentes que serán alternados en el individuo. El propósito del diseño es evaluar la efectividad de dos o más tratamientos. Diseño de inversión: se seleccionan conductas alternativas incompatibles para ser estudiadas. Se establecen luego los niveles operantes (línea de base) para ambas clases de conductas, pudiendo utilizarse entonces varias estrategias. Los efectos de ambos tratamientos son entonces evaluados y después de acumular datos suficientes, las condiciones de tratamientos son investidas de modo que la primera conducta recibe

10 el tratamiento dado inicialmente a la segunda conducta y esta recibe el tratamiento recibido por la primera. Diseño de cambio de criterio: la efectividad del tratamiento se juzga de acuerdo a si ocurren cambios conductuales gradualmente especificados durante el periodo de intervención. Durante la intervención hay varias subfases, cada una con un criterio preestablecido diferente. Es clínicamente valioso porque no requiere que se retire un tratamiento que puede ser efectivo, ni revertir la conducta a los niveles de la línea base para demostrar la efectividad de un tratamiento. - Diseño de línea de base múltiple 1- Diseño de línea de Base múltiple entre conductas: se seleccionan conductas que ocurran simultáneamente en el individuo. Asume que las diferentes respuestas estudiadas son independientes. 2- Diseño de Línea de base múltiple entre sujetos: un tratamiento particular se aplica en secuencia a la misma conducta de diferentes individuos en el mismo ambiente. 3- Diseño de línea de base entre condiciones (ambientes): se aplica un tratamiento a diferentes participantes que se encuentran en condiciones o ambientes distintos.

11 Lógica de la inferencia de la hipótesis - Diseños Cuasi-Experimentales - Los participantes no son asignados aleatoriamente a las diferentes condiciones. Se tiene en cuenta algunas características para su clasificación. La desventaja: la variable independiente puede confundirse con variables extrañas, por lo que no sabemos si un cambio en la variable dependiente se debe realmente a la variación de la variable independiente. Se divide en: - Diseños de grupos de comparación no equivalentes y Diseños de series de tiempo interrumpidas. - Grupo de comparación: implica la existencia de factores de confusión con una reducción concomitante en la confianza de que sea posible concluir que

12 cualquier cambio observado en la variable dependiente debe ser atribuido a la variable independiente. Dos símbolos para la notación: X: representa una condición de tratamiento. O: representa la observación de la condición. Diseño de un grupo sometido a pretest-postest O1 X O2 Pretest, generalmente involucra la medición de la variable dependiente antes de la intervención, después de la cual el grupo experimental recibe el tratamiento, y finalmente se le administra un postest en que nuevamente se mide la variable dependiente. Diseños con grupos de comparación no equivalentes: estudian dos o más grupos formados naturalmente 1. Es diseño de sólo postest con grupos de comparación no equivalente 2. Diseño de grupo de comparación sin tratamiento con pretest y postest 3. Diseños de series de tiempos interrumpidos: se realizan mediciones periódicas sobre un grupo o individuo en un en un esfuerzo por establecer una línea de base. 4. Diseños de series de tiempo simple interrumpidos: se realiza una serie de observaciones durante la línea base, para luego introducir el tratamiento. 5. Series de tiempo interrumpidas con una serie de tiempo de un grupo de comparación no equivalente con la excepción que se toman medidas de variables dependientes en series de tiempos múltiples.

13 Referencias bibliográficas Martínez Hernández, M. (1984). Psicología Experimental. Conceptos Básicos, Metodología y Diseños. Madrid: Editorial Universidad Complutense. Mc. Guigan, F. J. (1996) Psicología Experimental (6 ª ed.) México: Editorial Prentice Hall. (n.d) Obtenido el 18 de junio del 2014, de aciones.pdf. (n.d) Obtenido el 18 de junio del 2014, de (n.d) Obtenido el 18 de junio del 2014 de, (n.d) Obtenido el 18 de junio del 2014, de

14

15

16

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:

Más detalles

Curso de Estadística no-paramétrica

Curso de Estadística no-paramétrica Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació

Más detalles

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos.

PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos. PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) PRUEBAS NO PARAMÉTRICAS F(X) es la función de distribución que hipotetizamos. Fs(X) es la probabilidad o proporción teórica de

Más detalles

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD.

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD. Experimentos con un solo factor: El análisis de varianza Jhon Jairo Padilla Aguilar, PhD. Experimentación en sistemas aleatorios: Factores Controlables Entradas proceso Salidas Factores No controlables

Más detalles

Medidas de tendencia central o de posición: situación de los valores alrededor

Medidas de tendencia central o de posición: situación de los valores alrededor Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas

Más detalles

Diseños de Investigación 40 conceptos que debes conocer

Diseños de Investigación 40 conceptos que debes conocer Diseños de Investigación 40 conceptos que debes conocer 1. El método científico: Se puede realizar desde dos enfoques distintos, hipotético deductivo y analítico inductivo. Con frecuencia los dos ocurren

Más detalles

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma:

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma: Ignacio Martín Tamayo 25 Tema: ANÁLISIS DE VARIANZA CON SPSS 8.0 ÍNDICE --------------------------------------------------------- 1. Modelos de ANOVA 2. ANOVA unifactorial entregrupos 3. ANOVA multifactorial

Más detalles

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida Por: Prof. Elena del C. Coba Encuestas y estudios aplicados al VIH/sida Definir la fuente de los datos: Datos

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

Pruebas de. Hipótesis

Pruebas de. Hipótesis Pruebas de ipótesis Pruebas de ipótesis Otra manera de hacer inferencia es haciendo una afirmación acerca del valor que el parámetro de la población bajo estudio puede tomar. Esta afirmación puede estar

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS 1) INTRODUCCIÓN El análisis de varianza es una técnica que se puede utilizar para decidir si las medias de dos o más poblaciones son iguales. La prueba se

Más detalles

T. 5 Inferencia estadística acerca de la relación entre variables

T. 5 Inferencia estadística acerca de la relación entre variables T. 5 Inferencia estadística acerca de la relación entre variables 1. El caso de dos variables categóricas 2. El caso de una variable categórica y una variable cuantitativa 3. El caso de dos variables cuantitativas

Más detalles

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 2011 UNED DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 7] Diseños con más de dos grupos independientes. Análisis de varianza con dos factores completamente aleatorizados 1 Índice 7.1 Introducción...

Más detalles

ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson

ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson 3datos 2011 Análisis BIVARIADO de variables cuantitativas OBJETIVO DETERMINAR 1º) si existe alguna relación entre las variables;

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

EXPERIMENTACIÓN. Eduardo Jiménez Marqués

EXPERIMENTACIÓN. Eduardo Jiménez Marqués EXPERIMENTACIÓN Eduardo Jiménez Marqués 1 CONTENIDO: 1. Experimentación...3 1.1 Concepto...3 1. Definición...4 1.3 Dificultad...4 1.4 Ventaja...5 1.5 Planificación...5 1.6 Aplicaciones...5 1.7 Metodología...6

Más detalles

PRINCIPIOS DE INVESTIGACIÓN CIENTÍFICA

PRINCIPIOS DE INVESTIGACIÓN CIENTÍFICA PRINCIPIOS DE INVESTIGACIÓN CIENTÍFICA Precisión: definición precisa del objeto de estudio, traducir los resultados a números. Replicación: repetir investigaciones de otros Objetividad: tomar medidas y

Más detalles

Clase 8: Distribuciones Muestrales

Clase 8: Distribuciones Muestrales Clase 8: Distribuciones Muestrales Distribución Muestral La inferencia estadística trata básicamente con generalizaciones y predicciones. Por ejemplo, podemos afirmar, con base a opiniones de varias personas

Más detalles

TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística

TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística 1 TAMAÑO DEL EFECTO 2 TAMAÑO DEL EFECTO vel tamaño del efecto es el nombre dado a una familia de índices que miden la magnitud

