SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas"

Transcripción

1 SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria Curso

2 Tema 6. Contrastes de Hipótesis En esta práctica analizaremos los comandos que facilita el SPSS para realizar los contrastes de hipótesis paramétricos que hemos visto en clase. La formulación de hipótesis estadísticas con SPSS Las propiedades de la distribución normal nos permiten saber cuán extremo es el estadístico (p.ej, una media) calculado a partir de una muestra concreta en comparación con la distribución de los estadísticos de todas las muestras posibles. Si nuestro modelo propone una media hipotética en la población, entonces podemos calcular cuál es la probabilidad de que al elegir una muestra al azar la media calculada sea muy diferente (en términos de desviaciones típicas) de la media de la población. Obtener una media muestral que está a muchas desviaciones típicas de la media hipotetizada es poco probable si nuestro valor hipotético es cierto. De modo que si obtuviéramos una media con probabilidades tan pequeñas de aparecer al azar, lo más lógico sería que rechazáramos el valor hipotético de la media de la población. Esta es la base de los tests de hipótesis estadísticas. Para realizar contrastes paramétricos, el SPSS facilita, entre otros, el comando T-TEST que nos permite realizar contrastes sobre si la media de una distribución normal tiene un valor determinado o no (H 0 : µ = µ 0 ), y nos permite testear diferencias entre las medias de dos poblaciones (H 0 : µ 1 = µ 2 ) siendo este caso su función principal. También realiza algún contraste de igualdad de varianzas. Para aplicar este contraste para la comparación de medias, partimos de dos conjuntos de datos y, en primer lugar, deberemos distinguir si se trata de dos grupos independientes o si se trata de datos emparejados. La decisión que tratamos de tomar con este contraste es si las diferencias obtenidas entre las medias de los dos grupos, pueden ser debidas al azar o a que las muestras proceden de poblaciones con medias diferentes. Para ello se tendrán en cuenta, además de las medias, las desviaciones típicas y los tamaños muestrales de los dos grupos considerados. 6.1 El procedimiento T-Test para una muestra. El procedimiento Prueba T para una muestra contrasta si la media de una sola variable difiere de una constante especificada. Comprueba la diferencia entre la media de una muestra y un valor hipotético conocido y permite especificar el nivel de confianza para la diferencia. Esta prueba asume que los datos están normalmente distribuidos; sin embargo, esta prueba es bastante robusta frente a las desviaciones de la normalidad. Ejemplo. Un investigador desea comprobar si la puntuación media del coeficiente intelectual de un grupo de alumnos difiere de 100. O bien, un fabricante de copos de cereales puede tomar una muestra de envases de la línea de producción y comprobar si el peso medio de las muestras difiere de 1 Kg con un nivel de confianza al 95%. Veamos un ejemplo en el que vamos a hacer un test sobre la probabilidad de que la media de edad de la población tenga un valor muy distinto al que encontramos en la muestra. Abrimos el fichero de datos correspondiente. 1

3 Vamos a Analizar Comparar medias Prueba T para una muestra. En la ventana que aparece, escogemos la variable de edad a la izquierda y la pasamos al espacio de la derecha. En la parte inferior aparece un espacio (valor de prueba) en el que debemos escribir el valor hipotético de la media en la población con el que queremos comparar la media de la muestra (supongamos que 55 años). Ahora damos al botón Opciones y aparece el intervalo de confianza establecido al 95%. Si dejamos este valor, SPSS va a calcular un intervalo de diferencias entre la media de la muestra y la media de la población que, si calculáramos las medias de todas las muestras posibles del mismo tamaño, contendría en un 95% de los casos la diferencia que hemos obtenido. Es decir, sólo asumimos un riesgo del 5%, ya que habría un 5% de casos en los que la diferencia no estaría contenida en el rango. Este valor podemos aumentarlo (p.ej, a 99%) si queremos estar más seguros del rango de valores de la diferencia, o disminuirlo si no nos importa asumir más riesgo. La casilla sobre valores perdidos sirve para decidir cómo se excluyen los valores perdidos. La dejamos como está. En la ventana de resultados aparecen dos tablas. La primera nos muestra los estadísticos básicos: el tamaño de la muestra, la media de la edad en la muestra, la desviación típica de la edad en la muestra y el error típico de la media muestral. El error típico de la media muestral nos informa de cuál es la desviación típica de las medias de todas las muestras posibles con respecto a la media real de la población. La segunda tabla es la que realiza el test de hipótesis de forma concreta. Se muestra el valor t (equivalente en este caso al valor z) observado para el estadístico en la muestra, 2

4 los grados de libertad (n-1), la probabilidad de que la diferencia entre la media de la muestra y la de la población sea mayor o igual, en valor absoluto, que el estadístico t observado, y el intervalo de la diferencia al 95% de confianza. Si la probabilidad de que la diferencia entre la media de la muestra y la media de la población es muy pequeña, rechazamos la hipótesis de que la media de edad en la población sea de 55 años. Es decir, si la media de edad en la población fuera de 55 años, la probabilidad de que hubiéramos obtenido el valor del estadístico muestral realmente obtenido es muy baja. Por eso, concluimos que la media no es de 55 años. Veamos otro ejemplo. Supongamos que, en un fichero, tenemos los datos correspondientes al control de calidad de una empresa que fabrica discos de freno para coches de alto-standing. El fichero de datos contiene medidas de diámetro de 16 discos de freno para cada una de 8 máquinas de producción diferentes. El diámetro final de los discos es 322 milímetros. Usamos el procedimiento t-test de una muestra para determinar si el diámetro de los frenos de cada muestra difiere significativamente de 322 milímetros. Una variable nominal, Machine Number, identifica la máquina de producción usada para fabricar el disco. Como los datos de cada máquina se deben probar como muestras separadas, el fichero debe dividirse en grupos, previamente, por dicha variable (Datos Dividir fichero) y luego realizar el análisis 3

