CAPÍTULO I I.2. CONTEO EN EL SISTEMA DECIMAL.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPÍTULO I I.2. CONTEO EN EL SISTEMA DECIMAL."

Transcripción

1 Sistemas de Numeración. Sistema binario. César Sánchez Norato CPÍTULO I Sistemas de numeración. Sistema binario. I.. INTRODUCCIÓN. medida que, en la antigüedad, avanzaba la Civilización, el Hombre tuvo necesidad de contar los objetos y las cosas. Tuvo, por tanto, la necesidad de intuir o inventar un sistema de numeración. Como el hombre posee diez dedos en las manos, le resultó práctico el hacer uso de ellos para contar. Nacía así el sistema de numeración decimal o de base "diez", que se ha desarrollado y perfeccionado a lo largo de los siglos. Habremos observado cómo aún hoy los niños pequeños ( y no tan pequeños!. uién de nosotros no lo ha hecho alguna vez?) se sirven de los dedos de las manos para contar. Posteriormente le surgió la necesidad, también, de realizar elementales operaciones aritméticas, como sumar, restar, dividir, etc, para el intercambio, compra-venta, reparto, de estos objetos. Nacían así las "elementales operaciones aritméticas". El sistema desarrollado recibió el nombre de DECIML o DENRIO por ser diez los dedos de las manos del hombre. Parece ser que deriva del que utilizaban los habitantes de la India Septentrional unos 3 años antes de Cristo. nterior a este sistema hubo otros sistemas de numeración; entre ellos el utilizado por los Chinos, por los Egipcios, por Romanos, etc. Una característica muy importante, acaso la que más, del sistema hindú era que poseía un símbolo para representar el "cero" o ausencia de elementos. El sistema decimal o de base diez está formado por diez símbolos o números llamados dígitos (dedos) y que son, como todos sabemos,,, 2, 3, 4, 5, 6, 7, 8, y 9. El siguiente número es el número diez () que es el que da el nombre a la base. La base de cualquier sistema también se llama "rádix". El sistema decimal tiene un valor de posición característico, y cada uno de los diez dígitos tiene un "peso" o "significación" que depende de la posición en que se encuentre. sí, si observamos el número 365, el número 5 nos indica las unidades, el 6 las decenas y el 3 las centenas. Es decir, que el número 365 representa unidades; o lo que es lo mismo, equivale a sumar ; lo que da 365 unidades. Obsérvese que esto es lo que conocemos como valor relativo de un número, que depende de la "posición" o el lugar que ocupa. I.2. CONTEO EN EL SISTEM DECIML. Si tratamos de contar una cantidad de objetos o elementos, es como si a cada uno de ellos le asignáramos un número, un lugar, o una posición. Tendríamos así la serie natural de los números del sistema decimal, que sería esta:,, 2, 3, 4, 5, 6, 7, 8, 9. l llegar al elemento 9 ya no hay dígitos para representar los demás. Entonces se recurre a combinar el con todos los ellos, obteniendo el,,

2 2 César Sánchez Norato. Sistemas de numeración. Sistema binario 2,...9. Pero como el ya no se puede combinar con más, se pasa a combinar el 2 con todos ellos. sí obtenemos el 2, 22, Lo mismo se haría con los demás hasta llegar al 99, con lo que se terminarían las combinaciones o números de dos cifras procediendo a continuación a formar los grupos de tres cifras, los cuales comienzan por el y terminan en el 999. Después vendrían los de cuatro, los de cinco, y así sucesivamente. Nota: Los símbolos utilizados, extendidos universalmente, son los números arábigos. I.3. SISTEMS DE NUMERCIÓN. medida que el hombre fue profundizando en los estudios sobre el sistema decimal observó que, con otra cantidad de elementos distinta a "diez", también se podían confeccionar otros sistemas de numeración y que todos seguían las "reglas generales" del sistema decimal. Como el sistema decimal sólo tiene diez dígitos, los otros sistemas surgidos los podemos clasificar en SISTEMS NUMÉRICOS, aquellos cuya base es inferior a y en SISTEMS LFNUMÉRICOS, los de base superior a diez. Dentro de los primeros tenemos los sistemas de base 2 o binario, de base 3, de base 4, de base 5, de base 6, de base 7, de base 8 u octal, de base 9 y de base. Teniendo en cuenta que el número mayor que puede tener una base es inferior en una unidad al número de la base, tendremos que el sistema de base 2 solo tendrá como números el uno y el cero. (Cada uno de estos números -el y/o el - se llama bit; del inglés inary digit = dígito binario). En base tres habrá el, el y el 2. En base cuatro habrá el, el, el 2 y el 3. En base cinco habrá el, el, el 2, el 3 y el 4. Etcétera. En los segundos o alfanuméricos se utilizan números y letras. sí un sistema de base doce, tendrá los siguientes elementos:,, 2, 3, 4, 5, 6, 7, 8, 9, y. Un sistema alfanumérico muy empleados en el campo de los ordenadores, es el HEXDECIML o de base 6, cuyos 6 elementos son:,, 2, 3, 4, 5, 6, 7, 8, 9,,, C, D, E y F. I.4. CONTEO EN LGUNOS SISTEMS DE NUMERCIÓN. Veamos los primeros números de algunos de los sistemas de numeración. Sea que queremos contar en el sistema de base 7. La serie natural sería:,, 2, 3, 4, 5, 6,,, 2, 3, 4, 5, 6, , ,,...6, ,... Sea ahora en el sistema de base 4. La serie natural sería la siguiente:,, 2, 3,,, 2, 3, 2, 2, 22, 23, ,,, 2, 3, , ,... Sea esta vez en el sistema binario o de base dos. La serie sería:,,,,,,,,,,,,,,,,,... Sea, por último, en un sistema alfanumérico, por ejemplo en el hexadecimal. Tendríamos:,, 2, 3, 4, 5, 6, 7, 8, 9,,, C, D, E, F,,, 2... F, F... 9F,,... F...FF,...

3 Sistemas de Numeración. Sistema binario. César Sánchez Norato 3 I.5. EUIVLENCIS EN LGUNOS SISTEMS ase E U I V L E N C I S C D E F I.6. DESCOMPOSICIÓN POLINÓMIC DE UN NÚMERO CULUIER. En todos los sistemas de numeración se cumple la siguiente ecuación general, llamada también expresión polinómica o factorial: N = a n b n + a n- b n- + a n-2 b n a b + a - b - + a -2 b a -q b -q donde N es el número en cuestión b es la base del sistema de numeración a es el número perteneciente al sistema n, q son los lugares que ocupan los números en el sistema. Nota: Los subíndices y exponentes positivos indican números enteros; en cambio los negativos representan las cantidades o números fraccionarios. Veamos algunos ejemplos de descomposición o expresión polinómica. * Sistema decimal.- Sea el número 2345, ,76 = 2 x x x + 5 x + 7 x x -2 * Sistema hexadecimal.- Sea el número 4F,D2 en base 6 4F,D2 = x x x 6 + F x 6 + D x x 6-2 * Sistema octal (base 8).- Sea el número 7.245, ,3 = 7 x x x x x x 8-2 * Sistema base 4.- Sea el número 23,2. 23,2 = x x x 4 + x x 4-2 * Sistema base dos (binario).- Sea el número,, = x x x x 2 + x 2 + x x 2-2

