EJERCICIOS RESUELTOS DE ÁREAS Y VOLÚMENES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS RESUELTOS DE ÁREAS Y VOLÚMENES"

Transcripción

1 EJERCICIOS RESUELTOS DE ÁREAS Y VOLÚMENES 1. Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho y 2500 mm de alto. 2. Una piscina tiene 8 m de largo, 6 m de ancho y 1.5 m de profundidad. Se pinta la piscina a razón de $ 6 el metro cuadrado. a) Cuánto costará pintarla. b) Cuántos litros de agua serán necesarios para llenarla. 3. En un almacén de dimensiones 5 m de largo, 3 m de ancho y 2 m de alto queremos almacenar cajas de dimensiones 10 dm de largo, 6 dm de ancho y 4 dm de alto. Cuantas cajas podremos almacenar? Leandro Castillo. Cristo murió por Mí. Página 1

2 4. Determina el área total de un tetraedro, un octaedro y un icosaedro de 5 cm de arista. 5. Calcula la altura de un prisma que tiene como área de la base 12 dm 2 y 48 l de capacidad. 6. Calcula la cantidad de hojalata que se necesitará para hacer 10 botes de forma cilíndrica de 10 cm de diámetro y 20 cm de altura. 7. Un cilindro tiene por altura la misma longitud que la circunferencia de la base. Y la altura mide cm. Calcular: a) El área total. b) El volumen Leandro Castillo. Cristo murió por Mí. Página 2

3 8. En una probeta de 6 cm de radio se echan cuatro cubitos de hielo de 4 cm de arista. A qué altura llegará el agua cuando se derritan? 9. La cúpula de una catedral tiene forma semiesférica, de diámetro 50 m. Si restaurarla tiene un coste de $300 el m 2, A cuánto ascenderá el presupuesto de la restauración? 10. Cuántas losetas cuadradas de 20 cm de lado se necesitan para recubrir las caras de una piscina de 10 m de largo por 6 m de ancho y de 3 m de profundidad? 11. Un recipiente cilíndrico de 5 cm de radio y y 10 cm de altura se llena de agua. Si la masa del recipiente lleno es de 2 kg, cuál es la masa del recipiente vacío? Leandro Castillo. Cristo murió por Mí. Página 3

4 12. Para una fiesta, Luís ha hecho 10 gorros de forma cónica con cartón. Cuánto cartón habrá utilizado si las dimensiones del gorro son 15 cm de radio y 25 cm de generatriz? 13. Un cubo de 20 cm de arista está lleno de agua. Cabría esta agua en una esfera de 20 cm de radio? 13. Calcula el área y el volumen de un tetraedro de 5 cm de arista. 14. Calcular la diagonal, el área lateral, el área total y el volumen de un cubo de 5 cm de arista. Leandro Castillo. Cristo murió por Mí. Página 4

5 15. Calcula el área y el volumen de un octaedro de 5 cm de arista. 16. Calcula el área y el volumen de un dodecaedro de 10 cm de arista, sabiendo que la apotema de una de sus caras mide 6.88 cm. 17. Calcula el área y el volumen de un icosaedro de 5 cm de arista. 18. Calcula el área lateral, el área total y el volumen de un prisma cuya base es un rombo de de diagonales 12 y 18 cm. Leandro Castillo. Cristo murió por Mí. Página 5

6 19. Calcula el área lateral, total y el volumen de una pirámide cuadrangular de 10 cm de arista básica y 12 cm de altura. 20. Calcula el área lateral, total y el volumen de una pirámide hexagonal de 16 cm de arista básica y 28 cm de arista lateral. 21. Calcula el área lateral, total y el volumen de un cono cuya generatriz mide 13 cm y el radio de la base es de 5 cm. Leandro Castillo. Cristo murió por Mí. Página 6

7 22. Calcular el área lateral, el área total y el volumen de un tronco de pirámide cuadrangular de aristas básicas 24 y 14 cm, y de arista lateral 13 cm. 23. Calcula el área lateral, total y el volumen de un cono cuya altura mide 4 cm y el radio de la base es de 3 cm. Leandro Castillo. Cristo murió por Mí. Página 7

8 24. Calcular el área lateral, el área total y el volumen de un tronco de cono de radios 6 y 2 cm, y de altura 10 cm 25. Calcular el área lateral, el área total y el volumen del tronco de cono de radios 12 y 10 cm, y de generatriz 15 cm. 26. Calcular el área del círculo resultante de cortar una esfera de 35 cm de radio mediante un plano cuya distancia al centro de la esfera es de 21 cm. Leandro Castillo. Cristo murió por Mí. Página 8

9 27. Calcular el área y el volumen de una esfera inscrita en un cilindro de 2 m de altura. 28. Calcular el volumen de una semiesfera de 10 cm de radio. 29. Calcula el área y el volumen del siguiente casquete esférico. 30. Calcular el área y el volumen de una zona esférica cuyas circunferencias tienen de radio 10 y 8cm, y la distancia entre ellas es de 5 cm. Leandro Castillo. Cristo murió por Mí. Página 9

10 Leandro Castillo. Cristo murió por Mí. Página 10

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso.