5 Como resultados se devuelven dos tablas: la tabla descriptiva muestra el tamaño de la muestra, la desviación típica y el error para cada una de las 8 muestras. La tabla del contraste muestra los resultados del test: La columna de la t muestra el estadístico t observado para cada muestra, calculado como el cociente entre la diferencia de medias dividida por el error estándar de la media de la muestra. Los grados de libertad (n-1). La columna Sig.(bilateral) muestra la probabilidad, en una distribución t de Student con 15 grados de libertad, de obtener un valor absoluto mayor o igual que el valor observado, si la diferencia entre la media de la muestra y el valor de prueba es puramente aleatorio. 4

6 La diferencia de la media se obtiene restando el valor de prueba (322 en este caso), de la media de cada muestra. El intervalo de confianza del 90% de la diferencia da una estimación de los límites entre los cuales se encuentra la diferencia de medias del 90% de todas las posibles muestras aleatorias de 16 discos de freno producidos por esa máquina. Como el intervalo de confianza cae enteramente sobre 0, puede asegurarse que la máquinas 2,5 y 7 están produciendo discos que son significativamente más anchos de 322 milímetros de media. De forma similar, puesto que su intervalo de confianza cae enteramente bajo 0, la máquina 4 está produciendo discos que no son suficientemente anchos. Se pueden elegir más de una variable para comparar su media con un valor dado: T TEST TESTVAL / VARIABLES = CHISAL LASAL NYSAL Este test compara las medias de las variables CHISAL, LASAL y NYSAL, cada una con el valor señalado de El procedimiento T-Test para muestras emparejadas El procedimiento Prueba T para muestras relacionadas compara las medias de dos variables de un solo grupo. Calcula las diferencias entre los valores de las dos variables de cada caso y contrasta si la media difiere de 0. Especifique dos variables cuantitativas (nivel de medida de intervalo o de razón) para cada prueba de pares. En un estudio de pares relacionados o de control de casos, la respuesta de cada sujeto de la prueba y su sujeto de control correspondiente deberán hallarse en el mismo caso en el archivo de datos. Uno de los diseños de experimentos más comunes es el diseño pre-post. Un estudio de este tipo generalmente consiste en dos medidas tomadas al mismo sujeto, una antes y otra después de la introducción de un tratamiento o estímulo. La idea básica es simple. Si el tratamiento no tiene efecto, la diferencia promedio de las medidas es 0 y se acepta la hipótesis nula. Por otro lado, si el tratamiento tiene efecto (intencionado o no intencionado), la diferencia promedio no es 0 y la hipótesis nula se rechaza. Ejemplo. En un estudio sobre la hipertensión sanguínea, se toma la tensión a todos los pacientes al comienzo del estudio, se les aplica un tratamiento y se les toma la tensión otra vez. De esta manera, a cada paciente le corresponden dos medidas, normalmente denominadas medidas pre y post. Un diseño alternativo para el que se utiliza esta prueba consiste en un estudio de pares relacionados o un estudio de control de casos. En estos, cada registro en el archivo de datos contiene la respuesta del paciente y de su sujeto de control correspondiente. En un estudio sobre la tensión sanguínea, pueden emparejarse pacientes y controles por edad (un paciente de 75 años con un miembro del grupo de control de 75 años). 5

7 Este procedimiento t-test se usa para probar la hipótesis de no diferencia entre dos variables. Los datos pueden corresponder a dos medidas tomadas a los mismos sujetos o una medida tomada a pares de sujetos relacionados. Adicionalmente el procedimiento calcula: Estadísticos descriptivos para cada variable del test La correlación de Pearson entre cada par de variables y su nivel de significación Un intervalo de confianza para la diferencia promedio (al 95% o valor que se especifique) Como ejemplo vamos a suponer que un médico está evaluando una nueva dieta para sus pacientes con una historial familiar de enfermedades del corazón. Para probar la efectividad de la dieta se somete a 16 pacientes a la misma durante 6 meses. Se mide su peso y su nivel de triglicéridos antes y después del estudio y el médico está interesado en saber si el conjunto de medidas ha cambiado. Se usará el t-test para muestras emparejadas. Como resultados de este test se devuelven tres tablas que pasamos a comentar: La primera de ellas es la tabla de estadísticos descriptivos, que muestra la media, tamaño de la muestra, desviación típica y error típico de la media para cada grupo. 6

8 Considerando todos los 16 sujetos, el nivel de triglicéridos descendió entre 14 y 15 puntos en promedio después de los 6 meses de nueva dieta. Los sujetos claramente bajaron de peso durante el estudio, sobre unos 8 kilos en promedio. La desviación típica de las medidas pre y post- dieta revelan que los sujetos fueron más variables respecto al peso que al nivel de triglicéridos. La segunda tabla es la de correlaciones de las muestras relacionadas: El valor de la correlación entre los niveles de triglicéridos antes y después del estudio no es estadísticamente significativo. Los niveles descendieron en total, pero el cambio fue inconsistente entre los sujetos. Mientras hubo muchos en los que descendieron los niveles, otros no variaron sus niveles o incluso los incrementaron levemente. Por otro lado, el valor de la correlación de Pearson entre el peso antes y después de la nueva dieta muestra una correlación casi perfecta entre ambos. A diferencia del nivel de triglicéridos, todos los sujetos perdieron peso y lo hicieron de forma consistente. La tercera tabla es la que devuelve los resultados del test propiamente dicho. La columna de la media muestra la diferencia promedio entre el nivel de triglicéridos y el peso antes y después de los 6 meses de dieta. La columna de la desviación típica muestra la desviación típica de la diferencia promedio. La columna del error estándar de la media da el índice de variabilidad que se puede esperar en muestras aleatorias repetidas de 16 pacientes similares a los del estudio. 7