4 4 César Sánchez Norato. Sistemas de numeración. Sistema binario I.7. SISTEM INRIO O DE SE DOS. asándose en los estudios y las Leyes del ya perfeccionado sistema decimal, y de otros sistemas, Leibnitz, en el siglo XVII, introduce el sistema binario o de base dos que sólo utiliza dos tipos de símbolos -el cero y el uno-; y aunque desarrolla, según parece, algunas elementalidades con este sistema, es el matemático inglés George oole quien en el año.847 desarrolla el álgebra binaria que lleva su nombre "LGER DE OOLE". Pero es en.938 cuando Claude Shannon adapta el álgebra de oole al estudio de relés. Con la aparición de los transistores en.948 (W.H. rattain y J. ardeen, en EE UU) y el desarrollo de la lógica integrada, es cuando el lgebra de oole adquiere toda su importancia gracias a la Informática, al comparar la dualidad entre los dos elementos o bits - y - del sistema binario a otras dualidades técnicas como encendido-apagado de una lámpara; abierto-cerrado de un interruptor; si-no tensión o corriente de un circuito; conducción-no conducción de una válvula o transistor, etc, etc. Posteriormente han contribuido a "perfeccionar" el lgebra de oole matemáticos como Karnaugh, De Morgan, etc. Con los dos bits se puede escribir una serie, contar, y realizar las operaciones elementales de la ritmética. Pero basándose en otras propiedades o leyes se pueden realizar todo tipo de operaciones. un conjunto de 4 bits se llama "nibble". un conjunto de 8 bits se llama "byte u octeto". Un Kbit es igual a 2 =.24 bits. Un Kbyte es igual a.24 bytes =.24 x 8 = 8.92 bits. I.8. LOS NÚMEROS INRIOS NEGTIVOS. sí como a los números decimales negativos se le antepone el signo menos ( ), los números negativos en binario no llevan ese signo. Sin embargo, se pueden distinguir los positivos de los negativos mediante el primer bit de la izquierda, llamado bit de signo. Si este bit es un "cero" significa que el número es positivo. Para los números negativos dicho bit vale "uno". No obstante, los números negativos binarios se pueden representar de tres formas distintas: ª En la forma descrita (bit de signo y magnitud verdadera); ejemplo: = ª En notación de complemento a ; ejemplo:. 3ª En notación de complemento a 2; ejemplo:. Observación: veces se separa el bit de signo de la magnitud verdadera por medio de una coma. En los ejemplos anteriores sería: - para el primer caso, - para el segundo caso, - para el tercer caso, Nota: Si con 8 bits se pueden representar 2 8 = 256 números, utilizando el bit de signo se pueden representar el mismo número de ellos, sólo que serán 28 positivos y otros tantos negativos. Es decir desde el -27 ( ) hasta el +27 ( ).

5 Sistemas de Numeración. Sistema binario. César Sánchez Norato 5 I.9. CONVERSIÓN DE UN NÚMERO DE SE DIEZ SE DOS. Para convertir (o pasar) un número dado en base a base 2, se pueden plantear tres casos: Primero: El número decimal es solamente un número entero. En este caso, el equivalente en binario se obtiene dividiendo el número sucesivamente por 2. El último cociente obtenido será el bit de la izquierda; esto es: el bit de mayor peso, o bit más significativo, MS, (MS Most Significant it, en inglés). El primer resto (de la primera división) será el bit de la derecha; o sea: el bit de menor peso, o bit menos significativo, bms, (LS Least Significant it, en inglés). Los distintos restos, en orden inverso a su obtención, completarán el número en binario. : 2 = 5 resto = 5 : 2 = 2 resto = 2 : 2 = resto = : 2 = resto = Veámoslo mediante un ejemplo. Sea pasar el número, dado en base, a binario (base 2). En la figura I. se muestra el algoritmo y el resultado. Por tanto el número en base es igual a Figura I. 2 Nota: Realizada la operación de esta forma, la división se termina cuando el resto valga. De otra manera: de donde = 2,375 x 2 =,75,75 x 2 =,5 Segundo: El número en base es solamente un número decimal. Sea el número,375 en base. En la figura I.2 se puede ver el algoritmo utilizado y el resultado. Por tanto el número,375 equivale a. 2,5 x 2 =,,375 equivale a. 2 Luego, Figura I.2 Nota: Para el paso de los números decimales en base al sistema binario, la multiplicación termina cuando el producto es igual a,. Tercero: El número en base diez tiene parte entera y parte decimal. Sea el número 5,625 en base. En la figura I.3 se muestra el algoritmo utilizado así como el resultado de la operación. Por tanto el número 5,625 =. 5 : 2 = 2 --> resto = 2 : 2 = --> resto = : 2 = --> resto =,625 x 2 =,25,25 x 2 =,5,5 x 2 =, Figura I.3.

6 6 César Sánchez Norato. Sistemas de numeración. Sistema binario I.. CONVERSIÓN DE INRIO DECIML. Para convertir un número del sistema binario al sistema decimal, hay que proceder por la descomposición polinómica. Ejemplo: Sea pasar el número. dado en base dos a base diez.. 2 = x x x x 2 + x 2 + x x x = ,25 +,25 = 23,375 I.. CONVERSIÓN DE UN SISTEM OTRO (ambos distintos del decimal). Para convertir o pasar un número de un sistema o base cualquiera, distinta de diez, a otro sistema o base cualquiera, también distinta de diez, hay que realizar los dos pasos siguientes: º.- Pasar de la base dada a base diez (por descomposición polinómica) y, 2º.- Pasar el número obtenido en base diez a la nueva base deseada (por medio de divisiones repetidas). Veamos un par de ejemplos: a) Sea el número 24, dado en base 5, que se quiere pasar a base 8. º.- Se pasa el número a base diez: 24 5 = x x x 5 = 39 2º.- Se pasa el número 39 de base diez a base 8 (dividiendo) Por tanto 24 5 = b) Sea que se quiere pasar el número 76 9 a base 4. º.- Se pasa el 76 a base diez = 7 x x x 9 = 582 2º.- Se pasa el 582 a base luego tenemos que 76 9 = 22 4

7 Sistemas de Numeración. Sistema binario. César Sánchez Norato 7 EJERCICIOS DE PLICCIÓN. I. Cuántos y cuáles son los distintos signos de un sistema de numeración de base 7?. I.2 Escribe los 2 primeros números de un sistema de base 8. I.3 Escribe los 2 primeros números de un sistema de base 6. I.4 Escribe los 2 primeros números de un sistema de base 2. I.5 Cuenta los 25 primeros alumnos de la clase en base 2. I.6 Cuenta los 25 primeros alumnos de la clase en base 2. I.7 Cuál es tu número de lista en base 5?. I.8 Efectúa la descomposición polinómica o factorial del número.234,56 I.9 Efectúa la descomposición polinómica del número.234,56 6 I. Efectúa la descomposición polinómica del número.234,52 6 I. Descompon polinómicamente el número. 2 I.2 Convierte el número 325,4 8 a base. I.3 Expresa el número en base 5. I.4 Convierte el número 85E 6 a base 9. I.5 usca el equivalente al número de tu teléfono en base 5. I.6 usca el equivalente al número en base 6. I.7 usca el equivalente al número. 2 en base 7. I.8 Cuál es el equivalente de 24 8 en bases 2, 5, 8, y 6?. I.9 Escribe tu fecha de nacimiento (día, mes y año) en base 2. I.2 Cómo se escribiría la fecha de hoy en base hexadecimal?. I.2 Cuál es el equivalente de C 6 en base 2?. I.22 Dado el número 32 7 conviértelo en base 3. I.23 Cambia el número 4 6 a la base 4. I.24 Cambia el número 2 a la base 3. I.25 Expresa el número que representa tu edad, en el sistema binario.

8 8 César Sánchez Norato. Operaciones en el sistema binario CPÍTULO II Operaciones aritméticas en el sistema binario. II.. SUM. l igual que en el sistema decimal, para realizar la operación de la suma en el sistema binario, basta con tener en cuenta la "tabla" de esta operación. Esta tabla se reduce a los siguientes casos: + = ; + = ; + = ; + = OSERVCIONES: ª Si en una suma se obtiene como resultado "", se escribe el "" y se arrastra, o se acarrea, o se "lleva" "". Si el resultado fuera "", se escribe el "" y se acarrea "". Si el resultado fuera o, se escribe "" ó "", respectivamente, y se acarrea ""; así sucesivamente. En general, cualquiera que fuese el resultado obtenido, siempre se escribirá el bit de la derecha, y el resto de bits forma el acarreo -carry en inglés-. 2ª En los comienzos de este tipo de operaciones, en el sistema binario, un método eficaz consiste en pasar los números binarios a decimales y efectuar la suma en ambos sistemas para ir contrastando los resultados. 3ª Conviene que se aprenda a contar en binario todos los números que se puedan (pensar en binario) para cuando haya que efectuar la suma de varios sumandos. la siguiente columna de la izquierda de la que estamos sumando, arrastraremos todos los bits obtenidos en ésta menos el último de la derecha, que lógicamente será el "cero" o el "uno". 4ª Si hay que realizar sumas largas se pueden sumar los dos primeros sumandos y al resultado obtenido sumar el tercero, y así sucesivamente. 5ª Un método práctico, sobre todo en sumas largas, (de varios sumandos) consiste en contar el número de "unos" que aparecen en la columna que se está sumando. Si el número de ellos es par, se escribirá como solución "cero"; y si es impar se escribirá "uno"; a la siguiente columna de la izquierda se incorpora un arrastre de unos igual a la mitad de los que se contaron en la columna anterior. EJEMPLOS. 3 = + 7 = =