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso. Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Sistemas Ejercicios de a reas y volu menes I 1Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho

Más detalles

I C I L I N D R O. Atotal = 2πr(h + r), donde h es la altura del cilindro y r es radio de la base.

I C I L I N D R O. Atotal = 2πr(h + r), donde h es la altura del cilindro y r es radio de la base. Generatriz: g 2 = r 2 + h 2 Ejemplo: Si r = 5 cm y h = 12 cm, 2 2 2 LICEO TECNICO CLELIA CLAVEL DINATOR SECTOR: MATEMÁTICA DOCENTE: SIXTA POSTIGOMORENO NIVEL: CUARTO MEDIO GUÍA DE UNIDAD Nº : AREAS Y VOLÚMENES

Más detalles

ÁREAS DE CUERPOS GEOMÉTRICOS Poliedros. Para calcular el área de un poliedro calculamos el área de cada una de sus caras y las sumamos.

ÁREAS DE CUERPOS GEOMÉTRICOS Poliedros. Para calcular el área de un poliedro calculamos el área de cada una de sus caras y las sumamos. TEMA 9: ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Un poliedro se llama regular cunado cumple las dos condiciones siguientes: Sus caras son polígonos regulares idénticos. En cada vértice

Más detalles

Hallar el área de estas figuras

Hallar el área de estas figuras Hallar el área de estas figuras El área de la pirámide es la suma de las áreas de un cuadrado y 4 triángulos. El área del prisma es la suma de las áreas las bases ( pentágonos) y 5 rectángulos. Hallar

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS.

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS. PRISMAS 1.) Las dimensiones de un ortoedro son a = 7 cm, b = 5 cm y c = 10 cm. Dibuja esquemáticamente su desarrollo y calcula su área, su volumen y la longitud de la diagonal. Sol: 310 cm 2 ; 350 cm 3

Más detalles

TETRAEDRO CUBO OCTAEDRO DODECAEDRO ICOSAEDRO

TETRAEDRO CUBO OCTAEDRO DODECAEDRO ICOSAEDRO 6.- SÓLIDOS Al finalizar el sexto curso de Educación Primaria, los estudiantes deben describir cuerpos geométricos usando el vocabulario apropiado con términos como vértices, caras, aristas, planos, diedros,

Más detalles

Tema 8 Cuerpos en el espacio

Tema 8 Cuerpos en el espacio Tema 8 Cuerpos en el espacio Poliedros La primera distinción que debemos hacer es entre los poliedros, que son cuerpos geométricos limitados por polígonos, y los cuerpos de revolución, donde una forma

Más detalles

Nº caras. Nº vértices

Nº caras. Nº vértices Tipo De Caras (Ángulo Interior) Triángulo Equilátero (60º) Cuadrado (90º) Pentágono (108º) Hexágono (10º) Nº caras por vértice Suma de los ángulos de cada vértice Nº caras Nº vértices Nº aristas C + V

Más detalles

GEOMETRÍA ESPACIAL Programación

GEOMETRÍA ESPACIAL Programación GEOMETRÍA ESPACIAL Programación En clase, con la ayuda del libro, se explicará la teoría y se realizarán ejercicios similares a los de las fichas, de modo que los ejercicios que realizan por la tarde les

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS 10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10. Completa la siguiente tabla. Caras (C ) Vértices (V )

Más detalles

UNIDAD 10 CUERPOS GEOMÉTRICOS

UNIDAD 10 CUERPOS GEOMÉTRICOS UNIDAD 10 CUERPOS GEOMÉTRICOS EJERCICIOS RESUELTOS Objetivo General. Al terminar ésta unidad identificarás los diferentes tipos de Cuerpos Geométricos, resolverás ejercicios y problemas en los que apliques

Más detalles

Areas de los cuerpos geometrlcos

Areas de los cuerpos geometrlcos ,,. Areas de los cuerpos geometrlcos PARA EMPEZAR Cómo se calcula el área de un prisma regular Área lateral: Área de la base: Área tata 1: As endo p el perímetro de una de las bases, h la altura del prisma

Más detalles

9Soluciones a los ejercicios y problemas PÁGINA 200

9Soluciones a los ejercicios y problemas PÁGINA 200 PÁGINA 200 Pág. 1 T ipos de cuerpos geométricos 1 Di, justificadamente, qué tipo de poliedro es cada uno de los siguientes: A B C D E F Hay entre ellos algún poliedro regular? A 8 Prisma pentagonal recto.

