Lección 9: Fracciones decimales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Lección 9: Fracciones decimales"

Transcripción

1 LECCIÓN 9 Toluca 3º 7º 2º Guadalajara 6º 20º 9º Monterrey 4º 0º 1º Distrito Federal 2º 13º 4º Acapulco 18º 29º 21º a) En cuál ciudad se registró la temperatura más baja a las 7 de la mañana? b) En cuál ciudad se registró la temperatura más baja a las 10 de la noche? c) Cuánto aumentó la temperatura en cada ciudad entre las 7 de la mañana y las 3 de la tarde? d) Cuánto disminuyó la temperatura en cada ciudad entre las 3 de la tarde y las 10 de la noche? Lección 9: Fracciones decimales Sistema de numeración No siempre podemos trabajar con unidades enteras. Con frecuencia tenemos que partir lo que tenemos para usarlo. En esta lección veremos una manera de expresar partes de una unidad a través del sistema de numeración decimal, que ya hemos empezado a estudiar. Recuerde que nuestro sistema de numeración es d e c i m a l porque agrupa de diez en diez las unidades, decenas, etc.; y es posicional porque el lugar que ocupa una cifra nos dice de qué tamaño son los grupos que estamos contando. Para 93

2 GUÍA DE MATEMÁTICAS I R }? tres décimos un entero contar cuántos grupos de cada tamaño tenemos, este sistema utiliza diez símbolos, que son los dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Para escribir partes de una unidad con el sistema decimal vamos a partir la unidad en diez partes iguales; cada una de esas partes se llama décimo. Si con una primera partición no R tres décimos } siete centésimos un entero 94

3 LECCIÓN 9 podemos todavía expresar la cantidad que tenemos, partimos los pedacitos en diez partes, etc. Veamos un ejemplo. Queremos expresar la cantidad de área que tenemos sombreada en la siguiente figura, utilizando como unidad el cuadrado R. El área sombreada es una unidad y un trozo. Para saber qué parte de la unidad es ese trozo, o sea lo que queda en el segundo rectángulo, partimos el rectángulo en diez partes. Cada una de esas rebanadas es un décimo del área. Tenemos 3 décimos sombreados y hay un pedazo sombreado que sobra, que es más chico que un décimo. Para saber de qué tamaño es el pedazo que nos falta medir, partimos los décimos en diez partes cada uno. El rectángulo nos queda partido en = 100 pedazos iguales, y cada uno de estos pedacitos es un centésimo. Con siete de ellos, ahora sí abarcamos exactamente el área sombreada. Sabemos entonces que toda esa área es: 1 unidad, 3 décimos y 7 centésimos. Para expresar en el sistema decimal una cantidad como la que acabamos de obtener vamos a usar posiciones como en el caso de los enteros. Primero ponemos un punto que sirve para separar los enteros de las fracciones y que se llama punto decimal. A la izquierda del punto escribimos los enteros como siempre. A la derecha del punto escribimos la cantidad de pedazos que tenemos de cada tamaño empezando con los pedazos más grandes, los décimos, y luego los centésimos. En nuestro ejemplo tenemos un entero, tres décimos y siete centésimos: entonces escribimos Este número lo podemos leer también como un entero treinta y siete centésimos. Observe en el último dibujo que los tres décimos que contamos inicialmente quedaron partidos en 30 centésimos. Si partimos los centésimos en diez partes iguales cada uno, la unidad nos queda dividida en = = 1000 pedacitos y cada uno de ellos se llama milésimo. La cantidad 95

4 GUÍA DE MATEMÁTICAS I de milésimos que tengamos se escribe a la derecha de los centésimos y leemos esa parte fraccionaria como si fuera un entero pero al final decimos el nombre de los pedazos más chicos, es decir del menor orden que tenemos. Por ejemplo, trescientas cuarenta y dos unidades, 4 décimos, 6 centésimos y 9 milésimos se escribe y se lee trescientas cuarenta y dos unidades cuatrocientos sesenta y nueve milésimos. Si partimos en milésimos el rectángulo de nuestro ejemplo, el área sombreada será equivalente a 1.370, es decir, una unidad con trescientos setenta milésimos. Observe que entonces tenemos que 1.37 = Se puede seguir partiendo tanto como se necesite; el nombre del orden dice en cuántas partes se dividió el entero. Observe que cada vez que partimos en diez, obtenemos la cantidad de pedacitos multiplicando por diez. Aquí vamos a multiplicar muchas veces por diez; conviene entonces su lugar a el entero cada parte la derecha Si se parte en queda se llama del punto se escribe dividido en decimal es el décimo 1o = centésimo 2o = milésimo 3o = diezmilésimo 4o = cienmilésimo 5o = millonésimo 6o = diezmillonésimo 7o = cienmillonésimo 8o detenernos un momento para hacer un acuerdo de notación. 96