9 Operaciones en el sistema binario. César Sánchez Norato 9 34 = = 7 2 = = 94 3 = = 35 7 = = = II.2. REST. Para efectuar esta operación, también es suficiente con aplicar la "tabla" de restar. Esta tabla se reduce a los siguientes casos: - = ; - = ; - = * ; - = * hay un préstamo de (se pide prestado a la columna inmediata de la izquierda) OSERVCIONES. ª La resta binaria se realiza igual que en decimal. Ejemplo: 2 5 = = - = = - 4 = = 2ª La comprobación de la resta se hace sumando el sustraendo a la diferencia. Debe dar el minuendo. En el ejemplo anterior tenemos: + =. 3ª La resta se puede efectuar mediante sumas por medio de los complementos. Existen principalmente dos tipos de complementos: a "unos" y a "doses". El complemento a "unos" de un número se obtiene restando ese número de "unos". Ejemplos: el complemento a "uno" de cero es "uno", pues - = ; el complemento a "uno" de uno es "cero", pues - = ; el complemento a "uno" de es. En efecto: - =. Nota: La forma más fácil de obtener el complemento a "unos" de un número cualquiera consiste en cambiar los "unos" por "ceros" y los "ceros" por "unos". Obsérvese en el ejemplo anterior. El complemento a "doses" de un número, se obtiene sumando un "uno" al complemento a "unos". sí el complemento a "doses" del número es: el complemento a "unos" más un "uno"; esto es: + =. También se puede hallar de otra forma. Consiste en restar el número a complementar de un "uno" seguido de tantos ceros como bits tiene el número que se quiere complementar. Ejemplo: sea el número de antes:. Tendremos: - =

10 César Sánchez Norato. Operaciones en el sistema binario II.2.. REST, COMO SUM, POR EL COMPLEMENTO "UNOS". l restar dos números y se pueden presentar dos casos: que > y que <. Para efectuar la resta en el primer caso, donde el minuendo es mayor que el sustraendo: * se halla el complemento a "unos" del sustraendo, * una vez complementado el sustraendo se suma al minuendo, produciéndose en la suma un "arrastre" de un "uno". * este arrastre se suma con el resultado anterior. Esa es la solución. Ejemplo: véase la figura II Figura II. Para realizar la resta en el segundo caso donde el minuendo es menor que el sustraendo, hay que dar los siguientes pasos: -se complementa el sustraendo a "unos", -se suma el sustraendo complementado al minuendo, y -se complementa el resultado; se le pone el signo "menos" y esa es la solución correcta. Ejemplo: - => + que complementando a "unos" y afectándolo del signo menos, tenemos - que es la solución correcta. Podía considerarse un tercer caso donde = (minuendo igual al sustraendo). Este caso no se puede resolver por el complemento a unos. Veámoslo. Ejemplo: => + como se ve no origina acarreo, por lo que no se puede hacer. Nota: Este caso se puede resolver como el caso anterior donde <. Como norma general se puede decir que siempre que no exista "uno" de acarreo el resultado es negativo, y cuando sí exista, el resultado es positivo. II.2.2. REST, COMO SUM, POR EL COMPLEMENTO "DOSES". En estos casos, se halla el complemento a "doses" del sustraendo y se suma con el minuendo. La suma origina un arrastre. La solución es el resultado después de despreciar el arrastre. Ejemplo: - ==> > complemento a"doses" Se desprecia el "uno" del carry, siendo el resultado.

11 Operaciones en el sistema binario. César Sánchez Norato II.3. MULTIPLICCIÓN. En principio es suficiente con aplicar la "tabla" para esta operación, que es muy sencilla. También es precisa la de la suma para sumar los productos parciales. La "tabla" de multiplicar se reduce a los siguientes casos: x = ; x = ; x = ; x = Ejemplo: 25 multiplicando x 7 x multiplicador 75 productos parciales producto total OSERVCIONES: ª.- La multiplicación en binario se realiza igual que en el sistema decimal. Ver ejemplo anterior. En caso de decimales, obsérvese el siguiente caso: 3,25. x 5,75 cuatro decimales x ,6875. cuatro decimales 2ª.- La comprobación se hace permutando el multiplicando por el multiplicador, aprovechando la propiedad conmutativa. 3ª.- Cuando el bit del multiplicador que se está multiplicando es "", basta con copiar el multiplicando. Si fuera "cero", todo su producto parcial es "cero", que bien se escriben, o bien se pasa al bit siguiente de la izquierda del multiplicador y se desplaza un lugar el primer bit del producto parcial hacia la izquierda. En general, si hubiera en el multiplicador varios "ceros", basta con dejar tantos espacios como ceros haya. Ejemplo: x 4ª.- El desplazamiento a la izquierda un lugar de un número en binario, equivale a multi- plicarlo por 2; dos lugares, por 4, etc; en el sistema decimal por,... 5ª.- Si el multiplicador es la unidad seguida de "ceros", es suficiente con escribir el multipli-cando y adosarle a su derecha un número de "ceros" igual al del multiplicador. Ejemplo: x =

12 2 César Sánchez Norato. Operaciones en el sistema binario 6ª.- Cuando el multiplicador es mayor que el multiplicando, la operación se simplifica permutándolos, ya que la operación no varía (propiedad conmutativa). 7ª.- Debido a la simplicidad de la tabla, todo se reduce a desplazar el multiplicando a la izquierda y sumar. 8ª.- Teniendo en cuenta que la multiplicación es una repetición de sumas, también se puede resolver esta operación por medio de sumas, si bien este procedimiento es más largo y engorroso. Ejemplo: x x ª Para sumar los productos parciales, al igual que en la suma, se pueden sumar los dos primeros, y el resultado obtenido con el tercero, y así sucesivamente, lo que permite realizar la multiplicación binaria con circuitos sumadores y registros de desplazamiento. II.4. DIVISIÓN. l igual que con el resto de las operaciones aritméticas, para efectuar esta operación hay que tener en cuenta su "tabla". En ella se pueden dar los casos siguientes: : = ; : = ; : = 4 ; : = Observaciones: ª En principio, la división binaria se realiza igual que en el sistema decimal. Ejemplo: ª La prueba o comprobación se realiza multiplicando el divisor por el cociente y sumándole el resto, si lo hubiere. Con ello debe obtenerse el dividendo. En el ejemplo anterior tenemos: (4 3 x 2) = 5 5 ( x ) + =

13 Operaciones en el sistema binario. César Sánchez Norato x 2 x ª Como la división es la operación contraria a la multiplicación, y ésta se puede efectuar mediante sumas sucesivas, aquella se puede resolver mediante restas sucesivas (restas repetidas). Consiste en restar repetidamente el divisor del dividendo. El número de restas realizadas es el cociente; y la última diferencia o resto es el resto de la división. Ejemplo: Ver figura II.2 43 : 8 = = 5 : = = resto Figura II.2 II.5. POTENCIS. Teniendo en cuenta que la potenciación es un producto de tantos factores iguales a la base como veces indique el exponente, esta operación se puede desarrollar como el producto o multiplicación. Veamos un ejemplo a título orientativo. 5 3 = 5 x 5 x 5 = 25 x 5 = 25 En modo binario tendríamos: = x x = OSERVCIÓN: La potenciación se puede realizar mediante sumas. Ejemplo: 3 2 = 3 x 3 = 9 = = 9 En modo binario sería: = x = + + =

14 4 César Sánchez Norato. Operaciones en el sistema binario EJERCICIOS DE PLICCIÓN II. Suma los números y. II.2 Suma los números, y. II.3 Realiza la suma, en binario, de los siguientes números: II.4 Suma, siguiendo la observación 5, los números siguientes:,,,,,,, y. II.5 Resta, por el método convencional, los números y. II.6 Resta el número del. II.7 Resta, por el complemento a unos, los números y. II.8 Resta, por el complemento a unos, los números y. II.9 Resta, por el complemento a unos, los números y. II. Resta, por el complemento a unos, los números 23 y 87. II. Resta, por el complemento a doses, los números y. II.2 Resta, por el complemento a doses, los números y. II.3 Resta, por el complemento a doses, los números y. II.4 Resta, por el complemento a doses, los números 76 y 23. II.5 Multiplica los números y. II.6 Multiplica, en binario, los números 35 y 8. II.7 Multiplica los números y. II.8 Multiplica, en binario, los números de tu año de nacimiento por el de tu día del mes. II.9 Efectúa el producto, en binario, de los números y. II.2 Divide entre. II.2 Reparte, en binario, pesetas entre 25 personas. II.22 Efectúa, en binario, la operación 9 3. II.23 Halla el valor de. II.24 Calcula, en binario, 6 4. II.25 Calcula.