9 El intervalo de confianza al 95% de la diferencia da una estimación de los límites entre los cuales cae la verdadera diferencia en el 95% de todas las posibles muestras aleatorias de 16 pacientes similares a los que han participado en el estudio. El estadístico t se obtiene dividiendo la diferencia media por el error estándar. La columna de sig. (bilateral) muestra la probabilidad de obtener un valor del estadístico cuyo valor absoluto sea mayor o igual que el estadístico t obtenido. Como el valor de la significación para el cambio de peso es menor que 0.05 podemos concluir que la pérdida media de peso de 8.06 kilos por paciente no es debida a variaciones aleatorias y puede atribuirse al cambio de dieta. Sin embargo, el valor de significación mayor de 0.10 para el cambio en el nivel de triglicéridos muestra que la dieta no reduce significativamente dichos niveles. En la sintaxis de este comando se pueden añadir palabras clave como WITH y PAIRED que modifican la ejecución del comando de la siguiente manera: T-TEST PAIRS = TEACHER CONSTRUCT MANAGER Este comando compara TEACHER con CONSTRUCT, TEACHER con MANAGER y CONSTRUCT con MANAGER T-TEST PAIRS = TEACHER MANAGER WITH CONSTRUCT ENGINEER Este comando compara TEACHER con CONSTRUCT, TEACHER con ENGINEER, MANAGER con CONSTRUCT y MANAGER con ENGINEER. TEACHER no se compara con MANAGER y CONSTRUCT no se compara con ENGINEER T-TEST PAIRS = TEACHER MANAGER WITH CONSTRUCT ENGINEER (PAIRED) Este comando compara TEACHER con CONSTRUCT y MANAGER con ENGINEER. 6.3 El procedimiento T-Test para muestras independientes Cuando comparábamos las medias de dos grupos independientes, se nos podían presentar 4 casos diferentes, dependiendo de las varianzas y tamaños muestrales: Varianzas conocidas: El estadístico utilizado seguía una distribución normal. Varianzas desconocidas y muestras grandes, aprox. iguales: Estadístico con distribución normal. Varianzas desconocidas, pero iguales, y muestras pequeñas: Estadístico con distribución t de Student con n 1 + n 2-2 grados de libertad. Varianzas desconocidas y distintas, muestras pequeñas: Estadístico con distribución t de Student, cuyos grados de libertad vienen dados por el redondeo al entero más cercano de la aproximación de Welch. Como su propio nombre indica, este comando T_TEST sólo realiza el test de la t de Student, es decir, analiza los dos últimos casos. 8

10 El procedimiento Prueba T para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente a dos grupos, de forma que cualquier diferencia en la respuesta sea debida al tratamiento (o falta de tratamiento) y no a otros factores. Para las variables de agrupación numéricas, defina los dos grupos de la prueba t especificando dos valores o un punto de corte: Usar valores especificados. Escriba un valor para el Grupo 1 y otro para el Grupo 2. Los casos con otros valores quedarán excluidos del análisis. Los números no tienen que ser enteros (por ejemplo, 6,25 y 12,5 son válidos). Punto de corte. Opcionalmente, puede escribir un número que divida los valores de la variable de agrupación en dos conjuntos. Todos los casos con valores menores que el punto de corte forman un grupo, y los casos con valores mayores o iguales que el punto de corte forman el otro grupo. Para las variables de agrupación de cadena corta, escriba una cadena para el Grupo 1 y otra para el Grupo 2; por ejemplo sí y no. Los casos con otras cadenas quedarán excluidos del análisis. Ejemplo. Se asigna aleatoriamente un grupo de pacientes con hipertensión arterial a un grupo con placebo y otro con tratamiento. Los sujetos con placebo reciben una pastilla inactiva y los sujetos con tratamiento reciben un nuevo medicamento del cual se espera que reduzca la tensión arterial. Después de tratar a los sujetos durante dos meses, se utiliza la prueba t para dos muestras para comparar la tensión arterial media del grupo con placebo y del grupo con tratamiento. Cada paciente se mide una sola vez y pertenece a un solo grupo. Este procedimiento t-test se usa para probar la hipótesis de diferencia entre la media de dos muestras independientes. Adicionalmente el procedimiento calcula: Estadísticos descriptivos para cada variable del test Un test de igualdad de varianzas (test de Levene) Un intervalo de confianza para la diferencia promedio (al 95% o valor que se especifique) Vamos a hacer ahora una hipótesis similar a la que hicimos al principio de la práctica sobre la edad pero, esta vez, comparando la media de dos grupos distintos: hombres y mujeres de nuestra muestra. Vamos a Analizar Comparar medias Prueba T para muestras independientes. En el espacio de Contrastar variables ponemos la edad y en el espacio de Variable de agrupación la variable sexo. Aparecen ahora unos interrogantes y damos al botón Definir grupos : en el grupo 1 escribimos 1 (el código que identifica a los hombres) y en el grupo 2 escribimos 2 (el código que identifica a las mujeres). Así le estamos indicando a SPSS que tiene que comparar los dos grupos de casos que vienen identificados por los valores que le hemos establecido. El resultado muestra dos tablas. En la primera se nos indica la media de edad para cada grupo, hombres y mujeres, la desviación típica para ambos y el error típico de la media. La segunda tabla es la que realiza el test de hipótesis. En la parte de la izquierda SPSS 9

11 calcula un test que nos permite saber si los dos grupos (hombres y mujeres) muestran varianzas iguales con respecto a la variable en cuestión. El resultado del test debe interpretarse del siguiente modo: la probabilidad de que las dos varianzas sean iguales de 0,185 y, por tanto, no podemos rechazar la hipótesis de que sean iguales. La siguiente sección nos muestra el test de hipótesis sobre la igualdad de las medias de edad entre hombres y mujeres: la diferencia de las medias es de 2,36, a la que se asocia una probabilidad de 0,001 (sig. Bilateral). La hipótesis de la que partimos es que la diferencia de las medias es 0 (si ambas son iguales su diferencia es 0). Pero si la hipótesis fuera cierta, la probabilidad de que encontráramos una diferencia tan grande en una muestra sería muy pequeña (1 entre mil). Por tanto, concluimos que los hombres y las mujeres de nuestra población tienen medias de edad distintas y que parece que las mujeres alcanzan edades mayores que los hombres. Como otro ejemplo consideremos un analista de unos grandes almacenes, que está interesado en evaluar los resultados de una promoción reciente de tarjetas de crédito. Con este fin se seleccionaron, al azar, 500 clientes con tarjeta. La mitad recibió una reducción del tipo de interés en las compras realizadas en los siguientes 3 meses y la otra mitad no. Estamos interesados en valorar la diferencia de las medias de compras efectuadas por los clientes seleccionados. El resultado muestra dos tablas. En la primera se nos indica el tamaño de la muestra, la media de gastos la desviación típica y el error típico de la media para cada grupo. En promedio, los clientes que recibieron la reducción del tipo de interés cargaron alrededor de 70 $ más que el otro grupo de comparación y variaron un poco más alrededor de su media. 10