Más detalles

VOLUMENES. Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad

VOLUMENES. Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad VOLUMENES Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad POLIEDROS Un poliedro es un cuerpo limitado por polígonos Los polígonos que limiten el poliedro, se llaman

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. PÁGINA EJERCICIOS Unidades de volumen Transforma en metros cúbicos: a) 50 dam b) 0,08 hm c) 0, km d) 5 80 dm e) 500 hl f) 0 000 l a) 50 dam = 50 000 m b) 0,08 hm = 8 000 m c) 0, km = 0 000 000 m d)

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Página 85 PRACTICA Desarrollos y áreas Haz corresponder cada figura con su desarrollo y calcula el área total: I II cm III cm IV cm 7 cm A B C D 8 Pág. I C Área de una cara: 6 h + 6 h + 9 h 6 9

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS 10 FIGURS Y UERPOS GEOMÉTRIOS EJERIIOS PR ENTRENRSE Poliedros y cuerpos redondos. Propiedades 10.2 Un poliedro regular tiene 8 vértices y 12 aristas. Utiliza la fórmula de Euler para saber de qué poliedro

Más detalles

PÁGINA 196. 1 Di qué tipo de prisma es cada uno de los siguientes. Indica cuáles son regulares. Dibuja el desarrollo del primero de ellos.

PÁGINA 196. 1 Di qué tipo de prisma es cada uno de los siguientes. Indica cuáles son regulares. Dibuja el desarrollo del primero de ellos. Soluciones a las actividades de cada epígrafe PÁGINA 196 1 Di qué tipo de prisma es cada uno de los siguientes. Indica cuáles son regulares. Dibuja el desarrollo del primero de ellos. a) b) c) d) a) Triangular,

Más detalles

EJERCICIOS. ÁREAS Y VOLÚMENES.

EJERCICIOS. ÁREAS Y VOLÚMENES. EJERCICIOS. ÁREAS Y VOLÚMENES. Teorema de Tales 1. Sean los triángulos ABC, AB'C'.Calcula el valor desconocido x. 2. Dos triángulos semejantes tienen una superficie de 20cm 2 y 30cm 2 respectivamente.

Más detalles

9Soluciones a las actividades de cada epígrafe PÁGINA 186

9Soluciones a las actividades de cada epígrafe PÁGINA 186 9Soluciones a las actividades de cada epígrafe PÁGINA 186 Pág. 1 En la Casa de la Cultura se ha montado una exposición fotográfica. En ella se recogen modernos edificios en los que los poliedros y los

Más detalles

Geometría en el espacio

Geometría en el espacio Geometría en el espacio 3º E.S.O. PARTE TEÓRICA 1.- Define los siguientes conceptos: Poliedro: Vértice de un poliedro: Cara de un poliedro: Arista de un poliedro: Poliedro regular: 2.- Di cuáles son los

Más detalles

Área del rectángulo y del cuadrado

Área del rectángulo y del cuadrado 59 Área del rectángulo y del cuadrado El área del rectángulo es el producto de su base por su altura. El área del cuadrado es su lado elevado al cuadrado. 1. Mide con una regla y completa. Área del rectángulo:

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS DE REDONDOS Poliedros. o Elementos de un poliedro y desarrollo plano. Prismas. o Elementos y tipos de prismas. Pirámides. o Elementos y tipos de

Más detalles

3. Si la capacidad de un cubo es 8 litros, entonces la suma de las medidas de todas las aristas del cubo es

3. Si la capacidad de un cubo es 8 litros, entonces la suma de las medidas de todas las aristas del cubo es Programa Estándar Anual Nº Guía práctica Poliedros Ejercicios PSU 1. Si la arista de un cubo mide 4 cm, entonces el área del cubo mide Matemática A) 12 cm 2 D) 96 cm 2 B) 48 cm 2 E) 576 cm 2 C) 64 cm 2

Más detalles

UNIDAD 12. GEOMETRÍA DEL ESPACIO (II). CUERPOS DE REVOLUCIÓN.