15 Códigos binarios: numéricos y alfanuméricos. César Sánchez Norato 5 CPÍTULO III Códigos binarios: Códigos Numéricos y lfanuméricos III.. INTRODUCCIÓN. Los códigos binarios se emplean, en materia de información, para especificar los caracteres (ya sean números, letras o símbolos) mediante números binarios o bits, ya que las computadoras sólo "entienden" de "unos" y "ceros"; o mejor dicho: de presencia o ausencia de corriente. Los códigos binarios son, pues, unas combinaciones de unos y ceros que se utilizan para convertir (codificar) números, letras o símbolos al sistema binario para poder ser tratados (procesados) mediante circuitos electrónicos digitales. En informática y sistemas de computación se usan diversos códigos. Los códigos se clasifican en dos grandes grupos: a) códigos numéricos que sólo codifican en binario los números o dígitos. Entre ellos se pueden enumerar los distintos C D (inary-coded-decimal), iken, Gray, de Exceso 3, etc. b) códigos alfanuméricos que codifican tanto números como letras, así como símbolos (ortográficos o no), signos, etc. Entre ellos se encuentra el SCII, léase "aski" (merican Standard Code for Information Interchange: código standard americano para intercambio de información). Existen dos versiones de este código: la que utiliza 7 bits, o la que utiliza 8 bits. Es, quizás, el código más extendido. Otro de estos códigos es el E C D I C (Extended inary-coded-decimal Interchange Code -léase "ebsidik"). Este código utiliza 8 bits, y por tanto tiene más posibilidades; las mismas que el SCII de 8 bits. su vez los códigos numéricos se subdividen en: a) pesados o ponderados cuando a cada posición que ocupan las cifras binarias o bits se le asigna un valor llamado peso. Sumando los pesos se obtiene el número decimal equivalente en el código binario respectivo. b) no pesados o ponderados cuando no cumplen la condición anterior. lo largo del tiempo han sido muchos los códigos propuestos. Unos han sobrevivido y otros han desaparecido o caído en desuso.

16 6 César Sánchez Norato. Códigos binarios: numéricos y alfanuméricos En el siguiente cuadro aparecen algunos de estos códigos binarios numéricos, entendemos que los más utilizados, así como las equivalencias entre ellos. Número en decimal C Ó D I G O S P E S D O S O P O N D E R D O S inario CD 842 CD 422 CD 542 Natural Decenas Unidades Decenas Unidades Decenas Unidades Figura III. lgunos códigos numéricos pesados o ponderados Número en Decimal inario Natural C Ó D I G O S N O P E S D O S IKEN (Complemento a 9) CD EXCESO 3 (CD XS 3) Decenas Unidades Decenas Unidades CÓDIGO GRY Figura III. 2 lgunos códigos numéricos no pesados

17 Códigos binarios: numéricos y alfanuméricos. César Sánchez Norato 7 OSERVCIONES GENERLES. ª) Los códigos CD 842, CD 422, CD 542, CD XS3, y IKEN 242 utilizan cuatro bits para codificar cada dígito. 2ª) El código Gray no es pesado y tiene la cualidad de que al contar números seguidos en este código, sólo cambia un bit para cada paso de contaje. Se le conoce como código de error mínimo. De ahí que se utilice para posicionar los elementos de los robots. 3ª) Los códigos CD 422 y CD 242 son muy parecidos pero no iguales; sin embargo, ambos son complementados a 9. Obsérvense los números 4 y 5; ambos bits son complementos a "unos" recíprocamente. Igual ocurre con el 3 y 6; con el 2 y 7; con el y 8; y finalmente con el y 9. 4ª) El código CD XS3 no es pesado, por tanto, cada bit no tiene un peso especial. No obstante, es paralelo al binario natural y excede a éste siempre en tres unidades. Véase la tabla anterior. La principal aplicación de este código se encuentra en los circuitos aritméticos. Es útil para las substracciones o restas. 5ª) l código CD 842 se le acostumbra a llamar "CD natural" por corresponderse sus pesos con los del propio sistema binario. 6ª) El código iken está basado en el complemento a 9. III.2. PSO DE UNOS CÓDIGOS OTROS: LGUNOS EJEMPLOS. a) CONVERSIÓN DE UN NÚMERO DECIML L CÓDIGO CD 842 Para convertir un número decimal al código CD 842, se convierte cada dígito a dicho código. Ejemplos: > 243,65 --->. b) CONVERSIÓN DE UN NÚMERO DDO EN CD 842 DECIML Para efectuar esta conversión: º se separan los bits en bloques de cuatro bits, 2º se convierte cada bloque de cuatro bits a decimal Ejemplos: > > >. ---> 989,3 c) CONVERSIÓN DE UN NÚMERO DDO EN CD 842 INRIO. Para ello: º se pasa el número dado en CD 842 a binario 2º se pasa del decimal a binario por divisiones. Ejemplo: Sea pasar el número a binario º ---> 72 2º >

18 8 César Sánchez Norato. Códigos binarios: numéricos y alfanuméricos d) CONVERSIÓN DE UN NÚMERO INRIO NTURL L CÓDIGO CD 842 Para resolver este caso: º se pasa el binario natural a decimal (por descomposición polinómica) 2º se codifica el decimal en bcd 842 Ejemplo: Sea convertir el número binario. al CD 842 º > 89,625 2º 89, >. Nota: Igualmente se podía hacer con los otros códigos CD, por ejemplo, con los CD 542 y el CD 422. e) CONVERSIÓN DE UN NÚMERO DDO EN CÓDIGO CD 842 CD EXCESO 3 Para ello: º se descompone el número (dado en CD 842) en bloques de 4 bits 2º se suman 3 unidades ( en binario) a cada bloque Ejemplo: Sea convertir el número en binario al CD EXCESO 3 º -----> 2º + = + = Luego, el número será f) CONVERSIÓN DE UN NÚMERO DDO EN CD EXCESO 3 CD 842 Para ello: º se descompone el número (dado en CD EXCESO 3) en bloques de 4 bits 2º se restan 3 unidades ( en binario) a cada bloque Ejemplo: Sea convertir el número dado en CD EXCESO 3 al CD 842. º ---> 2º - = - = Luego, el número será g) CONVERSIÓN DE UN NÚMERO DECIML L CÓDIGO XS3 Para ello: º o bien se suman tres unidades a cada dígito y se convierte en binario, 2º o bien se pasa el decimal a binario CD 842 y se suman tres unidades ( en binario) a cada bloque de cuatro bits del CD 842. Ejemplo: Sea pasar el número 36 al código XS3. a) = 6 = = 9 = > b) > + = > + =

19 Códigos binarios: numéricos y alfanuméricos. César Sánchez Norato 9 h) CONVERSIÓN DE UN NÚMERO DD EN CD XS3 DECIML Para ello: º se forman bloques o grupos de 4 bits en el número dado. 2º a cada grupo se le restan 3 ( en binario). Ya está pasado a CD º se pasa el número obtenido en CD 842 a decimal. (partado III.2.b). Ejemplo: Pasar el número de CD XS3 a decimal. º ---> 2º - = - = - = 3º ---> 84 Nota: si los números no fueran enteros (que fueran decimales, por ejemplo) los grupos de cuatro bits se forman comenzando a partir del punto decimal. i) CONVERSIÓN DE UN NÚMERO INRIO L CÓDIGO GRY El código GRY no es pesado. En cada incremento (aumento en la cuenta) sólo cambia de estado un bit. Obsérvese la tabla de equivalencia (apartado III.). Para pasar de binario a Gray deben seguirse los siguientes pasos: º El bit de la izquierda es el mismo que en binario (bit de mayor peso ). 2º Se suma cada bit del binario al inmediato de su derecha y se anota la suma (se desprecia cualquier acarreo si lo hubiere). sí se va obteniendo el número en código Gray. 3º El número en código Gray tiene el mismo número de bits que el binario para el mismo número decimal que ambos representen Número binario Número Gray Figura III.3 Ejemplo: sea convertir el número de binario a Gray. Mediante el algoritmo anterior queda explicado. Número Gray Número binario resultante Figura III.4 j) CONVERSIÓN DEL CÓDIGO GRY INRIO Esta conversión se lleva a cabo por medio del algoritmo de al lado. En él se trata de convertir el número dado en código Gray al código inario. º El primer bit de la izquierda es el mismo en ambos casos. 2º El primer bit de la izquierda (que ya lo es en binario) se transfiere al 2 bit de la izquierda del número en Gray y se suma con él, formando el segundo bit de la izquierda del número binario, (despreciando los arrastres si los hubiera); y así sucesivamente hasta terminar el proceso.