12 El procedimiento realiza dos test de diferencias entre los dos grupos. Un test supone que las varianzas de los dos grupos son iguales. El test estadístico de Levene comprueba esta suposición. En este ejemplo, el valor de significación del estadístico es Como este valor es mayor que 0.05, se puede asumir que los grupos tienen igual varianza e ignorar el segundo test. La columna t muestra el valor del estadístico t observado en las muestras, calculado como el cociente entre la diferencia de medias de las muestras y el error estándar de la diferencia. El número de grados de libertad se muestra en la columna correspondiente, que para el test t de muestras independientes es igual al número total de casos en las dos muestras menos 2. La columna de sig. (bilateral) muestra la probabilidad de una distribución t con 498 grados de libertad. El valor mostrado es la probabilidad de obtener un valor absoluto mayor o igual que el valor t del estadístico observado en la muestra, si la diferencia entre las medias de las muestras fuera puramente aleatoria. Hasta ahora hemos considerado que todos los test son bilaterales. Si consideramos el test unilateral, la probabilidad de obtener el valor t muestral que aparece en los resultados del programa deberemos dividirla por dos. 11

13 La media de la diferencia se obtiene restando la media de la muestra del grupo 2 (grupo con la promoción) de la media de la muestra del grupo 1 El intervalo de confianza al 95% de la diferencia proporciona una estimación de los límites entre los cuales se encuentra la verdadera diferencia en el 95% de todas las posibles muestras aleatorias de 500 poseedores de tarjetas. Como el valor de significación del test es menor que 0.05, se puede concluir que el promedio de $ gastados de más por los poseedores de tarjetas con la reducción en el interés no se debe sólo al azar. La tienda debería considerar entonces el extender la oferta a todos los clientes. PRACTICAS DE PROBABILIDAD Y ESTADISTICA (SESION 6) 1. Cargar el fichero de datos practica.sav. 2. Los que han elegido la carrera de Psicología como primera opción (opción) son más sociables, en promedio, que los que no? 3. El promedio de peso de los que cursan su primer año de la carrera de Psicología (año) es el mismo que el de los que no? 4. Podemos considerar que la edad promedio de los alumnos estudiados está en torno a los 19 años? Y su estatura promedio en torno a 1.75 cms? 5. Comparar las medias de las 4 características de personalidad entre sí (de todas las formas posibles) 6. Consumen bebidas alcohólicas con la misma frecuencia promedio los hombres que las mujeres? 7. Comparar el promedio de la creatividad de los que fuman y los que no. 12

PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica.

PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica. PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica. Profesores: Javier Faulín y Francisco Ballestín 1. Introducción. El objetivo de esta parte es obtener resultados sobre contrastes de hipótesis

Más detalles

INFERENCIA ESTADÍSTICA: CONTRASTE DE HIPÓTESIS

INFERENCIA ESTADÍSTICA: CONTRASTE DE HIPÓTESIS INFERENCIA ESTADÍSTICA: CONTRASTE DE HIPÓTESIS Página 311 REFLEXIONA Y RESUELVE Máuina empauetadora El fabricante de una máuina empauetadora afirma ue, si se regula para ue empauete palés con 100 kg, los

Más detalles

Comparación de medias

Comparación de medias 12 Comparación de medias Irene Moral Peláez 12.1. Introducción Cuando se desea comprobar si los valores de una característica que es posible cuantificar (como podría ser la edad o la cifra de tensión arterial,

Más detalles

Métodos no paramétricos para la comparación de dos muestras

Métodos no paramétricos para la comparación de dos muestras Investigación Métodos no paramétricos para la comparación de dos muestras Métodos no paramétricos para la comparación de dos muestras Pértega Díaz, S. Unidad de Epidemiología Clínica y Bioestadística.

Más detalles

Métodos estadísticos y numéricos Contraste de hipótesis pag. 1 PROBLEMAS RESUELTOS DE CONTRASTE DE HIPÓTESIS

Métodos estadísticos y numéricos Contraste de hipótesis pag. 1 PROBLEMAS RESUELTOS DE CONTRASTE DE HIPÓTESIS Métodos estadísticos y numéricos Contraste de hipótesis pag. 1 PROBLEMA REUELTO DE CONTRATE DE HIPÓTEI 1 Un investigador quiere contrastar si el peso medio de ciertas hortalizas está en los 1,9 Kg. que

Más detalles

Indicaciones específicas para los análisis estadísticos.

Indicaciones específicas para los análisis estadísticos. Tutorial básico de PSPP: Vídeo 1: Describe la interfaz del programa, explicando en qué consiste la vista de datos y la vista de variables. Vídeo 2: Muestra cómo crear una base de datos, comenzando por

Más detalles

7.- PRUEBA DE HIPOTESIS

7.- PRUEBA DE HIPOTESIS 7.- PRUEBA DE HIPOTEI 7.1. INTRODUCCIÓN La estadística inferencial es el proceso de usar la información de una muestra para describir el estado de una población. in embargo es frecuente que usemos la información

Más detalles

"CONTRASTES DE HIPÓTESIS" 4.4 Parte básica

CONTRASTES DE HIPÓTESIS 4.4 Parte básica 76 "CONTRASTES DE HIPÓTESIS" 4.4 Parte básica 77 4.4.1 Introducción a los contrastes de hipótesis La Inferencia Estadística consta de dos partes: Estimación y Contrastes de Hipótesis. La primera se ha

Más detalles

PRUEBAS NO PARAMÉTRICAS

PRUEBAS NO PARAMÉTRICAS PRUEBAS NO PARAMÉTRICAS 1. PRUEBAS DE NORMALIDAD Para evaluar la normalidad de un conjunto de datos tenemos el Test de Kolmogorov- Smirnov y el test de Shapiro-Wilks La opción NNPLOT del SPSS permite la