UNIDAD 12. GEOMETRÍA DEL ESPACIO (II). CUERPOS DE REVOLUCIÓN. UNIDAD 12. GEOMETRÍA DEL ESPACIO (II). CUERPOS DE REVOLUCIÓN. Unidad 12: Geometría del espacio (II). Cuerpos de revolución. Al final deberás haber aprendido... Describir cuerpos de revolución e identificar

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 215

10Soluciones a los ejercicios y problemas PÁGINA 215 0Soluciones a los ejercicios y problemas PÁGINA 5 Pág. U nidades de volumen Transforma en metros cúbicos las siguientes cantidades de volumen: a) 0,05 hm b)59 hm c) 5 dm d)0,05 km e) dam f) 58 000 l a)

Más detalles

Volúmenes de cuerpos geométricos

Volúmenes de cuerpos geométricos Volúmenes de cuerpos geométricos TEORÍA Cuerpos geométricos En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos

Más detalles

Los poliedros y sus elementos

Los poliedros y sus elementos Los poliedros y sus elementos De las siguientes figuras, rodea las que sean poliedros o tengan forma de poliedro. Dibuja y escribe el nombre de tres objetos que tengan forma de poliedro. espuesta libre

Más detalles

RESUMEN DE FORMULAS EJERCICIOS de APLICACIÓN POLIEDROS

RESUMEN DE FORMULAS EJERCICIOS de APLICACIÓN POLIEDROS RESUMEN DE FORMULAS EJERCICIOS de APLICACIÓN POLIEDROS. 1.-Calcule la superficie total de un tetraedro cuya arista mide 2 (12 3 ) 2.- Se tiene un tetraedro cuya arista mide 6 3 cm. Calcular.- 2.1.-La superficie

Más detalles

1 Calcula en la siguiente figura el elemento que falta: 2 Calcula en la siguiente figura el elemento que falta:

1 Calcula en la siguiente figura el elemento que falta: 2 Calcula en la siguiente figura el elemento que falta: 1 Calcula en la siguiente figura el elemento que falta: Calcula en la siguiente figura el elemento que falta: Calcula el valor de la diagonal de un ortoedro de aristas cm, 4 cm y 5 cm. 4 Comprueba la fórmula

Más detalles

FIGURAS SEMEJANTES RAZÓN DE SEMEJANZA. Gráfica y numérica

FIGURAS SEMEJANTES RAZÓN DE SEMEJANZA. Gráfica y numérica FIGURAS SEMEJANTES RAZÓN DE SEMEJANZA Ampliación / Reducción Escalas Teorema de Thales Gráfica y numérica Triángulos en posición de Thales Semejanza de triángulos Criterios de semezanza entre triángulos

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y

Más detalles

1. Calcula el área y volumen de los siguientes cuerpos geométricos:

1. Calcula el área y volumen de los siguientes cuerpos geométricos: 1. Calcula el área y volumen de los siguientes cuerpos geométricos: 2.- Dibuja los siguientes cuerpos geométricos y calcula su área. a) Prisma de altura 24 cm y cuya base es un rombo de diagonales 18 y

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 19 REFLEXIONA Las cajas, los contenedores y la caseta son poliedros. También es un poliedro la figura que forma la caja que pende de la grúa con las cuatro cuerdas que la sostienen. Cuántas

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. PÁGINA 8 REFLEXIONA La grúa debe cargar en el barco los montones de cajas que hay en el muelle. Para contar el número de cajas que hay en el siguiente

Más detalles

11 Cuerpos geométricos

11 Cuerpos geométricos 89485 _ 0369-0418.qxd 1/9/07 15:06 Página 369 Cuerpos geométricos INTRODUCCIÓN Los poliedros, sus elementos y tipos ya son conocidos por los alumnos del curso anterior. Descubrimos y reconocemos de nuevo

Más detalles

EXAMEN GEOMETRÍA. 5. Halla el perímetro y el área de un triángulo isósceles cuyos lados miden 5, 5 y 8 cms., respectivamente.

EXAMEN GEOMETRÍA. 5. Halla el perímetro y el área de un triángulo isósceles cuyos lados miden 5, 5 y 8 cms., respectivamente. 1. Supongamos una circunferencia de radio 90/ð cms. y un ángulo cuyo vértice coincida con el centro de la circunferencia. Halla: a) La longitud de arco de circunferencia que abarca un ángulo de 501. b)

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS ÁRES Y VOLÚMENES DE CUERPOS GEOMÉTRICOS. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos

Más detalles

Unidad didáctica 3. Cálculo de superficies y volúmenes

Unidad didáctica 3. Cálculo de superficies y volúmenes Unidad didáctica. Cálculo de superficies y volúmenes.1 Cálculo de superficies. En el presente apartado se estudiarán las superficies, perímetros y relaciones geométricas más importantes de las principales

Más detalles

GEOMETRÍA. 1. Líneas y ángulos. Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO.

GEOMETRÍA. 1. Líneas y ángulos. Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO. 1. Líneas y ángulos Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO. Los puntos del espacio se consideran agrupados en conjuntos parciales de infinitos puntos llamados PLANOS.