20 2 César Sánchez Norato. Códigos binarios: numéricos y alfanuméricos III.3. SISTEMS OCTL Y HEXDECIML CODIFICDOS. Estos dos sistemas son muy interesantes ya que casi todos los ordenadores personales trabajan con estos sistemas. SISTEM OCTL CODIFICDO. Como ya hemos visto, el sistema octal o de base 8 consta de ocho números (octadígitos). Estos son:,, 2, 3, 4, 5, 6 y 7. Cada uno de ellos se puede representar en binario por medio de tres bits que van desde el al. SISTEM HEXDECIML CODIFICDO. Como también hemos visto, este sistema consta de 6 símbolos llamados hexadígitos: Estos son:,, 2, 3, 4, 5, 6, 7, 8, 9,,, C, D, E y F. Cada uno de ellos se puede representar mediante cuatro bits: desde el hasta el. Decimal Octal Octal codificado Hexadecimal C D E F Hexadecim codif k) CONVERSIÓN DE OCTL INRIO CODIFICDO Para realizar esta conversión, basta con pasar cada octadígito a binario (en grupos de a tres) Ejemplo: sea convertir el número 257 de octal a binario > l) CONVERSIÓN DE INRIO CODIFICDO OCTL Lo primero que hay que hacer es dividir el número binario dado en grupos de tres bits comenzando por la derecha. Si se tratara de un número decimal -con punto decimal- los grupos se comienzan a formar a partir de la coma a ambos lados. Luego se traduce cada grupo al sistema octal. Ejemplo: convertir el número binario a octal codificado. -->. --> 356,4 m) CONVERSIÓN DE HEXDECIML INRIO CODIFICDO Y VICEVERS Estas operaciones se llevan a cabo igual que para el octal; nada más que los grupos son de cuatro bits en lugar de tres como en el octal. Ejemplos: 8 E 2 ---> ; ---> C 5 E D

Maria José González/ Dep. Tecnología

Maria José González/ Dep. Tecnología Señal analógica es aquella que puede tomar infinitos valores para representar la información. Señal digital usa solo un número finito de valores. En los sistemas binarios, de uso generalizado en los circuitos

Más detalles

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen Tema 7.- Los circuitos digitales. Resumen Desarrollo del tema.. Introducción al tema. 2. Los sistemas de numeración.. El sistema binario. 4. Códigos binarios. 5. El sistema octal y hexadecimal. 6. El Álgebra

Más detalles

ELECTRÓNICA DIGITAL.

ELECTRÓNICA DIGITAL. ELECTRÓNIC DIGITL. Una señal analógica es aquella que puede tener infinitos valores, positivos y/o negativos. Mientras que la señal digital sólo puede tener dos valores 1 o 0. En el ejemplo de la figura,

Más detalles

EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos

EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas Fecha: 1 er semestre de 2011 INTRODUCCIÓN El sistema

Más detalles

Figura 1: Suma binaria

Figura 1: Suma binaria ARITMÉTICA Y CIRCUITOS BINARIOS Los circuitos binarios que pueden implementar las operaciones de la aritmética binaria (suma, resta, multiplicación, división) se realizan con circuitos lógicos combinacionales

Más detalles

ARQUITECTURA DE LAS COMPUTADORAS PRACTICA

ARQUITECTURA DE LAS COMPUTADORAS PRACTICA ARQUITECTURA DE LAS COMPUTADORAS PRACTICA SISTEMAS NUMÉRICOS INTRODUCCIÓN TEÓRICA: Definimos Sistema de Numeración como al conjunto de reglas que permiten, con una cantidad finita de símbolos, representar

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema decimal

SISTEMAS DE NUMERACIÓN. Sistema decimal SISTEMAS DE NUMERACIÓN Sistema decimal Desde antiguo el Hombre ha ideado sistemas para numerar objetos, algunos sistemas primitivos han llegado hasta nuestros días, tal es el caso de los "números romanos",

Más detalles

1000 + 900 + 90 + 7 = 1997

1000 + 900 + 90 + 7 = 1997 ases Matemáticas I - Pagina 1 de 20 Tema 2: ases Matemáticas I. 2.1.- Números utilizados en los sistemas digitales. 2.1.1 Introducción. El sistema de numeración decimal es familiar a todo el mundo. Este

Más detalles

Tema 2. La Información y su representación

Tema 2. La Información y su representación Tema 2. La Información y su representación 2.1 Introducción. Un ordenador es una máquina que procesa información. La ejecución de un programa implica la realización de unos tratamientos, según especifica

Más detalles

❸ Códigos Binarios 3.1.- CÓDIGOS NUMÉRICOS

❸ Códigos Binarios 3.1.- CÓDIGOS NUMÉRICOS Capítulo ❸ No toda la información que maneja un sistema digital es numérica, e inclusive, para la información numérica a veces no es conveniente utilizar el sistema binario descrito en los capítulos anteriores.

Más detalles

TEMA 2 REPRESENTACIÓN BINARIA

TEMA 2 REPRESENTACIÓN BINARIA TEMA 2 REPRESENTACIÓN BINARIA ÍNDICE. INTRODUCCIÓN HISTÓRICA A LA REPRESENTACIÓN NUMÉRICA 2. REPRESENTACIÓN POSICIONAL DE MAGNITUDES 2. Transformaciones entre sistemas de representación (cambio de base)

Más detalles

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR UNIDAD 3: ARITMÉTICA DEL COMPUTADOR Señor estudiante, es un gusto iniciar nuevamente con usted el desarrollo de esta tercera unidad. En esta ocasión, haremos una explicación más detallada de la representación

Más detalles

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN Un sistema de numeración es el conjunto de símbolos y reglas que se utilizan para la representación de datos numéricos o cantidades. Un sistema de numeración se caracteriza

Más detalles

CIRCUITOS DIGITALES 1. INTRODUCCIÓN. 2. SEÑALES Y TIPOS DE SEÑALES.

CIRCUITOS DIGITALES 1. INTRODUCCIÓN. 2. SEÑALES Y TIPOS DE SEÑALES. TEMA 7: CIRCUITOS DIGITALES 1. INTRODUCCIÓN. La utilización creciente de circuitos digitales ha dado lugar en los últimos tiempos a una revolución sin precedentes en el campo de la tecnología. Basta observar

Más detalles

Tema 2: Sistemas de representación numérica

Tema 2: Sistemas de representación numérica 2.1 Sistemas de Numeración Definiciones previas Comenzaremos por definir unos conceptos fundamentales. Existen 2 tipos de computadoras: Analógicas: actúan bajo el control de variables continuas, es decir,

Más detalles

2. Desde los transistores hasta los Circuitos Integrados 3Sit 3. Sistemas de representación numérica éi 4. Números con signo

2. Desde los transistores hasta los Circuitos Integrados 3Sit 3. Sistemas de representación numérica éi 4. Números con signo Electrónica Digital: Introducción 1Sñl 1. Señales Analógicas lói Sñl Señales Diitl Digitales 2. Desde los transistores hasta los Circuitos Integrados 3Sit 3. Sistemas de representación numérica éi 4. Números

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 1. Electrónica Digital Antes de empezar en el tema en cuestión, vamos a dar una posible definición de la disciplina que vamos a tratar, así como su ámbito

Más detalles

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como :

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como : SIMPLIFICACION DE CIRCUITOS LOGICOS : Una vez que se obtiene la expresión booleana para un circuito lógico, podemos reducirla a una forma más simple que contenga menos términos, la nueva expresión puede

Más detalles

Tema 1: Sistemas de numeración

Tema 1: Sistemas de numeración 1 Tema 1: Sistemas de numeración Felipe Machado Norberto Malpica Susana Borromeo Joaquín Vaquero López, 2013 2 01 Digital vs. Analógico Índice 02 Sistemas de numeración 03 Códigos binarios 04 Aritmética

Más detalles

ELECTRÓNICA DIGITAL TEMA 1

ELECTRÓNICA DIGITAL TEMA 1 ELECTRÓNICA DIGITAL TEMA CÓDIGOS BINARIOS 2 Escuelas Técnicas de Ingenieros CÓDIGOS BINARIOS CÓDIGOS BINARIOS CÓDIGO BINARIO NATURAL CÓDIGO BINARIO NATURAL 5 4 3 2 9 8 7 6 5 4 3 2 Sistema decimal de numeración

Más detalles

A continuación se mostrarán ejemplos de tres clases de códigos: numéricos, alfanuméricos y de despliegue.

A continuación se mostrarán ejemplos de tres clases de códigos: numéricos, alfanuméricos y de despliegue. Capítulo 3 1 Codificación binaria 3.1. Codificación En un ambiente de sistemas digitales se denomina codificación a la asignación de un significado a una configuración de bits. Al modelar problemas es

Más detalles

Sistemas de Numeración

Sistemas de Numeración UNIDAD Sistemas de Numeración Introducción a la unidad Para la mayoría de nosotros el sistema numérico base 0 aparentemente es algo natural, sin embargo si se establecen reglas de construcción basadas

Más detalles

UNIDAD 3 Representación de la Información

UNIDAD 3 Representación de la Información DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA UNIDAD 3 Representación de la Información Cátedra: INFORMATICA I (BIO) COMPUTACION I (ELO) UNIDAD 3 REPRESENTACION DE LA INFORMACION 3.1- Sistemas Numéricos. En

Más detalles

Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte)

Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte) Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte) Unidad de trabajo 2: INFORMÁTICA BÁSICA... 1 1. Representación interna de datos.... 1 1.2. Sistemas de numeración.... 2 1.3. Aritmética binaria...