5 LECCIÓN 9 Recuerde que si multiplicamos un número por sí mismo, para abreviar la escritura, escribimos un 2 pequeño en la parte superior del número. Por ejemplo = Si multiplicamos un número por sí mismo varias veces podemos abreviar la escritura de esta operación haciendo lo mismo. Se pone en la parte superior derecha del número la cantidad de veces que multiplicamos en pequeño. Por ejemplo, = 1 0 3, = 1 0 4, etc. Se dice que obtuvimos la tercera potencia de 10, la cuarta potencia de 10, etc. También se dice que elevamos 10 a la tercera potencia, etc. El número pequeño, nos indica cuántas veces se multiplica el número que tenemos por sí mismo, se llama exponente. Regresemos a las fracciones decimales. Para recordar los nombres, significados y escritura de los órdenes más usuales de las fracciones decimales, ponemos una tabla y algunos ejemplos. Observe que un décimo es igual a diez centésimos y a cien milésimos y a mil diezmilésimos, etc: 0.1 = 0.10 = = = =. Análogamente, un centésimo es igual a diez milésimos y a cien diezmilésimos y a mil cienmilésimos, etc: 0.01 = = = = =. En general, podemos agregar todos los ceros que queramos a la derecha de la última cifra de un número decimal sin alter - ar el número. Combinando las partes que aparecen en la tabla y contando cuántas tenemos de cada tamaño podemos escribir y leer cualquier número decimal. Por ejemplo, se lee trece unidades setecientos sesenta y cinco mil cuatrocientos treinta y ocho millonésimos. Aunque no sepamos cómo se llaman las partes en que se divide el entero, podemos dividir todas las veces que queramos en diez partecitas. Se pueden escribir decimales 97

6 GUÍA DE MATEMÁTICAS I con cualquier cantidad de cifras. Por ejemplo, , , etc. Todo lo que va a la derecha del punto decimal de un número se llama la expansión decimal d e l número. Hay números que tienen una expansión decimal que no se termina; se dice que tienen expansión decimal infinita. Por ejemplo: Los puntos suspensivos en este número significan que sigue 3 un número infinito de veces. Cuando la expansión decimal de un número se acaba, aunque sea muy larga, se dice que tiene expansión decimal finita. Por ejemplo: 2.33, , , Esto último no incluye a los ceros que se pueden agregar a la derecha de la última cifra; por ejemplo, es un número con expansión decimal finita, porque es igual a Recuerde que en cada posición sólo podemos escribir un dígito. Si juntamos diez partes de un mismo tamaño las agrupamos para formar una unidad del orden inmediato superior. Por ejemplo, si tenemos quince centésimos, los reagrupamos y tenemos un décimo y cinco centésimos. Si tenemos 56 décimos, los reagrupamos y formamos 5 unidades y 6 décimos, etc. Escriba con notación decimal los números que le damos 98 en español: a) doce unidades doce centésimos b) cuarenta y siete décimos c) doscientos treinta y cinco milésimos d) dos unidades quince milésimos

7 LECCIÓN 9 e) ciento seis milésimos f) diecinueve milésimos g) cinco centésimos h) cinco décimos i) dos diezmilésimos j) ciento treinta centésimos k) diez mil doscientas unidades, ochocientos veintisiete mil quinientos trece millonésimos l) seis millones setecientas unidades, un millón veintisiete mil once diezmillonésimos Escriba en español los siguientes números: a) e) i) b) f) j).772 c) g) k).039 d) h) l) Orden en los números decimales Para saber si un número decimal es mayor que otro comparamos primero los enteros. Si la parte entera es mayor, el número es mayor. Por ejemplo, es mayor que porque 134 es mayor que 67; escribimos > Otro ejemplo: es menor que porque 56 es menor que 108; escribimos < Si las partes enteras de dos decimales son iguales, nos fijamos en los décimos, que son las fracciones decimales más grandes. El número que tiene más décimos es más grande. Por ejemplo: es mayor que 43.69; escribimos >

8 GUÍA DE MATEMÁTICAS I 12.8 es mayor que ; escribimos 12.8 > es menor que 52.4; escribimos < Si tanto la parte entera como los décimos de dos números son iguales, nos fijamos en los centésimos. El número que tiene más centésimos es más grande. Por ejemplo: 3.12 es mayor que 3.11; escribimos 3.12 > es mayor que ; escribimos > es menor que 47.06; escribimos < es mayor que 16.2, porque 16.2 = 16.20; escribimos > Este proceso de comparación se puede seguir siempre. A continuación lo planteamos para todos los números decimales: Para saber si un decimal es mayor que otro, cuando sus partes enteras son iguales, nos fijamos en la primera cifra de izquierda a derecha en la que son distintos y el número que tiene esa cifra más grande es el mayor de los dos. Recuerde que si faltan cifras decimales para poder hacer esta comparación, siempre se pueden agregar ceros a la derecha sin alterar el número, como en el último ejemplo. También los números decimales se representan en la recta numérica, partiendo cada unidad en el dibujo en diez, cada décimo en diez, etc. Por ejemplo: para representar en la recta el número 3.7, dividimos la unidad que va de 3 a 4 en diez partes iguales y en la séptima división estará