Más detalles

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Capítulo 15 Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Los modelos factoriales de análisis de varianza (factorial = más de un factor) sirven para evaluar el efecto

Más detalles

CORRELACIONES CON SPSS

CORRELACIONES CON SPSS ESCUEL SUPERIOR DE INFORMÁTIC Prácticas de Estadística CORRELCIONES CON SPSS 1.- INTRODUCCIÓN El concepto de relación o correlación entre dos variables se refiere al grado de parecido o variación conjunta

Más detalles

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral Enero 2005 1.- INTRODUCCIÓN En múltiples ocasiones el analista o investigador se enfrenta al problema de determinar

Más detalles

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor Capítulo 14 Análisis de varianza de un factor: El procedimiento ANOVA de un factor El análisis de varianza (ANOVA) de un factor sirve para comparar varios grupos en una variable cuantitativa. Se trata,

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Capítulo 19 Análisis no paramétrico: El procedimiento Pruebas no paramétricas

Capítulo 19 Análisis no paramétrico: El procedimiento Pruebas no paramétricas Capítulo 19 Análisis no paramétrico: El procedimiento Pruebas no paramétricas En los capítulos 13 al 18 hemos estudiado una serie de procedimientos estadísticos diseñados para analizar variables cuantitativas:

Más detalles

Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico.

Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico. Universitat de de Barcelona. Institut de de Ciències de de l Educació Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico. María José Rubio

Más detalles

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti ANÁLISIS DE DATOS CONTROL DE CALIDAD Ing. Carlos Brunatti Montevideo, ROU, junio 2015 Control de calidad No resulta sorprendente que el hormigón sea un material variable, pues hay muchos factores involucrados

Más detalles

UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST

UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST 7.1. ANÁLISIS DE LOS ÍTEMS Al comenzar la asignatura ya planteábamos que uno de los principales problemas a los que nos enfrentábamos a la hora

Más detalles

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

ESQUEMA GENERAL DISEÑOS DE MEDIDAS REPETIDAS

ESQUEMA GENERAL DISEÑOS DE MEDIDAS REPETIDAS TEMA IV ESQUEMA GENERAL Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño de medidas parcialmente repetidas DISEÑOS DE MEDIDAS REPETIDAS Definición

Más detalles

Tema 1: Test de Distribuciones de Probabilidad

Tema 1: Test de Distribuciones de Probabilidad Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).

Más detalles

Control interno de los métodos de análisis

Control interno de los métodos de análisis Aseguramiento de la Calidad Control interno de los métodos de análisis Universidad Nacional Sede Medellín Facultad de Ciencias Escuela de Geociencias Orlando Ruiz Villadiego, Químico MSc. Coordinador Laboratorio

Más detalles

PRUEBAS NO PARAMÉTRICAS

PRUEBAS NO PARAMÉTRICAS PRUEBAS NO PARAMÉTRICAS 1. PRUEBAS DE NORMALIDAD Para evaluar la normalidad de un conjunto de datos tenemos el Test de Kolmogorov- Smirnov y el test de Shapiro-Wilks La opción NNPLOT del SPSS permite la

Más detalles

Año de la Consolidación Económica y Social del Perú Década de la Educación Inclusiva del 2003 al 2012

Año de la Consolidación Económica y Social del Perú Década de la Educación Inclusiva del 2003 al 2012 TALLER 3 1. DISEÑOS DE INVESTIGACIÓN CIENTÍFICA Kerlinger 1 dice generalmente se llama diseño de investigación al PLAN y a la ESTRUCTURA de un estudio. Es el plan y estructura de una investigación concebidas

Más detalles

EJERCICIOS ANALISIS DE DISEÑOS EXPERIMENTALES Y CUASIEXPERIMENTALES CON SPSS

EJERCICIOS ANALISIS DE DISEÑOS EXPERIMENTALES Y CUASIEXPERIMENTALES CON SPSS EJERCICIOS ANALISIS DE DISEÑOS EXPERIMENTALES Y CUASIEXPERIMENTALES CON SPSS Las soluciones a estos ejercicios y los outputs del SPSS se encuentran al final. EJERCICIO 1. Comparamos dos muestras de 10