Más detalles

1 Ejemplo de análisis descriptivo de un conjunto de datos

1 Ejemplo de análisis descriptivo de un conjunto de datos 1 Ejemplo de análisis descriptivo de un conjunto de datos 1.1 Introducción En este ejemplo se analiza un conjunto de datos utilizando herramientas de estadística descriptiva. El objetivo es repasar algunos

Más detalles

ESTADÍSTICA. Tema 3 Contrastes de hipótesis

ESTADÍSTICA. Tema 3 Contrastes de hipótesis ESTADÍSTICA Grado en CC. de la Alimentación Tema 3 Contrastes de hipótesis Estadística (Alimentación). Profesora: Amparo Baíllo Tema 3: Contrastes de hipótesis 1 Estructura de este tema Qué es un contraste

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS Muchos problemas de ingeniería, ciencia, y administración, requieren que se tome una decisión entre aceptar o rechazar una proposición sobre algún parámetro. Esta proposición recibe

Más detalles

Biometría Clase 8 Pruebas de hipótesis para una muestra. Adriana Pérez 1

Biometría Clase 8 Pruebas de hipótesis para una muestra. Adriana Pérez 1 Biometría Clase 8 Pruebas de hipótesis para una muestra Adriana Pérez 1 Qué es una prueba de hipótesis? Es un proceso para determinar la validez de una aseveración hecha sobre la población basándose en

Más detalles

INFERENCIA ESTADISTICA: CONTRASTE DE HIPÓTESIS

INFERENCIA ESTADISTICA: CONTRASTE DE HIPÓTESIS UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA Y SOCIAL SECCIÓN DE EPIDEMIOLOGÍA-BIOESTADÍSTICA INFERENCIA ESTADISTICA: CONTRASTE DE HIPÓTESIS Objetivo:

Más detalles

Capítulo 6. Modificar archivos de datos. Ordenar casos

Capítulo 6. Modificar archivos de datos. Ordenar casos Capítulo 6 Modificar archivos de datos Los archivos de datos no siempre están organizados de forma idónea. En ocasiones podemos desear cambiar el orden de los casos, o transponer las filas y las columnas,

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

Por qué tomar muestras? Si queremos conocer una población, Por qué no tomar una muestra de toda la población?, Por qué no hacer un censo?

Por qué tomar muestras? Si queremos conocer una población, Por qué no tomar una muestra de toda la población?, Por qué no hacer un censo? Página 1 de 8 CAPÍTULO 2: MUESTREO En el capítulo anterior hablamos de que para tomar decisiones en Estadística primero debemos formular una hipótesis a partir de la teoría del investigador. Una vez formulada

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS 1 MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS Medidas de tendencia central Menú Analizar: Los comandos del menú Analizar (Estadística) ejecutan los procesamientos estadísticos. Sus comandos están

Más detalles

Test de hipótesis. Si H0 es cierta el estadístico. sigue una distribución t de Student con n grados de libertad: s n

Test de hipótesis. Si H0 es cierta el estadístico. sigue una distribución t de Student con n grados de libertad: s n Un diseño experimental que se utiliza muy a menudo es el de un grupo control y uno de tratamiento. En el caso de que los datos sean cuantitativos y sigan una distribución normal, la hipótesis de interés

Más detalles

Problemas de Probabilidad resueltos.

Problemas de Probabilidad resueltos. Problemas de Probabilidad resueltos. Problema 1 El profesor Pérez olvida poner su despertador 3 de cada 10 dias. Además, ha comprobado que uno de cada 10 dias en los que pone el despertador acaba no levandandose

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

Análisis estadístico. Tema 1 de Biología NS Diploma BI Curso 2013-2015

Análisis estadístico. Tema 1 de Biología NS Diploma BI Curso 2013-2015 Análisis estadístico Tema 1 de Biología NS Diploma BI Curso 2013-2015 Antes de comenzar Sobre qué crees que trata esta unidad? - Escríbelo es un post-it amarillo. Pregunta guía Cómo podemos saber si dos

Más detalles

Tests de hipótesis estadísticas

Tests de hipótesis estadísticas Tests de hipótesis estadísticas Test de hipótesis sobre la media de una población. Introducción con un ejemplo. Los tests de hipótesis estadísticas se emplean para muchos problemas, en particular para

Más detalles

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Pero qué hacemos cuando no se cumple la normalidad o tenemos muy pocos datos?

Pero qué hacemos cuando no se cumple la normalidad o tenemos muy pocos datos? Capítulo. Métodos no paramétricos Los métodos presentados en los capítulos anteriores, se basaban en el conocimiento de las distribuciones muestrales de las diferencias de porcentajes o promedios, cuando

Más detalles

Indicadores de la Variable.- Son aquellas cualidades o propiedades del objeto que pueden ser directamente observadas y cuantificadas en la práctica.

Indicadores de la Variable.- Son aquellas cualidades o propiedades del objeto que pueden ser directamente observadas y cuantificadas en la práctica. Las variables de un estudio. La variable es determinada característica o propiedad del objeto de estudio, a la cual se observa y/o cuantifica en la investigación y que puede variar de un elemento a otro

Más detalles

T. 8 Estadísticos de asociación entre variables

T. 8 Estadísticos de asociación entre variables T. 8 Estadísticos de asociación entre variables. Concepto de asociación entre variables. Midiendo la asociación entre variables.. El caso de dos variables categóricas.. El caso de una variable categórica

Más detalles

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor Capítulo 14 Análisis de varianza de un factor: El procedimiento ANOVA de un factor El análisis de varianza (ANOVA) de un factor sirve para comparar varios grupos en una variable cuantitativa. Se trata,

Más detalles

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página):

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página): Univ. de Alcalá. Estadística 2014-15 Dpto. de Física y Matemáticas Grado en Biología. Examen final. Miércoles, 21 de Enero de 2015. Apellidos: Nombre: INSTRUCCIONES (LEER ATENTAMENTE). Puedes descargar

Más detalles

Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS

Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS ANÁLISIS DE EXPERIMENTOS 1. Introducción 2. Comparación de dos medias 3. Comparación de más de dos medias 4. Pruebas post-hoc 5. ANCOVA