Más detalles

Introducción a Códigos

Introducción a Códigos Introducción a Página 1 Agenda Página 2 numéricos posicionales numéricos no posicionales Construcción de cantidades Sistema decimal Sistema binario binarios alfanuméricos Conversión decimal a binario Conversión

Más detalles

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL IES PABLO RUIZ PICASSO EL EJIDO (ALMERÍA) CURSO 2013-2014 UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL ÍNDICE 1.- INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 2.- SISTEMA BINARIO 2.1.- TRANSFORMACIÓN DE BINARIO A DECIMAL

Más detalles

CIRCUITOS DIGITALES -

CIRCUITOS DIGITALES - CIRCUITOS DIGITALES - INTRODUCCIÓN CIRCUITOS DIGITALES CIRCUITOS DIGITALES SON LOS QUE COMUNICAN Y PROCESAN INFORMACIÓN DIGITAL SEÑAL DIGITAL: SOLO PUEDE TOMAR UN NÚMERO FINITO DE VALORES. EN BINARIO:

Más detalles

TEMA 3 Representación de la información

TEMA 3 Representación de la información TEMA 3 Representación de la información Álvarez, S., Bravo, S., Departamento de Informática y automática Universidad de Salamanca Introducción Para que el ordenador ejecute programas necesita dos tipos

Más detalles

Tema 1. Representación de la información MME 2012-20131

Tema 1. Representación de la información MME 2012-20131 Tema 1 Representación de la información 1 Índice Unidad 1.- Representación de la información 1. Informática e información 2. Sistema de numeración 3. Representación interna de la información 2 Informática

Más detalles

Unidad Didáctica. Códigos Binarios

Unidad Didáctica. Códigos Binarios Unidad Didáctica Códigos Binarios Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección

Más detalles

TEMA 1: Control y programación de sistemas automáticos

TEMA 1: Control y programación de sistemas automáticos Esquema: TEMA : Control y programación de sistemas automáticos TEMA : Control y programación de sistemas automáticos....- Introducción.....- Representación de las señales digitales...2 2.- Sistemas de

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97 SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. La norma principal en un sistema de numeración posicional es que un mismo símbolo

Más detalles

UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse

Más detalles

Sistemas numéricos. Aurelio Sanabria Taller de programación

Sistemas numéricos. Aurelio Sanabria Taller de programación Sistemas numéricos Aurelio Sanabria Taller de programación II semestre, 2015 Sistemas numéricos Son un conjunto de reglas y símbolos que permiten construir representaciones numéricas. Los símbolos son

Más detalles

Los sistemas de numeración se clasifican en: posicionales y no posicionales.

Los sistemas de numeración se clasifican en: posicionales y no posicionales. SISTEMAS NUMERICOS Un sistema numérico es un conjunto de números que se relacionan para expresar la relación existente entre la cantidad y la unidad. Debido a que un número es un símbolo, podemos encontrar

Más detalles

Sistemas de Numeración Operaciones - Códigos

Sistemas de Numeración Operaciones - Códigos Sistemas de Numeración Operaciones - Códigos Tema 2 1. Sistema decimal 2. Sistema binario 3. Sistema hexadecimal 4. Sistema octal 5. Conversión decimal binario 6. Aritmética binaria 7. Complemento a la

Más detalles

Análisis de circuitos combinacionales MSI

Análisis de circuitos combinacionales MSI Análisis de circuitos combinacionales MSI En esta unidad aprenderás a: Identificar y caracterizar las funciones digitales más relevantes de carácter combinacional. Analizar funciones y circuitos combinacionales,

Más detalles

Primeros conmutadores: diodos de cristal y de tubos de vacío (1906). Transistor (TRT): más pequeño y fiable, de material semiconductor (1950).

Primeros conmutadores: diodos de cristal y de tubos de vacío (1906). Transistor (TRT): más pequeño y fiable, de material semiconductor (1950). Código binario en Sistemas Digitales Historia Primeros conmutadores: diodos de cristal y de tubos de vacío (1906). Transistor (TRT): más pequeño y fiable, de material semiconductor (1950). Circuitos integrados

Más detalles

SISTEMAS DE NUMERACIÓN Y CODIFICACIÓN DE DECIMAL A BINARIO

SISTEMAS DE NUMERACIÓN Y CODIFICACIÓN DE DECIMAL A BINARIO SISTEMS DE NUMERIÓN Y ODIFIIÓN DE DEIML INRIO Sistema decimal: es un sistema de numeración en base 0, tiene 0 posibles dígitos (p i ). En cada número, el valor que toman sus dígitos depende de la posición

Más detalles

Codificación binaria de la información

Codificación binaria de la información Tema 2 Codificación binaria de la información Se ha indicado en el tema introductorio que las computadoras digitales sólo manejan información en forma de ceros y unos. Esto es así porque los dispositivos

Más detalles

ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES

ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES SISTEMA DE NUMERACIÓN BASE 2 El sistema de numeración binario es el conjunto de elementos {0, 1} con las operaciones aritméticas (suma, resta,

Más detalles

Tema 2 : Códigos Binarios

Tema 2 : Códigos Binarios Tema 2 : Códigos Binarios Objetivo: Conocer diferentes códigos binarios Conocer algunos códigos de detección y corrección de errores. Códigos alfanuméricos 1 Códigos Binarios A la representación de cifras,

Más detalles

Naturaleza binaria. Conversión decimal a binario

Naturaleza binaria. Conversión decimal a binario Naturaleza binaria En los circuitos digitales sólo hay 2 voltajes. Esto significa que al utilizar 2 estados lógicos se puede asociar cada uno con un nivel de tensión, así se puede codificar cualquier número,

Más detalles

Capítulo 1: Sistemas de representación numérica Introducción. Dpto. de ATC, Universidad de Sevilla - Página 1 de 8

Capítulo 1: Sistemas de representación numérica Introducción. Dpto. de ATC, Universidad de Sevilla - Página 1 de 8 Dpto. de ATC, Universidad de Sevilla - Página de Capítulo : INTRODUCCIÓN SISTEMAS DE REPRESENTACIÓN NUMÉRICA Introducción Bases de numeración Sistema decimal Sistema binario Sistema hexadecimal REPRESENTACIÓN

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

UNIVERSIDAD BOLIVARIANA DE VENEZUELA

UNIVERSIDAD BOLIVARIANA DE VENEZUELA Introducción: El análisis de la LOGICA DIGITAL precisa la consideración de dos aspectos diferentes: el proceso lógico, que es la base teórica de los computadores, calculadoras, relojes digitales, etc.

Más detalles

EL LENGUAJE DE LAS COMPUTADORAS

EL LENGUAJE DE LAS COMPUTADORAS EL LENGUAJE DE LAS COMPUTADORAS Una computadora maneja sus instrucciones por medio de un sistema numérico binario, que es el más simple de todos al contar con sólo dos símbolos para representar las cantidades.

Más detalles

Tabla de verdad. La función lógica es aquella que relaciona las entradas y salidas de un circuito lógico. Puede expresarse mediante:

Tabla de verdad. La función lógica es aquella que relaciona las entradas y salidas de un circuito lógico. Puede expresarse mediante: T-2 Álgebra de oole. ógica combinacional TM - 2 ÁGR D OO. ÓGI OMINION. l control digital, y en particular el binario, está presente en todos los campos de la vida, desde los sistemas de refrigeración hasta

Más detalles

FUNCIONAMIENTO DIGITAL DE UN SISTEMA. EL SISTEMA BINARIO. Sistema Digital. Fr. Casares. Sistema Digital. Sistema Digital

FUNCIONAMIENTO DIGITAL DE UN SISTEMA. EL SISTEMA BINARIO. Sistema Digital. Fr. Casares. Sistema Digital. Sistema Digital FUNCIONAMIENTO DIGITAL Sistema Digital -Emplea dispositivos en los que solo son posibles dos estados DE UN SISTEMA. EL SISTEMA BINARIO Relé Elemento Válvula Situación (Falso) (Verdadero) Desactivado Cerrada

Más detalles

1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5.