Más detalles

-. B:... E:... ?A: Isósceles y acutángulo. .~~.-.. Triángulos y paralelogramos. Cómo se clasifican los triángulos PARA EMPEZAR

-. B:... E:... ?A: Isósceles y acutángulo. .~~.-.. Triángulos y paralelogramos. Cómo se clasifican los triángulos PARA EMPEZAR 111. TEOREMA DE PITAGORAS ).~~.-.. Triángulos y paralelogramos ~, PARA EMPEZAR Cómo se clasifican los triángulos Según sus lados: Equilátero Isósceles Escaleno Tiene los tres lados iguales. Tiene dos lados

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

8. Si Â, Ê e Î son los ángulos de un triángulo, completa en tu cuaderno la siguiente tabla:

8. Si Â, Ê e Î son los ángulos de un triángulo, completa en tu cuaderno la siguiente tabla: 5. Clasifica según sus lados los siguientes triángulos: a) Equilátero. b) Escaleno. c) Isósceles. 6. Clasifica según sus ángulos los siguientes triángulos: a) Acutángulo. b) Obtusángulo. c) Rectángulo.

Más detalles

Efa Moratalaz PCPI - Matemáticas GEOMETRÍA PLANA

Efa Moratalaz PCPI - Matemáticas GEOMETRÍA PLANA GEOMETRÍA PLANA Geometría Plana Ficha 1 (Ejercicios Cuadrado) Área de un cuadrado: Perímetro de un cuadrado: 1) Halla el perímetro y el área de un cuadrado de 3 m de lado. 2) Halla el perímetro y el área

Más detalles

CUERPOS GEOMÉTRICOS. Clases de cuerpos geométricos. Los poliedros. Los poliedros regulares.

CUERPOS GEOMÉTRICOS. Clases de cuerpos geométricos. Los poliedros. Los poliedros regulares. CUERPOS GEOMÉTRICOS. Se denominan cuerpos geométricos a aquellos elementos que, ya sean reales o ideales - que existen en la realidad o pueden concebirse mentalmente - ocupan un volumen en el espacio desarrollándose

Más detalles

Nombre: EJERCICIO 1 (1): Dado un rectángulo cuyos lados miden 4 cm y 3 cm, qué medidas tendrá una ampliación suya si la razón de semejanza es 2,5?

Nombre: EJERCICIO 1 (1): Dado un rectángulo cuyos lados miden 4 cm y 3 cm, qué medidas tendrá una ampliación suya si la razón de semejanza es 2,5? Matemáticas 3ºESO D Examen: 1º 30. 04.14 EJERCICIO 1 (1): Dado un rectángulo cuyos lados miden 4 cm y 3 cm, qué medidas tendrá una ampliación suya si la razón de semejanza es 2,5? EJERCICIO 2: (2) Dado

Más detalles

Created with novapdf Printer (www.novapdf.com)

Created with novapdf Printer (www.novapdf.com) GEOMETRÍA LONGITUDES Longitud de la circunferencia Es una línea curva cerrada que equidistan todos sus puntos del centro. Radio Centro: punto situado a igual distancia de todos los puntos de la circunferencia.

Más detalles

UNIDAD 10 CUERPOS GEOMÉTRICOS. Objetivo General.

UNIDAD 10 CUERPOS GEOMÉTRICOS. Objetivo General. UNIDAD 10 CUERPOS GEOMÉTRICOS Objetivo General. Al terminar ésta unidad identificarás los diferentes tipos de Cuerpos Geométricos, resolverás ejercicios y problemas en los que apliques definiciones y fórmulas.

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 8 PROBLEMAS MÉTRICOS EJERCICIOS PROPUESTOS 8.1 Las dimensiones de las hojas de un libro de texto de 80 páginas son 0 30 centímetros. Si se extendieran, sin solaparse, todas las hojas del libro sobre el

Más detalles

PENDIENTES 2º ESO. Tercer examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del tercer examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014

PENDIENTES 2º ESO. Tercer examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del tercer examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014 014 015 Preparación del tercer examen de recuperación de MATEMÁTICAS DE º ESO PENDIENTES º ESO Tercer examen DEPARTAMENTO DE MATEMÁTICAS 1.- En un triángulo rectángulo, los catetos miden 5 y 1cm, respectivamente.

Más detalles

Los cuerpos geométricos

Los cuerpos geométricos Los cuerpos geométricos Se denominan cuerpos geométricos a aquellos elementos que, ya sean reales o ideales que existen en la realidad o pueden concebirse mentalmente ocupan un volumen en el espacio desarrollándose

Más detalles

3. En un mapa, de escala 1:250 000, la distancia entre dos pueblos es de 1,3 cm. a) Cuál es la distancia real entre ambos pueblos?