Más detalles

Ciudad de Guatemala, 2013

Ciudad de Guatemala, 2013 Ciudad de Guatemala, 2013 1 Clase 5 Muestreo y tamaño de muestra D i e g o A y c i n e n a diegoaa@ufm.edu Universidad Francisco Marroquín 2 Clases (Profesores) H o r a r i o Actividades en Grupo (Todos)

Más detalles

Métodos y Diseños utilizados en Psicología

Métodos y Diseños utilizados en Psicología Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos

Más detalles

1 Introducción al SPSS

1 Introducción al SPSS Breve guión para las prácticas con SPSS 1 Introducción al SPSS El programa SPSS está organizado en dos bloques: el editor de datos y el visor de resultados. En la barra de menú (arriba de la pantalla)

Más detalles

8.2.2. Intervalo para la media (caso general)

8.2.2. Intervalo para la media (caso general) 182 Bioestadística: Métodos y Aplicaciones 100 de ellos se obtiene una media muestral de 3 kg, y una desviación típica de 0,5 kg, calcular un intervalo de confianza para la media poblacional que presente

Más detalles

Instalación del programa PSPP y obtención de una distribución de frecuencias.

Instalación del programa PSPP y obtención de una distribución de frecuencias. Práctica 2. Instalación del programa PSPP y obtención de una distribución de frecuencias. Con esta práctica instalaremos el programa PSPP. El programa es un software específico para el análisis estadístico

Más detalles

aplicado al Experiencia La gestión de un servicio y, por ende, la

aplicado al Experiencia La gestión de un servicio y, por ende, la EN PORTADA 6 Sigma aplicado al Experiencia En este artículo vamos a dar una visión más particular sobre la aplicabilidad de 6 Sigma al sector Servicios. Existe abundante literatura al respecto, pero sobre

Más detalles

MANUAL PARA EL USO DE SPSS

MANUAL PARA EL USO DE SPSS MANUAL PARA EL USO DE SPSS 1 INTRODUCCIÓN El propósito de este manual, es ilustrar con un ejemplo cómo generar tablas de frecuencia, tablas de contingencia, cálculos de medias, así como la generación de

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 1 de agosto de 2003 1. Introducción Cualquier modelo de una situación es una simplificación de la situación real. Por lo tanto,

Más detalles

Examen de la asignatura "Estadística aplicada a las ciencias sociales" Profesor Josu Mezo. 9 de junio de 2008.

Examen de la asignatura Estadística aplicada a las ciencias sociales Profesor Josu Mezo. 9 de junio de 2008. Examen de la asignatura "Estadística aplicada a las ciencias sociales" Profesor Josu Mezo. 9 de junio de 2008. Pregunta nº 1 (5 puntos). En una base de datos sobre los países del mundo se incluyen una

Más detalles

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD.

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD. Experimentos con un solo factor: El análisis de varianza Jhon Jairo Padilla Aguilar, PhD. Experimentación en sistemas aleatorios: Factores Controlables Entradas proceso Salidas Factores No controlables

Más detalles

7.6 Comparación entre dos medias Poblacionales usando muestras independientes

7.6 Comparación entre dos medias Poblacionales usando muestras independientes 7.6 Comparación entre dos medias Poblacionales usando muestras independientes Supongamos que se tiene dos poblaciones distribuidas normalmente con medias desconocidas µ y µ, respectivamente. Se puede aplicar

Más detalles

Asignatura: Econometría. Conceptos MUY Básicos de Estadística

Asignatura: Econometría. Conceptos MUY Básicos de Estadística Asignatura: Econometría Conceptos MUY Básicos de Estadística Ejemplo: encuesta alumnos matriculados en la UMH Estudio: Estamos interesados en conocer el nivel de renta y otras características de los estudiantes

Más detalles

Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico.

Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico. Universitat de de Barcelona. Institut de de Ciències de de l Educació Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico. María José Rubio

Más detalles

1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros

1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros TEMA 0: INTRODUCCIÓN Y REPASO 1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros desconocidos 4. Comparación

Más detalles

Capítulo 9. Regresión lineal simple

Capítulo 9. Regresión lineal simple Capítulo 9. Regresión lineal simple 9.1 Introducción Uno de los aspectos más relevantes de la Estadística es el análisis de la relación o dependencia entre variables. Frecuentemente resulta de interés

Más detalles

UNED. [TEMA 3] Análisis de datos para diseños de dos grupos. Muestras independientes.

UNED. [TEMA 3] Análisis de datos para diseños de dos grupos. Muestras independientes. 2009 UNED [TEMA 3] Análisis de datos para diseños de dos grupos. Muestras independientes. 1 ÍNDICE 3.1 Introducción 3.2 Objetivos 3.3 Muestras independientes o relacionadas 3.4 Contraste de hipótesis sobre

Más detalles

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral Enero 2005 1.- INTRODUCCIÓN En múltiples ocasiones el analista o investigador se enfrenta al problema de determinar

Más detalles

ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson

ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson 3datos 2011 Análisis BIVARIADO de variables cuantitativas OBJETIVO DETERMINAR 1º) si existe alguna relación entre las variables;

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 3. Definición intuitiva de probabilidad: ley de Laplace La palabra probabilidad, que usamos habitualmente, mide el grado de creencia que tenemos de que ocurra un hecho que puede pasar o no pasar. Imposible,

Más detalles

PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos.

PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos. PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) PRUEBAS NO PARAMÉTRICAS F(X) es la función de distribución que hipotetizamos. Fs(X) es la probabilidad o proporción teórica de

Más detalles

Pruebas de Hipótesis de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Pruebas de Hipótesis de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Pruebas de ipótesis de Una y Dos Muestras UCR ECCI CI-35 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides ipótesis Estadísticas Conceptos Generales En algunos casos el científico

Más detalles

CAPÍTULO 3: DISEÑO DE INVESTIGACIONES

CAPÍTULO 3: DISEÑO DE INVESTIGACIONES Página 1 de 6 CAPÍTULO 3: DISEÑO DE INVESTIGACIONES En los capítulos anteriores se estableció que después de formular una teoría, se necesita recoger información para probarla, y en el capítulo anterior