1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5. Representación de la información Contenidos 1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5. Conversiones

Más detalles

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos:

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos: ELECTRÓNICA DIGITAL INDICE 1. TIPOS DE SEÑALES... 3 1.1. SEÑALES ANALÓGICAS... 3 1.2. SEÑALES DIGITALES... 3 2. REPRESENTACIÓN DE LAS SEÑALES DIGITALES... 3 2.1. CRONOGRAMAS... 3 2.2. TABLA DE VERDAD...

Más detalles

6 CODIFICACION EN PALABRAS BINARIAS DETECCIÓN DE ERROR

6 CODIFICACION EN PALABRAS BINARIAS DETECCIÓN DE ERROR 6 CODIFICACION EN PALABRAS BINARIAS DETECCIÓN DE ERROR 6.1. La información codificada en palabras binarias 6.2. La paridad para detectar error 6.3. Códigos detectores y correctores de error Los sistemas

Más detalles

CIRCUITOS COMBINACIONALES

CIRCUITOS COMBINACIONALES Escuela Universitaria de Ingeniería Técnica Industrial de Bilbao Universidad del País Vasco / Euskal Herriko Unibertsitatea ELECTRONICA INDUSTRIAL CIRCUITOS COMBINACIONALES SANCHEZ MORONTA, M - UGALDE

Más detalles

CAPÍTULO 4 ARITMÉTICA Y REPRESENTACIÓN DE LA INFORMACIÓN EN EL COMPUTADOR

CAPÍTULO 4 ARITMÉTICA Y REPRESENTACIÓN DE LA INFORMACIÓN EN EL COMPUTADOR CAPÍTULO 4 ARITMÉTICA Y REPRESENTACIÓN DE LA INFORMACIÓN EN EL COMPUTADOR Dos de los aspectos básicos que se presentan en el tratamiento de la información son cómo representarla (de lo cual dependerá sus

Más detalles

Temario de Electrónica Digital

Temario de Electrónica Digital Temario de Electrónica Digital TEMA 1. INTRODUCCIÓN A LOS SISTEMAS DIGITALES. Exponer los conceptos básicos de los Fundamentos de los Sistemas Digitales. Asimilar las diferencias básicas entre Sistemas

Más detalles

TEMA III TEMA III. Circuitos Digitales 3.1 REPRESENTACIÓN DE LA INFORMACIÓN 3.2 ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS

TEMA III TEMA III. Circuitos Digitales 3.1 REPRESENTACIÓN DE LA INFORMACIÓN 3.2 ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS TEMA III Circuitos Digitales Electrónica II 9- TEMA III Circuitos Digitales 3. REPRESENTACIÓN DE LA INFORMACIÓN 3. ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS 3. REPRESENTACIÓN DE LA INFORMACIÓN.

Más detalles

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL ELECTRÓNICA DIGITAL La electrónica es la rama de la ciencia que se ocupa del estudio de los circuitos y de sus componentes, que permiten modificar la corriente eléctrica amplificándola, atenuándola, rectificándola

Más detalles

Ingeniería Técnica en Informática de Sistema E.T.S.I. Informática Universidad de Sevilla

Ingeniería Técnica en Informática de Sistema E.T.S.I. Informática Universidad de Sevilla Fundamentos de Computadores Representación Binaria Ingeniería Técnica en Informática de Sistema E.T.S.I. Informática Universidad de Sevilla Versión 1.0 (Septiembre 2004) Copyright 2004 Departamento de

Más detalles

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C"

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: EMPEZAR DE CERO A PROGRAMAR EN lenguaje C Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C" Autor: Carlos Javier Pes Rivas (correo@carlospes.com) Capítulo 2 REPRESENTACIÓN DE LOS DATOS 1 OBJETIVOS Entender cómo la computadora

Más detalles

OR (+) AND( ). AND AND

OR (+) AND( ). AND AND Algebra de Boole 2.1.Introducción 2.1. Introducción El Algebra de Boole es un sistema matemático que utiliza variables y operadores lógicos. Las variables pueden valer 0 o 1. Y las operaciones básicas

Más detalles

28 = 16 + 8 + 4 + 0 + 0 = 11100 1

28 = 16 + 8 + 4 + 0 + 0 = 11100 1 ELECTRÓNICA DIGITAL 4º ESO Tecnología Introducción Imaginemos que deseamos instalar un sistema electrónico para la apertura de una caja fuerte. Para ello debemos pensar en el número de sensores que nos

Más detalles

ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales.

ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales. ELECTRÓNICA DIGITAL El tratamiento de la información en electrónica se puede realizar de dos formas, mediante técnicas analógicas o mediante técnicas digitales. El analógico requiere un análisis detallado

Más detalles

Electrónica digital IES GUADIANA 4º ESO

Electrónica digital IES GUADIANA 4º ESO Departamento de tecnología Electrónica digital IES GUADIANA 4º ESO Mª Cruces Romero Vallbona. Curso 2012-2013 Electrónica digital 4º ESO 1. Señales y tipos... 2 2. Ventajas y desventajas de los sistemas

Más detalles

Fundamentos de Informática 1er curso de ingeniería Industrial. Tema 2. Datos. Tema 2. Datos

Fundamentos de Informática 1er curso de ingeniería Industrial. Tema 2. Datos. Tema 2. Datos Fundamentos de Informática 1er curso de ingeniería Industrial Tema 2. Datos 1 Tema 2. Datos 2.1 Codificación binaria 2.2 Tipos de datos 2.3 Operaciones básicas 2.4 Expresiones 2.5 Almacenamiento 2 1 2.1

Más detalles

INFORMATICA I. Sistemas de Numeración - Representación Interna. Autor: Jorge Di Marco

INFORMATICA I. Sistemas de Numeración - Representación Interna. Autor: Jorge Di Marco Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Formación Básica Dpto de Matemática Carrera de : Ingeniería Civil, Electricista, Electrónica, Industrial, Mecánica y Agrimensura Autor:

Más detalles

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1 Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,

Más detalles

3. Codificación de información en binario

3. Codificación de información en binario Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2005 2006 3. Codificación de información en binario Existen Distintos muchas formas distintas de expresar

Más detalles

Sistemas de numeración, operaciones y códigos.

Sistemas de numeración, operaciones y códigos. Tema : Sistemas de numeración, operaciones y códigos. Para representar ideas, los seres humanos (al menos los occidentales) utilizamos cadenas de símbolos alfanuméricos de un alfabeto definido. En el mundo

Más detalles

PARTE II LÓGICA COMPUTACIONAL

PARTE II LÓGICA COMPUTACIONAL PARTE II LÓGICA COMPUTACIONAL Lógica de proposiciones INTRODUCCION Teniendo en mente que queremos presentar los sistemas deductivos de la lógica como una herramienta práctica para los informáticos, vamos

Más detalles

Tema 4: Sistemas de Numeración. Codificación Binaria. Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid

Tema 4: Sistemas de Numeración. Codificación Binaria. Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid Tema 4: Sistemas de Numeración. Codificación Binaria Ingeniería Informática Universidad Autónoma de Madrid 1 O B J E T I V O S Sistemas de Numeración. Codificación Binaria Conocer los diferentes sistemas

Más detalles

Tema I. Sistemas Numéricos y Códigos Binarios

Tema I. Sistemas Numéricos y Códigos Binarios Tema I. Sistemas Numéricos y Códigos Binarios Números binarios. Aritmética binaria. Números en complemento-2. Códigos binarios (BCD, alfanuméricos, etc) Números binarios El bit. Representación de datos

Más detalles

PARTE 3 SISTEMAS DE NUMERACION

PARTE 3 SISTEMAS DE NUMERACION PARTE 3 SISTEMAS DE NUMERACION Cuántos camellos hay?. Para responder a esta pregunta hay que emplear el número. Serán cuarenta? Serán cien? Para llegar al resultado el beduino precisa poner en práctica

Más detalles

TEMA II REPASO. SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA.