9 LECCIÓN 9 Si queremos representar en la recta el número 12.43, dividimos en diez partes el segmento que va de 12 a 13, localizamos 12.4 y la siguiente división, 12.5; dividimos en diez partes el segmento que va de 12.4 a 12.5 y en la tercera división estará Como antes, en la recta numérica los números son más grandes mientras más se alejan del cero en la dirección del uno. Con el dibujo en esta posición, los números son más grandes si están más a la derecha. En algunas ocasiones la recta numérica no se coloca en posición horizontal sino en posición vertical, y la dirección del cero hacia el uno es de abajo hacia arriba. En estos casos los números son más grandes si están más arriba, como se muestra en los ejemplos: 101

10 GUÍA DE MATEMÁTICAS I En cada par de números indique cuál es el mayor: a) y g) y b) y h) 8.66 y c) y i) 7.02 y d) y 6.32 j) y e) 51.1 y k) 4.49 y 4.5 f) y 0.14 l) 87.3 y En cada par de números indique cuál es el menor: a) 50.4 y g) 71.9 y b) y h) y c) y i) y d) 6.57 y 4.75 j) 6.14 y e) 59 y 59.9 k) 3.87 y f) 28.2 y l) 9.34 y Entre cada par de números coloque el símbolo =, el símbolo > o el símbolo < según corresponda: a) i) b) j) c) k)

11 LECCIÓN 9 d) l) e) m) f) n) g) o) h) Escriba un número: a) mayor que 2.1 b) mayor que c) menor que d) menor que 0.01 e) mayor que y menor que 1 f) dos décimos mayor que

12 GUÍA DE MATEMÁTICAS I g) un centésimo menor que h) tres unidades y un décimo mayor que 1.42 i) dos décimos y un centésimo mayor que 9.73 j) un décimo y un milésimo menor que k) un décimo menor que l) entre 3.6 y 3.7 m) entre y n) entre 7.88 y Dibuje en rectas numéricas los números: a) 1.5, 1.7, 1 y 2 d) 1.190, y 1.2 b) 100, 50, 70 y 60 e) 8.88, y c) 22.43, y f) 0.1, 0.01 y 0.05 a) En una tienda cuesta $2.50 un carrete de hilo y en otra cuesta $2.05. En cuál tienda es más barato el hilo? b) En una casa de cambio venden el dólar en $10.49 y lo compran seis centavos más bajo. En cuánto compran el dólar? c) Para ir a trabajar, Don

13 LECCIÓN Luis puede usar dos rutas distintas. En la primera ruta el recorrido es de 17.7 Kms. y la segunda es dos kilómetros y cinco décimos más corta. De cuánto es el recorrido en la segunda ruta? Don Pedro repartió un terreno entre sus dos hijos. El terreno que le tocó a Lupercio mide de frente 18 m. y 8 décimos, y el que le tocó a Gumesindo tiene un frente de 18 m. y 55 centésimos. a) Exprese con números decimales las medidas de los frentes de los dos terrenos b) A quién le tocó el terreno de mayor frente? 105

SISTEMA DE NUMERACIÓN DECIMAL

SISTEMA DE NUMERACIÓN DECIMAL SISTEMA DE NUMERACIÓN DECIMAL Se llama decimal o de base diez porque se utilizan diez símbolos para representar todos los números. Los diez símbolos, cifras son: 0, 1, 2,3, 4, 5, 6, 7, 8, 9 La relación

Más detalles

UNIDAD 3: NÚMEROS DECIMALES

UNIDAD 3: NÚMEROS DECIMALES UNIDAD 3: NÚMEROS DECIMALES Si dividimos la unidad en 10 partes iguales, cada parte es una DÉCIMA. Cuando necesitamos expresar cantidades más pequeñas que la unidad, utilizamos LAS UNIDADES DECIMALES.

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL

SISTEMA DE NUMERACIÓN DECIMAL 1 SISTEMA DE NUMERACIÓN DECIMAL 1. Indica los órdenes: centenas = centenas de millar = unidades de millón = millares = decenas de millar = centenas de millón = decena de millón = decenas simples = 2. Escribe

Más detalles

Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad.

Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad. UNIDAD 6: FRACCIONES 6. Conocimiento de fracciones Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad. 6.. Términos Los términos

Más detalles

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima.

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. NÚMEROS DECIMALES 1. DÉCIMA, CENTÉSIMA Y MILÉSIMA. 1.1. CONCEPTO. Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. Si dividimos la unidad en 100 partes iguales, cada una de

Más detalles

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban.

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban. DEFINICIÓN Los números naturales son aquellos números que utilizamos para contar cosas. Los números naturales empiezan en el 0 y nunca se acaban. Los números naturales se usan para la el DNI, los números

Más detalles

Lección 1: Números naturales. Sistema de numeración decimal y orden

Lección 1: Números naturales. Sistema de numeración decimal y orden Lección 1: Números naturales. Sistema de numeración decimal y orden Sistema de numeración Los números naturales son los que usamos para contar y forman un conjunto infinito, un conjunto que no se acaba.

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #3: jueves, 2 de junio de 2016. 3 Decimales 3.1 Sistema de numeración

Más detalles

C.E.I.P. Ignacio Halcón. Proyecto Curricular. Matemáticas

C.E.I.P. Ignacio Halcón. Proyecto Curricular. Matemáticas Fracciones Decimales y Porcentajes - 5º Las Fracciones y los Números Decimales Rocío ha pintado el tablero en franjas de colores. Indica la fracción que representa cada uno de esos colores. Hemos dividido

Más detalles

UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES

UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES 1. PARTES DE UN NÚMERO DECIMAL. 2. LECTURA Y ESCRITURA DE DECIMALES. 3. DESCOMPOSICIÓN DE NÚMEROS. DECIMALES Y VALOR RELATIVO DE LAS CIFRAS. 4. COMPARACIÓN Y ORDENACIÓN

Más detalles

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006 LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES Los números decimales tienen dos partes separadas por una coma. 28,246 es un número decimal. Parte entera Parte decimal 6º de E. Primaria Decenas

Más detalles

6º lección TEMA 6.- LAS FRACCIONES

6º lección TEMA 6.- LAS FRACCIONES º lección TEMA.- LAS FRACCIONES -.Los términos de una fracción son el numerador y el denominador. -. El denominador indica el número de partes iguales en que se divide la unidad. -. El numerador indica

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES 1. SISTEMA DE NUMERACIÓN DECIMAL. 2. LECTURA, ESCRITURA, DESCOMPOSICIÓN Y ORDENACIÓN DE NÚMEROS NATURALES. 3. SUMA DE NÚMEROS NATURALES. PROPIEDADES. 4. RESTA

Más detalles

Lección 13: Unidades de área del sistema métrico decimal

Lección 13: Unidades de área del sistema métrico decimal LECCIÓN 13 Lección 13: Unidades de área del sistema métrico decimal Las unidades de área del Sistema Métrico Decimal se basan en las unidades de longitud del mismo sistema. Por ejemplo, un centímetro cuadrado

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL. 2.533 Ante período

SISTEMA DE NUMERACIÓN DECIMAL. 2.533 Ante período Los números Decimales, esas comas SISTEMA DE NUMERACIÓN DECIMAL Relación Fracción-Nº Decimal. Parte entera Parte decimal 2.533 Ante período Período Toda fracción se puede escribir en forma decimal, para

Más detalles

Sistema Decimal. Prof. Maria Peiró

Sistema Decimal. Prof. Maria Peiró Sistema Decimal Prof. Maria Peiró .- Número: Es la expresión que relaciona la Unidad y la Cantidad. Se representa con un símbolo, o un conjunto de símbolos. El número es un concepto, mental y abstracto,

Más detalles

Guía 1: Fracciones decimales

Guía 1: Fracciones decimales Guía : Fracciones decimales Las fracciones decimales son aquellas que tienen como denominador un múltiplo de (, 0, 000) y por numerador un número cualquiera. Los décimos, centésimos y milésimos se pueden

Más detalles

DECIMALES. Ejercicio nº 1.- a Expresa en forma de fracción: a.1) 2,3. a.2) 2,08. 31 7 b) Escribe en forma decimal las fracciones: y.

DECIMALES. Ejercicio nº 1.- a Expresa en forma de fracción: a.1) 2,3. a.2) 2,08. 31 7 b) Escribe en forma decimal las fracciones: y. DECIMALES Ejercicio nº 1.- a Expresa en forma de fracción: a.1) 1,2 a.2) 2,08 1 7 b) Escribe en forma decimal las fracciones: y. 0 Justifica, previamente, si los decimales van a ser exactos o periódicos.