Más detalles

DESCRIPCIÓN ESPECÍFICA

DESCRIPCIÓN ESPECÍFICA DESCRIPCIÓN ESPECÍFICA NÚCLEO: COMERCIO Y SERVICIO SUBSECTOR: PRODUCCION Y SALUD OCUPACIONAL Nombre del Módulo: Análisis estadístico de datos. total: 45 HORAS. Objetivo General: Analizar la conformidad

Más detalles

25906 Metodología de la Investigación I Prof. Angel Barrasa Curso 2008-09 http://www.unizar.es/abarrasa/tea/200809_25906 CONTENIDOS

25906 Metodología de la Investigación I Prof. Angel Barrasa Curso 2008-09 http://www.unizar.es/abarrasa/tea/200809_25906 CONTENIDOS 25906 Metodología de la Investigación I Prof. Angel Barrasa Curso 2008-09 http://www.unizar.es/abarrasa/tea/200809_25906 CONTENIDOS A. MÉTODOS Y DISEÑOS DE INVESTIGACIÓN EN PSICOLOGÍA 1. Psicología, Ciencia

Más detalles

Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos

Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos Test de hipótesis t de Student Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos HOMA Casos Válidos Perdidos Total N Porcentaje N Porcentaje

Más detalles

TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1

TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1 TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1 rafael.dearce@uam.es El objeto de las tablas de contingencia es extraer información de cruce entre dos

Más detalles

CAPITULO III DISEÑO METODOLOGICO. aplicación de campo-experimental, ya que el mismo grupo funcionó como

CAPITULO III DISEÑO METODOLOGICO. aplicación de campo-experimental, ya que el mismo grupo funcionó como 82 CAPITULO III DISEÑO METODOLOGICO 3.1 Tipo de Investigación Tomando en cuenta el tipo de investigación, la naturaleza del programa que se aplicó y considerando el problema estudiado, la investigación

Más detalles

Socioestadística I Análisis estadístico en Sociología

Socioestadística I Análisis estadístico en Sociología Análisis estadístico en Sociología 1. INTRODUCCIÓN. Definición e historia. 1.1. Que es la Sociestadística?. La estadística es la ciencias de las regularidades que se observan en conjuntos de fenómenos

Más detalles

EVALUACIÓN 2 (SIN DESCUENTO - PUNTAJE MAXIMO:45 IDP: 65% PUNTAJE NOTA 4,0.:29) NOMBRE DEL (DE LA) ESTUDIANTE:

EVALUACIÓN 2 (SIN DESCUENTO - PUNTAJE MAXIMO:45 IDP: 65% PUNTAJE NOTA 4,0.:29) NOMBRE DEL (DE LA) ESTUDIANTE: UNIVERSIDAD ANDRÉS BELLO FACULTAD DE EDUCACIÓN ESCUELA DE EDUCACIÓN Profesor : MANUEL LOBOS GONZÁLEZ - METODOLOGÍA DE LA INVESTIGACIÓN EVALUACIÓN 2 (SIN DESCUENTO - PUNTAJE MAXIMO:45 IDP: 65% PUNTAJE NOTA

Más detalles

Análisis de la Varianza de un Factor

Análisis de la Varianza de un Factor Práctica de Estadística con Statgraphics Análisis de la Varianza de un Factor Fundamentos teóricos El Análisis de la Varianza con un Factor es una técnica estadística de contraste de hipótesis, cuyo propósito

Más detalles

Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS

Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS ANÁLISIS DE EXPERIMENTOS 1. Introducción 2. Comparación de dos medias 3. Comparación de más de dos medias 4. Pruebas post-hoc 5. ANCOVA

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

TEMA 4: Introducción al Control Estadístico de Procesos

TEMA 4: Introducción al Control Estadístico de Procesos TEMA 4: Introducción al Control Estadístico de Procesos 1 Introducción 2 Base estadística del diagrama de control 3 Muestreo y agrupación de datos 4 Análisis de patrones en diagramas de control 1. Introducción

Más detalles

Clase 2: Estadística

Clase 2: Estadística Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea

Más detalles

Clase 2: Estadística

Clase 2: Estadística Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea

Más detalles

REGRESION simple. Correlación Lineal:

REGRESION simple. Correlación Lineal: REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente)

Más detalles

TEMA 5 ESTUDIOS CORRELACIONALES.