TEMA II REPASO. SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA. TEMA II REPASO. SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA. INTRODUCCIÓN. Entendemos por sistema de numeración, la forma de representar cantidades mediante un sistema de valor posicional. Los ordenadores

Más detalles

Materia Introducción a la Informática

Materia Introducción a la Informática Materia Introducción a la Informática Unidad 1 Sistema de Numeración Ejercitación Prof. Alejandro Bompensieri Introducción a la Informática - CPU Ejercitación Sistemas de Numeración 1. Pasar a base 10

Más detalles

Informática Bioingeniería

Informática Bioingeniería Informática Bioingeniería Representación Números Negativos En matemáticas, los números negativos en cualquier base se representan del modo habitual, precediéndolos con un signo. Sin embargo, en una computadora,

Más detalles

Notas de Diseño Digital

Notas de Diseño Digital Notas de Diseño Digital Introducción El objetivo de estas notas es el de agilizar las clases, incluyendo definiciones, gráficos, tablas y otros elementos que tardan en ser escritos en el pizarrón, permitiendo

Más detalles

Sistema binario. Representación

Sistema binario. Representación Sistema binario El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno ( y ). Es el que se utiliza

Más detalles

La información y su representación

La información y su representación La información y su representación 1. INTRODUCCIÓN El hombre en su vida cotidiana trabaja desde el punto de vista numérico con el sistema decimal y desde el punto de vista alfabético con un determinado

Más detalles

Aritmética del computador. Departamento de Arquitectura de Computadores

Aritmética del computador. Departamento de Arquitectura de Computadores Aritmética del computador Departamento de Arquitectura de Computadores Contenido La unidad aritmético lógica (ALU) Representación posicional. Sistemas numéricos Representación de números enteros Aritmética

Más detalles

CAPÍTULO 3 LÓGICA DIGITAL. REPRESENTACIÓN NUMÉRICA.

CAPÍTULO 3 LÓGICA DIGITAL. REPRESENTACIÓN NUMÉRICA. CAPÍTULO 3 LÓGICA DIGITAL. REPRESENTACIÓN NUMÉRICA. INTRODUCCIÓN La lógica es el arte de la argumentación correcta y verdadera Organon, Aristóteles de Estagira Desde hace mucho tiempo, el hombre en su

Más detalles

ARITMÉTICA Y CODIFICACIÓN

ARITMÉTICA Y CODIFICACIÓN ARITMÉTICA Y CODIFICACIÓN Aritmética binaria Suma Resta Representación de los números Coma fija + signo Complemento a 1 Complemento a 2 Exceso a n DECIMAL COMA FIJA+SIGNO COMPLEMEN A1 COMPLEMEN A2 EXCESO

Más detalles

Unidad I Sistemas Digitales

Unidad I Sistemas Digitales Unidad I Sistemas Digitales Rafael Vázquez Pérez Arquitectura de Computadoras martes de febrero de 4 Agenda. Electrónica, electrónica analógica y digital. 2. Circuitos y sistemas digitales. 3. Sistemas

Más detalles

INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL

INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL ELECTRÓNICA: CIRCUITOS Y SISTEMAS ELECTRÓNICOS ELECTRÓNICA: Ciencia aplicada de la familia de la electricidad, que aprovecha las propiedades eléctricas de los materiales

Más detalles

3 BLOQUES ARITMÉTICOS Y CODIFICACIÓN NUMÉRICA. b a. C.S. c. s - 66 Electrónica Digital

3 BLOQUES ARITMÉTICOS Y CODIFICACIÓN NUMÉRICA. b a. C.S. c. s - 66 Electrónica Digital 3 BLOQUES ARITMÉTICOS Y CODIFICACIÓN NUMÉRICA 3.1. Operaciones aritméticas: suma, resta, comparación y producto 3.2. Unidad lógica y aritmética: ALU 3.3. Codificación de números en binario 3.4. Codificación

Más detalles

Representación de Datos. Una Introducción a los Sistemas Numéricos

Representación de Datos. Una Introducción a los Sistemas Numéricos Representación de Datos Una Introducción a los Sistemas Numéricos Tipos de Datos Datos Texto Número Imagen Audio Video Multimedia: Información que contiene números, texto, imágenes, audio y video. Como

Más detalles

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO I. SISTEMAS NUMÉRICOS DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO LIC. LEYDY ROXANA ZEPEDA RUIZ SEPTIEMBRE DICIEMBRE 2011 Ocosingo, Chis. 1.1Sistemas numéricos. Los números son los mismos en todos

Más detalles

1. SISTEMAS DIGITALES

1. SISTEMAS DIGITALES 1. SISTEMAS DIGITALES DOCENTE: ING. LUIS FELIPE CASTELLANOS CASTELLANOS CORREO ELECTRÓNICO: FELIPECASTELLANOS2@HOTMAIL.COM FELIPECASTELLANOS2@GMAIL.COM PAGINA WEB MAESTROFELIPE.JIMDO.COM 1.1. INTRODUCCIÓN

Más detalles

TEMA II: ÁLGEBRA DE CONMUTACIÓN

TEMA II: ÁLGEBRA DE CONMUTACIÓN TEMA II: ÁLGEBRA DE CONMUTACIÓN En este capítulo veremos los métodos matemáticos que se disponen para las operaciones relacionadas con los circuitos digitales, así como las funciones más básicas de la

Más detalles

Informática Básica: Representación de la información

Informática Básica: Representación de la información Informática Básica: Representación de la información Departamento de Electrónica y Sistemas Otoño 2010 Contents 1 Sistemas de numeración 2 Conversión entre sistemas numéricos 3 Representación de la información

Más detalles

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN.

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. INDICE. CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. TÉRMINOS BÁSICOS DE LA INFORMÁTICA. REPRESENTACIÓN INTERNA DE LA INFORMACIÓN. El SISTEMA BINARIO DE NUMERACION. El sistema decimal

Más detalles

TEMA 2. Sistemas y Códigos de Numeración

TEMA 2. Sistemas y Códigos de Numeración Fundamentos de los Computadores. Sistemas y Códigos de Numeración. T2-1 TEMA 2. Sistemas y Códigos de Numeración INDICE: REPRESENTACIÓN DE LOS NÚMEROS. SISTEMAS BINARIO, DECIMAL, OCTAL Y HEXADECIMAL. CONVERSIÓN

Más detalles

Curso Completo de Electrónica Digital

Curso Completo de Electrónica Digital CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE 3.1. Introducción

Más detalles

SISTEMAS NUMÉRICOS (SISTEMAS DE NUMERACIÓN)

SISTEMAS NUMÉRICOS (SISTEMAS DE NUMERACIÓN) SISTEMAS NUMÉRICOS (SISTEMAS DE NUMERACIÓN) INTRODUCCIÓN Desde hace mucho tiempo, el hombre en su vida diaria se expresa, comunica, almacena información, la manipula, etc. mediante letras y números. Para

Más detalles

SEGUNDO APUNTES ANALISTA DE SISTEMAS DE CLASE EN COMPUTACIÓN. Materia: DATOS. Asignatura: SISTEMAS DE PROCESAMIENTO DEDATOS I

SEGUNDO APUNTES ANALISTA DE SISTEMAS DE CLASE EN COMPUTACIÓN. Materia: DATOS. Asignatura: SISTEMAS DE PROCESAMIENTO DEDATOS I ANALISTA DE SISTEMAS EN COMPUTACIÓN Materia: DATOS Asignatura: SISTEMAS DE PROCESAMIENTO DEDATOS I Cátedra: Lic. Ulises Vazquez SEGUNDO APUNTES DE CLASE 1 INDICE SISTEMAS NUMÉRICOS - 1 RA PARTE...3 DEFINICIÓN

Más detalles

SITEMA BINARIO, OCTAL Y HEXADECIMAL: OPERACIONES

SITEMA BINARIO, OCTAL Y HEXADECIMAL: OPERACIONES Unidad Aritmética Lógica La Unidad Aritmético Lógica, en la CPU del procesador, es capaz de realizar operaciones aritméticas, con datos numéricos expresados en el sistema binario. Naturalmente, esas operaciones

Más detalles

Fundamentos de Electrónica.1 ELECTRÓNICA DIGITAL. Fundamentos de Electrónica.2

Fundamentos de Electrónica.1 ELECTRÓNICA DIGITAL. Fundamentos de Electrónica.2 Fundamentos de Electrónica.1 ELECTRÓNICA DIGITAL Fundamentos de Electrónica.2 Sistema Digital. Paso de mundo analógico a digital. Tipos de Sistemas Digitales. Representación de la información. Sistemas

Más detalles

FUNCIONES ARITMÉTICAS Y

FUNCIONES ARITMÉTICAS Y Tema 3 FUNCIONES ARITMÉTICAS Y LÓGICAS 3.. INTRODUCCIÓN Hasta ahora hemos visto como se podían minimizar funciones booleanas, y como se podían implementar a partir de puertas discretas. En los temas siguientes

Más detalles

EJERCICIOS DEL TEMA 1

EJERCICIOS DEL TEMA 1 EJERCICIOS DEL TEMA 1 Introducción a los ordenadores 1) Averigua y escribe el código ASCII correspondiente, tanto en decimal como en binario, a las letras de tu nombre y apellidos. Distinguir entre mayúsculas/minúsculas,

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Sistema binario 0,1 Sistema octal 0, 1, 2, 3, 4, 5, 6, 7 Sistema decimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Sistema hexadecimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F Una señal

Más detalles