Más detalles

00-A-1/12. Recordamos. Numeración Lectura de un número natural. Nombre:

00-A-1/12. Recordamos. Numeración Lectura de un número natural. Nombre: 00-A-1/12 Recordamos. Numeración Lectura de un número natural Un número de tres o menos cifras se nombra primero la centena, después la decena y por último la unidad. El número 548 se lee quinientos cuarenta

Más detalles

1. El sistema de los números reales

1. El sistema de los números reales 1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos

Más detalles

Números decimales. 1.1. Lectura de las fracciones decimales

Números decimales. 1.1. Lectura de las fracciones decimales Números decimales 1. Fracción decimal Son de uno muy frecuente y se las representa con la notación particular, que consiste en escribir sólo el numerador y recordar el número de ceros que siguen a la unidad

Más detalles

Hay dos excepciones: - con el 2, por ejemplo: 1/2: Un medio - con el 3, por ejemplo:1/3: Un tercio

Hay dos excepciones: - con el 2, por ejemplo: 1/2: Un medio - con el 3, por ejemplo:1/3: Un tercio Las FRACCIONES son números que representan trozos o partes de la unidad. Los números enteros y las fracciones forman el conjunto de los NÚMEROS RACIONALES (Q). Se leen comenzando por el número de arriba

Más detalles

Lección 11: Fracciones. Equivalencia y orden

Lección 11: Fracciones. Equivalencia y orden GUÍA DE MATEMÁTICAS I LECCIÓN Lección : Fracciones. Equivalencia y orden Fracciones equivalentes No siempre podemos trabajar con unidades divididas decimalmente; con frecuencia nos conviene partir de otra

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

UNIDAD 5. FRACCIONES Y OPERACIONES

UNIDAD 5. FRACCIONES Y OPERACIONES UNIDAD. FRACCIONES Y OPERACIONES. FRACCIONES.. LA FRACCIÓN COMO OPERADOR Y COMO NÚMERO.. FRACCIONES EQUIVALENTES.. REDUCCIÓN DE FRACCIONES A COMÚN DENOMINADOR.. OPERACIONES CON FRACCIONES.. FRACCIONES

Más detalles

Las fracciones y sus términos

Las fracciones y sus términos Las fracciones Las fracciones y sus términos Comparación de fracciones con la unidad Comparación de fracciones entre sí Fracciones decimales La fracción de una cantidad Fracciones equivalentes Simplificar

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS NÚMEROS NATURALES: Son los que utilizamos para contar Ejemplo: Contar el número de alumnos de la clase, escribir el número de la matrícula de un coche Se representan N{0,1,2, } Ejercicio:

Más detalles

TEMA 6. LAS FRACCIONES. Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales.

TEMA 6. LAS FRACCIONES. Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales. 1. LA FRACCIÓN Y SUS TÉRMINOS TEMA 6. LAS FRACCIONES Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales. Fracción es una o varias partes iguales

Más detalles

1 Números racionales

1 Números racionales 8 _ 0-0.qxd //0 : Página Números racionales INTRODUCCIÓN Esta unidad desarrolla conceptos y técnicas ya conocidos de otros cursos. Sin embargo, es conveniente repasar las distintas interpretaciones que

Más detalles

6,4 cm NÚMEROS DECIMALES. F. Cano Cuenca

6,4 cm NÚMEROS DECIMALES. F. Cano Cuenca 6,4 cm NÚMEROS DECIMALES F. Cano Cuenca Los símbolos pictográficos utilizados en este documento proceden del portal ARASAAC (http://catedu.es/arasaac/). Son parte de una obra colectiva propiedad de la

Más detalles

Números Reales. 87 ejercicios para practicar con soluciones. 1 Ordena de menor a mayor las siguientes fracciones: y

Números Reales. 87 ejercicios para practicar con soluciones. 1 Ordena de menor a mayor las siguientes fracciones: y Números Reales. 8 ejercicios para practicar con soluciones Ordena de menor a mayor las siguientes fracciones: y 8 Reducimos a común denominador: 0 80 0 00 0 y 0 0 0 0 0 0 8 0 El orden de las fracciones,

Más detalles

Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes :

Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes : Las fracciones Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes : En un partido de baloncesto, que está dividido en cuatro tiempos

Más detalles

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1.

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1. UNIDAD 6: FRACCIONES ÍNDICE 6. Conocimiento de fracciones: 6.. Términos de las fracciones. 6.. Representación 6.. Interpretación 6. Lectura y escritura de fracciones. 6. Comparación de fracciones. 6..