TEMA 5 ESTUDIOS CORRELACIONALES. TEMA 5 ESTUDIOS CORRELACIONALES. 1. INTRODUCCIÓN. 2. CONCEPTO DE CORRELACIÓN. 3. CASOS EN LOS QUE SE UTILIZA LA INVESTIGACIÓN CORRELACIONAL. 4. LIMITACIONES DE LOS ESTUDIOS CORRELACIONALES 1 1. INTRODUCCIÓN.

Más detalles

Pero qué hacemos cuando no se cumple la normalidad o tenemos muy pocos datos?

Pero qué hacemos cuando no se cumple la normalidad o tenemos muy pocos datos? Capítulo. Métodos no paramétricos Los métodos presentados en los capítulos anteriores, se basaban en el conocimiento de las distribuciones muestrales de las diferencias de porcentajes o promedios, cuando

Más detalles

CARTAS DE CONTROL. FeGoSa

CARTAS DE CONTROL. FeGoSa Las empresas en general, ante la apertura comercial han venido reaccionando ante los cambios y situaciones adversas, reaccionan por ejemplo ante: Disminución de ventas Cancelación de pedidos Deterioro

Más detalles

MATEMÁTICA NM4 4º EM

MATEMÁTICA NM4 4º EM MATEMÁTICA NM4 4º EM UNIDADES TEMÁTICAS UNIDAD Nº 01: ESTADÍSTICA Y PROBABILIDAD Conceptos generales : Población, muestra, parámetro y estadístico Variables y su clasificación Medición y escalas Organización

Más detalles

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control.

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control. ESTUDIOS DE CAPACIDAD POTENCIAL DE CALIDAD 1.- INTRODUCCIÓN Este documento proporciona las pautas para la realización e interpretación de una de las herramientas fundamentales para el control y la planificación

Más detalles

CAPITULO III MARCO METODOLÓGICO 3.1 DISEÑO Y TÉCNICAS DE RECOLECCIÓN DE INFORMACIÓN:

CAPITULO III MARCO METODOLÓGICO 3.1 DISEÑO Y TÉCNICAS DE RECOLECCIÓN DE INFORMACIÓN: CAPITULO III MARCO METODOLÓGICO 3.1 DISEÑO Y TÉCNICAS DE RECOLECCIÓN DE INFORMACIÓN: El modelo de estudio que se utilizó en la investigación es: 3.2.1. DISEÑO CUASI EXPERIMENTAL En los diseños cuasi experimentales

Más detalles

Relación entre variables cuantitativas

Relación entre variables cuantitativas Investigación: Relación entre variables cuantitativas 1/8 Relación entre variables cuantitativas Pita Fernández S., Pértega Díaz S. Unidad de Epidemiología Clínica y Bioestadística. Complexo Hospitalario

Más detalles

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS 1 MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS Medidas de tendencia central Menú Analizar: Los comandos del menú Analizar (Estadística) ejecutan los procesamientos estadísticos. Sus comandos están

Más detalles

Metodología de la Investigación. Dr. Cristian Rusu cristian.rusu@ucv.cl

Metodología de la Investigación. Dr. Cristian Rusu cristian.rusu@ucv.cl Metodología de la Investigación Dr. Cristian Rusu cristian.rusu@ucv.cl 6. Diseños de investigación 6.1. Diseños experimentales 6.1.1. Diseños preexperimentales 6.1.2. Diseños experimentales verdaderos

Más detalles

Índice general. Pág. N. 1. Metodología de la investigación científica. Conocimiento y Ciencia. Investigación. Métodos y técnicas de investigación