Más detalles

Tema 12: Contrastes Paramétricos

Tema 12: Contrastes Paramétricos Tema 1 Tema 1: Contrastes Paramétricos Presentación y Objetivos. Se comienza este tema introduciendo la terminología y conceptos característicos de los contrastes de hipótesis, típicamente a través de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES Junio, Ejercicio 1, Opción B 3 Sean las matrices A 0 3, B y C 0 1 1 5 1 3 0 a) Calcule las

Más detalles

MATERIAL 2 EXCEL 2007

MATERIAL 2 EXCEL 2007 INTRODUCCIÓN A EXCEL 2007 MATERIAL 2 EXCEL 2007 Excel 2007 es una planilla de cálculo, un programa que permite manejar datos de diferente tipo, realizar cálculos, hacer gráficos y tablas; una herramienta

Más detalles

LA MEDIDA Y SUS ERRORES

LA MEDIDA Y SUS ERRORES LA MEDIDA Y SUS ERRORES Magnitud, unidad y medida. Magnitud es todo aquello que se puede medir y que se puede representar por un número. Para obtener el número que representa a la magnitud debemos escoger

Más detalles

PROPORCIONALIDAD - teoría

PROPORCIONALIDAD - teoría PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

SEMINARIOS. (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática

SEMINARIOS. (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática SEMINARIOS (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática Seminario de Estadística Descriptiva Unidimensional y Bidimensional 1. Se ha realizado un control de calidad en

Más detalles

INVENTAR PROBLEMAS: UNA FORMA DE DESARROLLAR LAS COMPETENCIAS BÁSICAS

INVENTAR PROBLEMAS: UNA FORMA DE DESARROLLAR LAS COMPETENCIAS BÁSICAS INVENTAR PROBLEMAS: UNA FORMA DE DESARROLLAR LAS COMPETENCIAS BÁSICAS RESUMEN. Juan Jesús Barbarán Sánchez, Universidad de Granada José Antonio Fernández Bravo, Universidad Camilo José Cela Ana Huguet

Más detalles

Curso de Estadística no-paramétrica

Curso de Estadística no-paramétrica Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

Práctica 5. Contrastes paramétricos en una población

Práctica 5. Contrastes paramétricos en una población Práctica 5. Contrastes paramétricos en una población 1. Contrastes sobre la media El contraste de hipótesis sobre una media sirve para tomar decisiones acerca del verdadero valor poblacional de la media

Más detalles

En cualquier caso, tampoco es demasiado importante el significado de la "B", si es que lo tiene, lo interesante realmente es el algoritmo.

En cualquier caso, tampoco es demasiado importante el significado de la B, si es que lo tiene, lo interesante realmente es el algoritmo. Arboles-B Características Los árboles-b son árboles de búsqueda. La "B" probablemente se debe a que el algoritmo fue desarrollado por "Rudolf Bayer" y "Eduard M. McCreight", que trabajan para la empresa

Más detalles

T. 5 Inferencia estadística acerca de la relación entre variables

T. 5 Inferencia estadística acerca de la relación entre variables T. 5 Inferencia estadística acerca de la relación entre variables 1. El caso de dos variables categóricas 2. El caso de una variable categórica y una variable cuantitativa 3. El caso de dos variables cuantitativas

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

Test ( o Prueba ) de Hipótesis

Test ( o Prueba ) de Hipótesis Test de Hipótesis 1 Test ( o Prueba ) de Hipótesis Ejemplo: Una muestra de 36 datos tiene una media igual a 4.64 Qué puede deducirse acerca de la población de donde fue tomada? Se necesita contestar a

Más detalles

Pruebas de. Hipótesis

Pruebas de. Hipótesis Pruebas de ipótesis Pruebas de ipótesis Otra manera de hacer inferencia es haciendo una afirmación acerca del valor que el parámetro de la población bajo estudio puede tomar. Esta afirmación puede estar

Más detalles

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................

Más detalles

Micropíldora 3: Liquidez, Solvencia y Rentabilidad

Micropíldora 3: Liquidez, Solvencia y Rentabilidad Micropíldora 3: Liquidez, Solvencia y Rentabilidad ÍNDICE MC 03 LIQUIDEZ, SOLVENCIA Y REBTABILIDAD 1. El balance final. 2. Liquidez, solvencia y rentabilidad. 2 1.- El balance final Hasta ahora, en el

Más detalles

LABORATORIO Nº 3 PRÁCTICA DE FUNCIONES EN MICROSOFT EXCEL

LABORATORIO Nº 3 PRÁCTICA DE FUNCIONES EN MICROSOFT EXCEL OBJETIVO Mejorar el nivel de comprensión y el manejo de las destrezas del estudiante para utilizar funciones en Microsoft Excel 2010. 1) LA FUNCIÓN SI EN EXCEL La función SI en Excel es parte del grupo

Más detalles

SPSS: ANOVA de un Factor

SPSS: ANOVA de un Factor SPSS: ANOVA de un Factor El análisis de varianza (ANOVA) de un factor nos sirve para comparar varios grupos en una variable cuantitativa. Esta prueba es una generalización del contraste de igualdad de

Más detalles

El concepto de asociación estadística. Tema 6 Estadística aplicada Por Tevni Grajales G.

El concepto de asociación estadística. Tema 6 Estadística aplicada Por Tevni Grajales G. El concepto de asociación estadística Tema 6 Estadística aplicada Por Tevni Grajales G. En gran medida la investigación científica asume como una de sus primera tareas, identificar las cosas (características

Más detalles

EXPERIMENTACIÓN. Eduardo Jiménez Marqués

EXPERIMENTACIÓN. Eduardo Jiménez Marqués EXPERIMENTACIÓN Eduardo Jiménez Marqués 1 CONTENIDO: 1. Experimentación...3 1.1 Concepto...3 1. Definición...4 1.3 Dificultad...4 1.4 Ventaja...5 1.5 Planificación...5 1.6 Aplicaciones...5 1.7 Metodología...6

Más detalles

Solución ESTADÍSTICA. Prueba de evaluación contínua 2 - PEC2

Solución ESTADÍSTICA. Prueba de evaluación contínua 2 - PEC2 Semestre set04 - feb05 Módulos 11-17 Prueba de evaluación contínua 2 - PEC2 Solución Presentación i objetivos Enunciados: descripción teórica de la práctica a realizar Materiales Criterios de evaluación