Más detalles

1. Ordena de menor a mayor los siguientes números: a) 37 132 49 29 348 231 b) 89 73 405 732 327 234. Dos mil veinte Treinta y nueve

1. Ordena de menor a mayor los siguientes números: a) 37 132 49 29 348 231 b) 89 73 405 732 327 234. Dos mil veinte Treinta y nueve Objetivo Nombre: Fecha: SISTEMA DE NUMERACIÓN DECIMAL 1. Ordena de menor a mayor los siguientes números: a) 37 132 49 29 348 231 b) 89 73 40 732 327 234 2. Escribe con palabras los siguientes números:

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra 3. Los números racionales 1. Los números racionales o fraccionarios Fracción es una o varias partes iguales en que dividimos la unidad. Las fracciones representan siempre

Más detalles

FRACCIONES Y NÚMEROS RACIONALES. obtienen al dividir la unidad en n partes iguales.

FRACCIONES Y NÚMEROS RACIONALES. obtienen al dividir la unidad en n partes iguales. ESCUELA SECUNDARIA No. 264 MIGUEL SERVET GUÍA PARA EL EXAMEN DE MATEMÁTICAS DE 1 A, 1 B, 1 C, 1 D, CORRESPONDIENTE AL PRIMER BIMESTRE. La siguiente información te servirá para que estudies, sólo deberás

Más detalles

Guía de Matemáticas Primer Grado

Guía de Matemáticas Primer Grado Guía de Matemáticas Primer Grado 1 Cómo recibe el nombre de nuestro sistema de numeración y que se agrupa de diez en diez las unidades, centenas, etc.? a) Sistema natural b) Sistema vigesimal c) Sistema

Más detalles

Tema 1. Números naturales, operaciones y divisibilidad. El trabajo en equipo y el trabajo científico.

Tema 1. Números naturales, operaciones y divisibilidad. El trabajo en equipo y el trabajo científico. Tema 1. Números naturales, operaciones y divisibilidad. El trabajo en equipo y el trabajo científico. 1.- Estudio de los números naturales 1.1. Concepto de número natural El conjunto de los números naturales

Más detalles

SIGNIFICADO DE LOS NÚMEROS ENTEROS: POSITIVOS Y NEGATIVOS

SIGNIFICADO DE LOS NÚMEROS ENTEROS: POSITIVOS Y NEGATIVOS OBJETIVO 1 SIGNIICADO DE LOS NÚMEROS ENTEROS: POSITIVOS Y NEGATIVOS NOMBRE: CURSO: ECHA: NÚMEROS NEGATIVOS En nuestra vida diaria observamos, leemos y decimos expresiones del tipo: a) Hemos dejado el coche

Más detalles

EL CONJUNTO DE LOS NÚMEROS REALES

EL CONJUNTO DE LOS NÚMEROS REALES MÓDULO 1 Curso: Matemática EL CONJUNTO DE LOS NÚMEROS REALES UNIVERSIDAD DE PANAMÁ CENTRO REGIONAL UNIVERSITARIO DE BOCAS DEL TORO Introducción Los estudiantes que inician el curso de Matemática a nivel

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 3º ESO Matemáticas Apuntes para trabajo del alumnos en el aula. 1. Fracciones. Números racionales Si se multiplican o dividen el numerador y el denominador de una fracción por un

Más detalles

( ) ( ) = ( ) = ( ) ) ( ( ) c) 128. 2 2 b) 7 7 3 4. c) 6 : 6. 2 2 2 7 7 7 c) 6 : 6 6 6. Tema 2 - Hoja 1: Potencias de exponente entero y fraccionario

( ) ( ) = ( ) = ( ) ) ( ( ) c) 128. 2 2 b) 7 7 3 4. c) 6 : 6. 2 2 2 7 7 7 c) 6 : 6 6 6. Tema 2 - Hoja 1: Potencias de exponente entero y fraccionario Tema - Hoja : Potencias de exponente entero y fraccionario Expresa los números como multiplicación de factores iguales y luego en forma de potencia: a b c 8 d 6 ( ( ( a = b = = = ( c 8 d = 6 = Expresa

Más detalles

Capítulo 1. El Conjunto de los números Reales

Capítulo 1. El Conjunto de los números Reales Capítulo El Conjunto de los números Reales Contenido. El conjunto de los números Naturales................................. 4. El conjunto de los números Enteros................................... 4. El

Más detalles

MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural.

MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Múltiplos de un número Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. Por ejemplo, si multiplicamos 9x2

Más detalles

En el sistema de numeración decimal, diez unidades de un orden cualquiera forman una unidad de orden inmediato superior.