3. En un mapa, de escala 1:250 000, la distancia entre dos pueblos es de 1,3 cm. a) Cuál es la distancia real entre ambos pueblos? TEMA 7: SEMEJANZA, ÁREAS Y VOLÚMENES FIGURAS SEMEJANTES Dos figuras son semejantes cuando tienen la misma forma: - Los ángulos correspondientes son todos iguales. - Los segmentos correspondientes son proporcionales.

Más detalles

Área de paralelogramos (páginas 546 549)

Área de paralelogramos (páginas 546 549) A NOMRE FECHA PERÍODO Área de paralelogramos (páginas 546 549) Un paralelogramo es un cuadrilátero con dos pares de lados paralelos. La base es cualquiera de los lados y la altura es la distancia más corta

Más detalles

CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos

CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos Cuerpos geométricos Contenidos 1. Poliedros regulares Definiciones Desarrollos Poliedros duales 2. Otros poliedros Prismas Pirámides Poliedros semirregulares 3. Cuerpos de revolución Cilindros Conos Esferas

Más detalles

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos.

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos. CUERPOS GEOMÉTRICOS Los cuerpos geométricos son figuras geométricas tridimensionales (tienen alto, ancho y largo) que ocupan un lugar en el espacio. 1. POLIEDROS. 1.1. DEFINICIÓN. Un poliedro es un cuerpo

Más detalles

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS UNIDAD DIDÁCTICA CUERPOS GEOMÉTRICOS 1. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos

Más detalles

ÁREAS O SUPERFICIES DE FIGURAS PLANAS

ÁREAS O SUPERFICIES DE FIGURAS PLANAS ÁREAS O SUPERFICIES DE FIGURAS PLANAS CUADRADO --- RECTÁNGULO 1. - Calcula el área de los cuadrados cuyos lados miden: a) 8 cm. b) 3,5 dm c) 10 m. d) 0,5 dm a) b) c) d) 2. - Halla el área o superficie

Más detalles

d. Se llama altura del prisma a la distancia entre sus dos caras. Cuál sería la altura del prisma de la figura 1?

d. Se llama altura del prisma a la distancia entre sus dos caras. Cuál sería la altura del prisma de la figura 1? MATERIAL PARA EL ESTUDIANTE EJEMPLOS DE ACTIVIDADES Actividad 1 Prismas rectos En años anteriores hemos aprendido a calcular perímetros y áreas de figuras geométricas. Ahora veremos cómo se puede calcular

Más detalles

Poliedros regulares Cuerpos de revolución

Poliedros regulares Cuerpos de revolución Poliedros regulares Cuerpos de revolución Poliedro. Un poliedro es un cuerpo limitado por caras poligonales. Ángulo diedro. Ángulo poliedro Se llama ángulo diedro de un poliedro el que está formado por

Más detalles

Geometría en 3D. Problemas del capítulo. 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos?

Geometría en 3D. Problemas del capítulo. 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos? Geometría en 3D. Problemas del capítulo 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos? 2. Qué es volumen y cómo lo encontramos? 3. Cómo se relacionan los volúmenes

Más detalles

Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas.

Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas. Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas. 1.- Escribe el nombre de las siguientes líneas. 2.- Qué ángulos forman dos rectas perpendiculares?

Más detalles

SOLIDOS LOS POLIEDROS RECTOS

SOLIDOS LOS POLIEDROS RECTOS SOLIDOS Las invenciones de los objetos concretos al concepto abstracto de los griegos, sentaron las bases para la geometría Euclidea. Aquí apreciamos algunas formas que ellos derivaron y que aún hoy día

Más detalles

Cuerpos geométricos. El centro del universo

Cuerpos geométricos. El centro del universo 11 Cuerpos geométricos El centro del universo Como a otros les ocurrió antes y a otros muchos después, Aristarco de Samos se vio irremediablemente atraído por Alejandría: una ciudad tranquila, patria adoptiva

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por

Más detalles

Áreas de cuerpos geométricos

Áreas de cuerpos geométricos 9 Áreas de cuerpos geométricos Objetivos En esta quincena aprenderás a: Calcular el área de prismas rectos de cualquier número de caras. Calcular el área de pirámides de cualquier número de caras. Calcular

Más detalles

13 CUERPOS GEOMÉTRICOS

13 CUERPOS GEOMÉTRICOS 13 CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 13.1 Observa la figura y di qué elemento geométrico determinan la recta y el plano. r α La recta r y el plano determinan un punto. 13.2 Con los cuatro puntos

Más detalles

Poliedros y cuerpos de revolución

Poliedros y cuerpos de revolución 12 Poliedros y cuerpos de revolución El cíclope matemático La tensión se apreciaba en el rostro de los presentes. La operación de cataratas parecía un éxito, pero la luz se fue apagando y Euler se quedó

Más detalles

Piden: Dato: Piden: Dato: Piden: Dato:

Piden: Dato: Piden: Dato: Piden: Dato: SEMANA 1 PRISMAS Y PIRÁMIDE 1. Calcule el número de caras de un prisma donde el número de vértices más el número de aristas es 50. A) 10 B) 0 C) 0 D) 1 E) 18 Sea n el número de lados de la base del prisma:

Más detalles

CUERPOS GEOMÉTRICOS. ÁREAS Y VOLÚMENES

CUERPOS GEOMÉTRICOS. ÁREAS Y VOLÚMENES º ESO CUEROS GEOMÉTRICOS. ÁREAS Y OLÚMENES DEARTAMENTO DE MATEMÁTICAS. COIRRAI_Julio César Abad Martínez-Losa CUEROS GEOMÉTRICOS. ÁREAS Y OLÚMENES 1.- CUEROS GEOMÉTRICOS Un cuerpo geométrico es una figura

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Cierto, mires por donde mires no podrás dejar de ver cuerpos geométricos de todo tipo. Por eso es importante

Más detalles

Ámbito científico tecnológico

Ámbito científico tecnológico Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica

Más detalles

Área de paralelogramos, triángulos y trapecios (páginas 314 318)

Área de paralelogramos, triángulos y trapecios (páginas 314 318) NOMRE FECHA PERÍODO Área de paralelogramos, triángulos y trapecios (páginas 34 38) Cualquier lado de un paralelogramo o triángulo puede usarse como base. La altitud de un paralelogramo es un segmento de

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 = 5 dm b) 8 = 8 cm P =

Más detalles

Colegio C. C. Mª Auxiliadora II Marbella Urb. La Cantera, s/n. 952822586 http:/www.mariaauxiliadora2.com SISTEMAS DE ECUACIONES

Colegio C. C. Mª Auxiliadora II Marbella Urb. La Cantera, s/n. 952822586 http:/www.mariaauxiliadora2.com SISTEMAS DE ECUACIONES Colegio C. C. Mª Auiliadora II Marbella Urb. La Cantera, s/n. 988 http:/www.mariaauiliadora.com º ESO SISTEMAS DE ECUACIONES º. Une con flechas cada pareja de números con el sistema del que es solución:

Más detalles

VOLUMENES DE CUERPOS GEOMETRICOS

VOLUMENES DE CUERPOS GEOMETRICOS PreUnAB VOLUMENES DE CUERPOS GEOMETRICOS Clase # 20 Octubre 2014 CONCEPTOS PREVIOS Volumen: El volumen es una magnitud definida como la extensión en tres dimensiones de un cuerpo en el espacio. Es, por

Más detalles

Trigonometría y problemas métricos

Trigonometría y problemas métricos Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.

Más detalles

POSICIÓN DE DOS RECTAS

POSICIÓN DE DOS RECTAS POSICIÓN DE DOS RECTAS Un punto divide a una recta en dos semirrectas. Rectas paralelas son las que nunca se cortan por mucho que se prolonguen. Rectas secantes son las que se cortan. Rectas perpendiculares

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc.

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc. CUERPOS Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede calcular el volumen del mismo

Más detalles

4. Áreas y. Volúmenes

4. Áreas y. Volúmenes 4. Áreas y Volúmenes Matemáticas º ESO. Áreas de figuras planas. Figuras circulares. Áreas de poliedros 4. Área y volumen de sólidos 5. Cilindros y conos 6. Área y volumen de esferas 7. La Tierra 6 Áreas

Más detalles

Cuerpos geométricos. Antes de empezar. Recuerda C=6 V=8 A=12 A-V+2=12 8+2=6=C

Cuerpos geométricos. Antes de empezar. Recuerda C=6 V=8 A=12 A-V+2=12 8+2=6=C Antes de empezar Recuerda Un poliedro es un cuerpo cerrado limitado por polígonos. Cada uno de ellos recibe el nombre de cara. Los lados de las caras son las aristas del poliedro y los extremos de las

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

PROBLEMAS DE SEMEJANZA

PROBLEMAS DE SEMEJANZA PROBLEMAS DE SEMEJANZA 1. En una fotografía, María y Fernando miden 2,5 cm y 2,7 cm, respectivamente; en la realidad, María tiene una altura de 167,5 cm. A qué escala está hecha la foto? Qué altura tiene

Más detalles

SÓLIDOS Y RAZONES DE SEMEJANZA 11.1.1 11.1.3

SÓLIDOS Y RAZONES DE SEMEJANZA 11.1.1 11.1.3 Capítulo 11 SÓLIDOS Y RAZONES DE SEMEJANZA 11.1.1 11.1. En este capítulo, los alumnos analizarán las figuras tridimensionales, que se conocen como sólidos. Revisarán cómo calcular el área de superficie