Índice general. Pág. N. 1. Metodología de la investigación científica. Conocimiento y Ciencia. Investigación. Métodos y técnicas de investigación Pág. N. 1 Índice general Metodología de la investigación científica Conocimiento y Ciencia 1. Origen del Conocimiento 1.1 Sujeto cognoscente 1.2 Objeto del conocimiento 1.3 El conocimiento 2. Principales

Más detalles

Nº Persona Altura (m) Peso (Kg.) Nº Persona Altura (m) Peso (Kg.) 001 1.94 95.8 026 1.66 74.9 002 1.82 80.5 027 1.96 88.1 003 1.79 78.2 028 1.56 65.

Nº Persona Altura (m) Peso (Kg.) Nº Persona Altura (m) Peso (Kg.) 001 1.94 95.8 026 1.66 74.9 002 1.82 80.5 027 1.96 88.1 003 1.79 78.2 028 1.56 65. .1. DIAGRAMAS DE DISPERSIÓN Diagramas de Dispersión Los Diagramas de Dispersión o Gráficos de Correlación permiten estudiar la relación entre 2 variables. Dadas 2 variables X e Y, se dice que existe una

Más detalles

Tests de hipótesis estadísticas

Tests de hipótesis estadísticas Tests de hipótesis estadísticas Test de hipótesis sobre la media de una población. Introducción con un ejemplo. Los tests de hipótesis estadísticas se emplean para muchos problemas, en particular para

Más detalles

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

Capítulo 8. Tipos de interés reales. 8.1. Introducción

Capítulo 8. Tipos de interés reales. 8.1. Introducción Capítulo 8 Tipos de interés reales 8.1. Introducción A lo largo de los capítulos 5 y 7 se ha analizado el tipo de interés en términos nominales para distintos vencimientos, aunque se ha desarrollado más

Más detalles

NT8. El Valor en Riesgo (VaR)

NT8. El Valor en Riesgo (VaR) NT8. El Valor en Riesgo (VaR) Introducción VaR son las siglas de Valor en el Riesgo (Value at Risk) y fue desarrollado por la división RiskMetric de JP Morgan en 1994. es una manera de medir el riesgo

Más detalles

PRESENTACIÓN, DISCUSIÓN Y ANALISIS DE LOS RESULTADOS

PRESENTACIÓN, DISCUSIÓN Y ANALISIS DE LOS RESULTADOS UNIVERSIDAD DE LOS ANDES FACULTAD DE ODONTOLOGIA MERIDA EDO. MERIDA PRESENTACIÓN, DISCUSIÓN Y ANALISIS DE LOS RESULTADOS Mérida, Febrero 2010. Integrantes: Maria A. Lanzellotti L. Daniela Paz U. Mariana

Más detalles

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local 21 Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local Victoria Jiménez González Introducción La Estadística es considerada actualmente una herramienta indispensable

Más detalles

1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros

1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros TEMA 0: INTRODUCCIÓN Y REPASO 1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros desconocidos 4. Comparación

Más detalles

Control de calidad del Hormigón

Control de calidad del Hormigón Control de calidad del Hormigón Calidad Hay muchos factores involucrados en la producción del hormigón, desde los materiales, la dosificación de la mezcla, el transporte, la colocación, el curado y los

Más detalles

Curso Comparabilidad de resultados

Curso Comparabilidad de resultados Curso Comparabilidad de resultados Director: Gabriel A. Migliarino. Docente: Evangelina Hernández. Agenda Introducción. n. Protocolos iniciales de comparación de métodos. m * EP9-A2. CLSI. * Comparación

Más detalles

Comparación de proporciones

Comparación de proporciones 11 Comparación de proporciones Neus Canal Díaz 11.1. Introducción En la investigación biomédica se encuentran con frecuencia datos o variables de tipo cualitativo (nominal u ordinal), mediante las cuales

Más detalles

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas INDICE Prefacio 1 Introducción 1-1 Preámbulo 1-2 Reseña histórica 1-3 Subdivisiones de la estadística 1-4 Estrategia, suposiciones y enfoque 2 Organizaciones de los datos para que transmitan un significado:

Más detalles

Diseño Estadístico de Experimentos

Diseño Estadístico de Experimentos Capítulo 3 Diseño Estadístico de Experimentos Una prueba o serie de pruebas en las cuales se introducen cambios deliberados en las variables de entrada que forman el proceso, de manera que sea posible

Más detalles

Encuesta y Diseño de Formularios

Encuesta y Diseño de Formularios Dr. Oscar Caponi Encuesta y Diseño de Formularios Topics Dr. Edgardo Vitale Slide 1 Introducción Una de las mejores opciones de que se dispone en el mundo de la epidemiología para obtener información acerca

Más detalles

Métodos no paramétricos para el análisis de la varianza

Métodos no paramétricos para el análisis de la varianza Capítulo 4 Métodos no paramétricos para el análisis de la varianza MÉTODOS PARAMÉTRICOS Y NO-PARAMÉTRICOS Los procedimientos inferenciales que presentan estimaciones con respecto a losparámetrosdelapoblacióndeinteréssellamanmétodos

Más detalles

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables. Se

Más detalles

Métodos, Diseño y Técnicas de Investigación en Psicología 2010-2011

Métodos, Diseño y Técnicas de Investigación en Psicología 2010-2011 NOMBRE DE LA ASIGNATURA Métodos, Diseño y Técnicas de Investigación en Psicología OBLIGATORIA /CRÉDITOS 4,5 Titulación en la que se imparte/ Curso /Cuatrimestre: Psicopedagogía / 1º / 1º Curso académico:

Más detalles

MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL

MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL INTRODUCCIÓN En este módulo se continúa con el estudio de las distribuciones de probabilidad, examinando una distribución de probabilidad continua muy importante:

Más detalles

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios

Más detalles

Análisis e Interpretación de Datos Unidad XI. Prof. Yanilda Rodríguez MSN Prof. Madeline Fonseca MSN Prof. Reina del C.Rivera MSN

Análisis e Interpretación de Datos Unidad XI. Prof. Yanilda Rodríguez MSN Prof. Madeline Fonseca MSN Prof. Reina del C.Rivera MSN Análisis e Interpretación de Datos Unidad XI Prof. Yanilda Rodríguez MSN Prof. Madeline Fonseca MSN Prof. Reina del C.Rivera MSN Competencias de Aprendizaje Al finalizar la actividad los estudiantes serán

Más detalles

www.fundibeq.org Además, se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión.

www.fundibeq.org Además, se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión. DISEÑO DE EXPERIMENTOS 1.- INTRODUCCIÓN Este documento trata de dar una visión muy simplificada de la utilidad y la utilización del Diseño de Experimentos. En él se explican los conceptos clave de esta

Más detalles

Métodos no paramétricos para la comparación de dos muestras

Métodos no paramétricos para la comparación de dos muestras Investigación Métodos no paramétricos para la comparación de dos muestras Métodos no paramétricos para la comparación de dos muestras Pértega Díaz, S. Unidad de Epidemiología Clínica y Bioestadística.

Más detalles

Experto en Psicología: Métodos de Investigación

Experto en Psicología: Métodos de Investigación Experto en Psicología: Métodos de Investigación Titulación certificada por EUROINNOVA BUSINESS SCHOOL Experto en Psicología: Métodos de Investigación Experto en Psicología: Métodos de Investigación Duración:

Más detalles

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

Análisis estadístico. Tema 1 de Biología NS Diploma BI Curso 2013-2015

Análisis estadístico. Tema 1 de Biología NS Diploma BI Curso 2013-2015 Análisis estadístico Tema 1 de Biología NS Diploma BI Curso 2013-2015 Antes de comenzar Sobre qué crees que trata esta unidad? - Escríbelo es un post-it amarillo. Pregunta guía Cómo podemos saber si dos

Más detalles

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama.