En el sistema de numeración decimal, diez unidades de un orden cualquiera forman una unidad de orden inmediato superior. TEMA 1 NÚMEROS NATURALES En el sistema de numeración decimal, diez unidades de un orden cualquiera forman una unidad de orden inmediato superior. 1 unidad de = 10 centenas de = 1.000.000 1 decena de =

Más detalles

NOTACIÓN CIENTÍFICA Y CIFRAS SIGNIFICATIVAS. GRM. Física I. Semestre 2014-1

NOTACIÓN CIENTÍFICA Y CIFRAS SIGNIFICATIVAS. GRM. Física I. Semestre 2014-1 NOTACIÓN CIENTÍFICA Y CIFRAS SIGNIFICATIVAS 1 REGLAS DE LOS EXPONENTES Algunos ejemplos: 2 NOTACIÓN CIENTÍFICA Manera compacta de reportar un número muy grande: ej. número de átomos en el cuerpo humano

Más detalles

SISTEMAS DE NUMERACIÓN

SISTEMAS DE NUMERACIÓN SISTEMAS DE NUMERACIÓN BINARIO, OCTAL Y HEXADECIMAL EDICIÓN: 091113 LUIS GONZÁLEZ DEPARTAMENTO DE TECNOLOGÍA I.E.S. SANTA EUGENIA SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos

Más detalles

Números decimales. Valor posicional

Números decimales. Valor posicional Números es. Valor posicional Observa estos números es y completa las oraciones.,8,6 87,87 86,0 9,09 El número,6 tiene un en la parte. El número 9,09 tiene un 9 en la parte entera. El número 86,0 tiene

Más detalles

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES 1 2 MÚLTIPLOS DE UN NÚMERO Un número es múltiplo de otro si se obtiene multiplicando este número por otro número natural. Ejemplo: 12 es múltiplo

Más detalles

LECCIÓN 9 5 PROBLEMAS RESUELTOS

LECCIÓN 9 5 PROBLEMAS RESUELTOS LECCIÓN 9 PROBLEMAS RESUELTOS Problema. El largo de un rectángulo mide 8 m y su ancho mide 2 m. Cuál de las siguientes es la mayor longitud de una varilla que cabe exactamente tanto en el largo como en

Más detalles

9,7 5 2,6 5 0,5 5. Unidades decimales En forma de fracción En forma decimal 4 décimas 4/10 0,4 23/100 47 1.000. 3 unidades 5 30 décimas

9,7 5 2,6 5 0,5 5. Unidades decimales En forma de fracción En forma decimal 4 décimas 4/10 0,4 23/100 47 1.000. 3 unidades 5 30 décimas 6 Números decimales Unidades decimales 1 Observa el ejemplo resuelto y completa. 6 10 6 décimas 8 10 8 décimas 14 14 centésimas 26 26 centésimas 2 Escribe. En forma de número decimal 2 10 5 7 0,2 10 5

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

IES Juan García Valdemora NÚMEROS REALES Departamento de Matemáticas NÚMEROS REALES

IES Juan García Valdemora NÚMEROS REALES Departamento de Matemáticas NÚMEROS REALES NÚMEROS REALES. NÚMEROS RACIONALES Desde la aparición de las sociedades humanas los números desempeñan un papel fundamental para ordenar y contar los elementos de un conjunto. Así surgen, en primer lugar,

Más detalles

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de

Más detalles

TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes:

TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes: Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes: En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes

Más detalles

III. NÚMEROS DECIMALES

III. NÚMEROS DECIMALES III. NÚMEROS DECIMALES 3.1 Significado de los números decimales. Partes de un número decimal Tipos de números decimales 3.2 Ordenación de los números decimales. 3.3 Operaciones con números decimales. Suma

Más detalles

5 Números enteros OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Números negativos y positivos. Números enteros.

5 Números enteros OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Números negativos y positivos. Números enteros. 826464 _ 0289-0300.qxd 12/2/07 09:47 Página 289 Números enteros INTRODUCCIÓN El concepto de número entero negativo implica la inclusión en el sistema numérico de unos números que superan el concepto de

Más detalles

LOS NÚMEROS NATURALES

LOS NÚMEROS NATURALES LOS NÚMEROS NATURALES NUESTRO SISTEMA DE NUMERACIÓN (Características) 5 5º de E. Primaria Es decimal porque diez unidades de un orden forman una unidad del orden inmediato superior. 10 U = 1 D 10 D = 1C

Más detalles

Introducción. Desarrollo. Palabras clave. Matemáticas Unidad 1 Significado y uso de los números. Números enteros

Introducción. Desarrollo. Palabras clave. Matemáticas Unidad 1 Significado y uso de los números. Números enteros Matemáticas Unidad 1 Significado y uso de los números Convertir fracciones a su escritura decimal y viceversa. Definir y utilizar los números negativos. Ubicar y representar números enteros, fraccionarios

Más detalles

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original

Más detalles

Lección 8: Potencias con exponentes enteros

Lección 8: Potencias con exponentes enteros GUÍA DE MATEMÁTICAS III Lección 8: Potencias con exponentes enteros Cuando queremos indicar productos de factores iguales, generalmente usamos la notación exponencial. Por ejemplo podemos expresar x, como