Más detalles

Práctica 06. Instituto Tecnológico de Costa Rica Escuela de Matemática Matemática General. I. Plantee y resuelva los siguientes problemas:

Práctica 06. Instituto Tecnológico de Costa Rica Escuela de Matemática Matemática General. I. Plantee y resuelva los siguientes problemas: Instituto Tecnológico de Costa Rica Escuela de Matemática Matemática General I. Plantee y resuelva los siguientes problemas: Práctica 06 Geometría 1) Un árbol proyecta una sombra de 5 m en el mismo instante

Más detalles

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS Se llaman poliedros todos los cuerpos geométricos que tienen todas sus caras planas. Los cuerpos redondos son aquellos que tienen alguna de sus superficies

Más detalles

TEOREMA DE PITÁGORAS. SEMEJANZA. (http://profeblog.es/blog/luismiglesias)

TEOREMA DE PITÁGORAS. SEMEJANZA. (http://profeblog.es/blog/luismiglesias) Cuestiones 1. Qué polígonos son semejantes cuando tienen los lados proporcionales? a) Todos. c) Ninguno. b) Los cuadriláteros. d) Los triángulos. 2. La razón entre los perímetros de dos figuras semejantes

Más detalles

ACTIVIDAD INTRODUCTORIA: El regalo para mi hermano.

ACTIVIDAD INTRODUCTORIA: El regalo para mi hermano. Grado 7 Matemáticas Conozcamos otros sistemas de medidas, el sistema internacional y el sistema inglés. TEMA: DESCRIPCIÓN DEL ÁREA EN CUERPOS GEOMÉTRICOS Nombre: Grado: ACTIVIDAD INTRODUCTORIA: El regalo

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1 GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos

Más detalles

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro 8 Cuerpos geométricos. Objetivos En esta quincena aprenderás a: Identificar que es un poliedro. Determinar los elementos de un poliedro: Caras, aristas y vértices. Clasificar los poliedros. Especificar

Más detalles

MODULO III - GEOMETRIA

MODULO III - GEOMETRIA PRIMERA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO III - GEOMETRIA ENCUENTRO NÚMERO SEIS Y SIETE Calculo de Áreas y volúmenes. 31 DE AGOSTO DE 2014 MANAGUA FINANCIADO

Más detalles

Desarrollo de Poliedros Regulares: Generalidades. Ejercicios Resueltos. Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 Ejercicio 5

Desarrollo de Poliedros Regulares: Generalidades. Ejercicios Resueltos. Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 Ejercicio 5 DESARROLLO DE POLIEDROS REGULARES UNIDAD IV: DESARROLLO DE SÓLIDOS En esta unidad se dibujarán las superficies de poliedros y cuerpos redondos modelos. Los temas de esta unidad son: sobre un plano para

Más detalles

Colegio Universitario Boston. Geometría

Colegio Universitario Boston. Geometría 34 Conceptos ásicos Triángulo: Se define como la figura geométrica plana, cerrada de tres lados. Triángulo equilátero: Es el triángulo que tiene sus tres lados iguales y sus tres ángulos internos iguales,

Más detalles

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede

Más detalles

Problemas geométricos

Problemas geométricos Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de

Más detalles

Ejemplo: Si los catetos de un triángulo rectángulo miden 6 cm y 8 cm, su hipotenusa vale 10 cm, ya que: Demostración. a) 8 cm y 3 cm b) 15 m y 9 m

Ejemplo: Si los catetos de un triángulo rectángulo miden 6 cm y 8 cm, su hipotenusa vale 10 cm, ya que: Demostración. a) 8 cm y 3 cm b) 15 m y 9 m 88 Capítulo 8: Geometría. Matemáticas 4ºB de ESO 1. TEOREMA DE PITÁGORAS Y TEOREMA DE TALES 1.1. Teorema de Pitágoras Teorema de Pitágoras en el plano Ya sabes que: En un triángulo rectángulo llamamos

Más detalles

Cuerpos geométricos POLIEDROS PRISMAS Y PIRÁMIDES CUERPOS DE REVOLUCIÓN VOLÚMENES LA ESFERA TERRESTRE FIGURAS ESFÉRICAS

Cuerpos geométricos POLIEDROS PRISMAS Y PIRÁMIDES CUERPOS DE REVOLUCIÓN VOLÚMENES LA ESFERA TERRESTRE FIGURAS ESFÉRICAS 9 Cuerpos geométricos POLIEDROS ELEMENTOS FÓRMULA DE EULER PRISMAS Y PIRÁMIDES ELEMENTOS TIPOS ÁREAS CUERPOS DE REVOLUCIÓN FIURAS ESFÉRICAS ÁREAS VOLÚMENES PRINCIPIO DE CAVALIERI VOLÚMENES DE PRISMAS Y

Más detalles