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama. Diagrama de Flujo La presentación gráfica de un sistema es una forma ampliamente utilizada como herramienta de análisis, ya que permite identificar aspectos relevantes de una manera rápida y simple. El

Más detalles

Tipo de Estudio y diseño

Tipo de Estudio y diseño Tipo de Estudio y diseño Adecuación del diseño al objetivo propuesto Mencion de amenazas y su neutralización Diseño: etimológicamente derivado del término italiano disegno, que significa dibujo, es el

Más detalles

Capítulo 9. Regresión lineal simple

Capítulo 9. Regresión lineal simple Capítulo 9. Regresión lineal simple 9.1 Introducción Uno de los aspectos más relevantes de la Estadística es el análisis de la relación o dependencia entre variables. Frecuentemente resulta de interés

Más detalles

Indicaciones específicas para los análisis estadísticos.

Indicaciones específicas para los análisis estadísticos. Tutorial básico de PSPP: Vídeo 1: Describe la interfaz del programa, explicando en qué consiste la vista de datos y la vista de variables. Vídeo 2: Muestra cómo crear una base de datos, comenzando por

Más detalles

ESCUELA COLOMBIANA DE INGENIERÍA

ESCUELA COLOMBIANA DE INGENIERÍA ESCUELA COLOMBIANA DE INGENIERÍA ASIGNATURA: ESTADÍSTICA DEPARTAMENTO: MATEMÁTICAS PLANES DE ESTUDIO: CÓDIGO: Mnemónico ESTI Numérico 1. OBJETIVOS GENERALES Desarrollar habilidades para organizar, representar

Más detalles

- se puede formular de la siguiente forma:

- se puede formular de la siguiente forma: Multicolinealidad 1 Planteamiento Una de las hipótesis del modelo de regresión lineal múltiple establece que no existe relación lineal exacta entre los regresores, o, en otras palabras, establece que no

Más detalles

Tema 3: Diseño de experimentos

Tema 3: Diseño de experimentos Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 15 de noviembre de 2010 Índice Diseños con un factor 1 Diseños con un factor Comparación de dos medias Comparación de

Más detalles

I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales

I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales 1 2 3 4 5 6 ESQUEMA DEL CURSO ESTADÍSTICA BÁSICA DISEÑO DE EXPERIMENTOS CURSO DE ESTADÍSTICA STICA BÁSICAB ESTADÍSTICA DESCRIPTIVA TIPOS DE VARIABLES MEDIDAS DE POSICIÓN CENTRAL Y DE DISPERSIÓN TABLAS

Más detalles

ELABORACIÓN, ANÁLISIS E INTERPRETACIÓN DE ENCUESTAS, CUESTIONARIOS Y ESCALAS DE OPINIÓN

ELABORACIÓN, ANÁLISIS E INTERPRETACIÓN DE ENCUESTAS, CUESTIONARIOS Y ESCALAS DE OPINIÓN Serie: Docencia Universitaria-EEES ELABORACIÓN, ANÁLISIS E INTERPRETACIÓN DE ENCUESTAS, CUESTIONARIOS Y ESCALAS DE OPINIÓN A. Alaminos Chica y J.L. Castejón Costa Vicerrectorado de Calidad y Armonización

Más detalles

Otras medidas descriptivas usuales

Otras medidas descriptivas usuales Tema 7 Otras medidas descriptivas usuales Contenido 7.1. Introducción............................. 1 7.2. Medidas robustas.......................... 2 7.2.1. Media recortada....................... 2 7.2.2.

Más detalles

ESTADÍSTICA BÁSICA en LABORATORIOS (Físico - Químicos)

ESTADÍSTICA BÁSICA en LABORATORIOS (Físico - Químicos) ESTADÍSTICA BÁSICA en LABORATORIOS (Físico - Químicos) (Aplicaciones de Microsoft Excel ) Curso a distancia (EDICIÓN Junio 2012) ASECAL, S.L. MADRID-ESPAÑA RONDA DE TOLEDO, 8, LOCAL 1º- 28005 MADRID. Teléfono:

Más detalles