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

PRÁCTICA 1: Optimización con Excel 2010

PRÁCTICA 1: Optimización con Excel 2010 Grado en Administración de Empresas Departamento de Estadística Asignatura: Optimización y Simulación para la Empresa Curso: 2011/2012 PRÁCTICA 1: Optimización con Excel 2010 1. Modelización mediante hojas

Más detalles

Problemas. Intervalos de Confianza y Contrastes de Hipótesis

Problemas. Intervalos de Confianza y Contrastes de Hipótesis Problemas. Intervalos de Confianza y Contrastes de Hipótesis Ejemplos resueltos y propuestos Intervalos de Confianza Variable Nomal en la población Se selecciona una muestra de tamaño n de una población

Más detalles

Fórmulas y funciones

Fórmulas y funciones 05... Fórmulas y funciones En este tema vamos a profundizar en el manejo de funciones ya definidas por Excel, con el objetivo de agilizar la creación de hojas de cálculo, estudiando la sintaxis de éstas

Más detalles

Imagen de Rosaura Ochoa con licencia Creative Commons

Imagen de Rosaura Ochoa con licencia Creative Commons Imagen de Rosaura Ochoa con licencia Creative Commons Durante el primer tema hemos aprendido a elaborar una encuesta. Una vez elaborada la encuesta necesitamos escoger a los individuos a los que se la

Más detalles

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Programación Lineal Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Ejemplo: Plan de producción de PROTRAC En esta ficha vamos a comentar cómo se construyó

Más detalles

Diagnosis y Crítica del modelo -Ajuste de distribuciones con Statgraphics-

Diagnosis y Crítica del modelo -Ajuste de distribuciones con Statgraphics- Diagnosis y Crítica del modelo -Ajuste de distribuciones con Statgraphics- 1. Introducción Ficheros de datos: TiempoaccesoWeb.sf3 ; AlumnosIndustriales.sf3 El objetivo de esta práctica es asignar un modelo

Más detalles

6 ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS

6 ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS 6 ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS Esquema del capítulo Objetivos 6.1. 6.. 6.3. 6.4. ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS COEFICIENTES DE CONTINGENCIA LA

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 2 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. La dureza Rockwell de un metal

Más detalles

3. ANÁLISIS ESTADÍSTICOS DE LAS PRECIPITACIONES EN EL MAR CASPIO

3. ANÁLISIS ESTADÍSTICOS DE LAS PRECIPITACIONES EN EL MAR CASPIO Análisis estadístico 31 3. ANÁLII ETADÍTICO DE LA PRECIPITACIONE EN EL MAR CAPIO 3.1. ANÁLII Y MÉTODO ETADÍTICO UTILIZADO 3.1.1. Introducción Una vez analizado el balance de masas que afecta al mar Caspio

Más detalles

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:

Más detalles

Inferencia Estadística

Inferencia Estadística Universidad Nacional de San Cristóbal de Huamanga Facultad de Ingeniería de Minas, Geología y Civil Departamento Académico de Matemática y Física Área de Estadística Inferencia Estadística Alejandro Guillermo

Más detalles

Heteroevaluación de trabajos colaborativos en wikis

Heteroevaluación de trabajos colaborativos en wikis Heteroevaluación de trabajos colaborativos en wikis Daniel Molina Cabrera Julio 2012 (Última versión) Índice 1. Sobre este documento 2 2. Introducción 2 3. Trabajo colaborativo en un wiki 3 4. StatMediaWiki

Más detalles

UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST

UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST 7.1. ANÁLISIS DE LOS ÍTEMS Al comenzar la asignatura ya planteábamos que uno de los principales problemas a los que nos enfrentábamos a la hora

Más detalles

Tema 3. Comparaciones de dos poblaciones

Tema 3. Comparaciones de dos poblaciones Tema 3. Comparaciones de dos poblaciones Contenidos Hipótesis para la diferencia entre las medias de dos poblaciones: muestras pareadas Hipótesis para la diferencia entre las medias de dos poblaciones:

Más detalles

Base de datos: Access. Unidad Didáctica 3: Planificación y diseño de una base de datos

Base de datos: Access. Unidad Didáctica 3: Planificación y diseño de una base de datos Módulo 7: Tecnologías de la Información y Comunicación y Ofimática Unidad Didáctica 3: Planificación y diseño de una base de datos Base de datos: Access UNIDAD DIDÁCTICA 3 Planificación y diseño de una

Más detalles

GRAFICOS DE CONTROL DATOS TIPO VARIABLES

GRAFICOS DE CONTROL DATOS TIPO VARIABLES GRAFICOS DE CONTROL DATOS TIPO VARIABLES PROCESO Maquinaria Métodos Materias Primas Proceso Producto Mano de Obra Condiciones Ambientales VARIACIÓN Fundamentalmente, las cinco fuentes más importantes de

Más detalles

Tema 1. Inferencia estadística para una población

Tema 1. Inferencia estadística para una población Tema 1. Inferencia estadística para una población Contenidos Inferencia estadística Estimadores puntuales Estimación de la media y la varianza de una población Estimación de la media de la población mediante

Más detalles

CUARTA GUÍA DE EJERCICIOS: PRUEBAS DE HIPÓTESIS

CUARTA GUÍA DE EJERCICIOS: PRUEBAS DE HIPÓTESIS CUARTA GUÍA DE EJERCICIOS: PRUEBAS DE HIPÓTESIS UN ESTUDIO SOBRE CARBOXIHEMOGLOBINA EN SANGRE En el estudio experimental que aquí presentamos se seleccionó al azar una muestra de 37 estudiantes de una

Más detalles

Hipótesis Alternativa: Afirmación sobre las posibles alternativas que se tienen a la afirmación hecha en la hipótesis nula.

Hipótesis Alternativa: Afirmación sobre las posibles alternativas que se tienen a la afirmación hecha en la hipótesis nula. PRUEBA DE HIPÓTESIS Introducción (10 min) En el mundo de las finanzas, la administración y la economía tan importante como saber hacer y entender a cabalidad las estimaciones que nos ayudaran a la toma

Más detalles