Más detalles

Escribe tú ahora el nombre de estos números: 100: 1.000: 1.100

Escribe tú ahora el nombre de estos números: 100: 1.000: 1.100 Escribe tú ahora el nombre de estos números: 976: 754: 100: 1.000: 1.100 45.785: 21654: 8.012: 6.543: Escribe la tabla del 2 y la del 3. 3 x 0 = 0 4 x 0 = 0 Los números mil 1 Presta atención: 1º Representa

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Escribiendo números usando la notación

Escribiendo números usando la notación Unidad 2: Introducción a la notación Bitácora del Estudiante Escribiendo números usando la notación Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. La distancia al satélite es

Más detalles

PROBLEMAS DE DIAMANTE 2.1.1

PROBLEMAS DE DIAMANTE 2.1.1 PROBLEMAS DE DIAMANTE 2.1.1 En cada Problema de diamante, el producto de los dos números a los lados (izquierda y derecha) es el número arriba y la suma es el número de abajo. producto ab Los Problemas

Más detalles

Lección 10: Representación gráfica de algunas expresiones algebraicas

Lección 10: Representación gráfica de algunas expresiones algebraicas LECCIÓN Lección : Representación gráfica de algunas epresiones algebraicas En la lección del curso anterior usted aprendió a representar puntos en el plano cartesiano y en la lección del mismo curso aprendió

Más detalles

00-A-1/24. Nombre: 2, 3, 4, 5, 6,... Si queremos saber la cantidad de bombones que hay en esta caja, los contamos: 1, naturales

00-A-1/24. Nombre: 2, 3, 4, 5, 6,... Si queremos saber la cantidad de bombones que hay en esta caja, los contamos: 1, naturales 00-A-1/24 Si queremos saber la cantidad de bombones que hay en esta caja, los contamos: 1, 2, 3, 4, 5, 6,... Estos números se llaman naturales El sistema de numeración que usamos normalmente se llama cambiando

Más detalles

MATEMÁTICA MÓDULO 1 Eje temático: Números y proporcionalidad

MATEMÁTICA MÓDULO 1 Eje temático: Números y proporcionalidad MATEMÁTICA MÓDULO 1 Eje temático: Números y proporcionalidad 1. CONJUNTOS NUMÉRICOS Empezaremos este curso de preparación PSU revisando los diferentes conjuntos numéricos con los que has trabajado tanto

Más detalles

Comprende e interpreta valores posicionales de los números.

Comprende e interpreta valores posicionales de los números. ENTEROS Y DECIMALES 09 Comprende e interpreta valores posicionales de los números. El maestro recuerda el orden de posición menor al entero (1, 0.1, 0.01, etc); resuelven ejercicios sobre el uso del punto

Más detalles

Victoria Aguilera Fernández

Victoria Aguilera Fernández Victoria Aguilera Fernández G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Fracciones.- / 1 FRACCIÓN Una fracción es la expresión numérica que representa la división de un todo

Más detalles

Los Números Racionales y Decimales. Operaciones.

Los Números Racionales y Decimales. Operaciones. Módulo Uno. Tema 3. Los Números Racionales y Decimales. Operaciones. Ámbito Científico y Tecnológico. Módulo Uno. Tema 3 Versión: Febrero 2013 Los Números Racionales y Decimales. Operaciones. Educación

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE Que se pueden escribir de la forma b a, donde a y b son enteros y b 0. Operaciones: suma,

Más detalles

Los números enteros. > significa "mayor que". Ejemplo: 58 > 12 < significa "menor que". Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor

Los números enteros. > significa mayor que. Ejemplo: 58 > 12 < significa menor que. Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor Los números enteros Los números enteros Los números enteros son aquellos que permiten contar tanto los objetos que se tienen, como los objetos que se deben. Enteros positivos: precedidos por el signo +

Más detalles

Escribe los números que faltan en esta tabla. Nombre:... Fecha:... Mª Carmen Tabarés

Escribe los números que faltan en esta tabla. Nombre:... Fecha:... Mª Carmen Tabarés Escribe los números que faltan en esta tabla. 0 1 2 13 16 24 28 32 35 39 40 47 51 54 59 60 63 66 72 75 78 84 87 91 96 99 Completa estas series. 40 42 52 60 30 28 26 10 La decena. ~ 10 unidades forman U

Más detalles

Unidad 1. Números naturales

Unidad 1. Números naturales Unidad 1. Números naturales Matemáticas Múltiplo 1.º ESO / Resumen Unidad 1 NÚMEROS NATURALES USOS QUE TIENEN CÓMO SE EXPRESAN OPERACIONES Contar Ordenar Medir Codificar... Sistema de numeración decimal

Más detalles

qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq LOS NÚMEROS DECIMALES wertyuiopasdfghjklzxcvbnmqwertyui Lectura, escritura,representación

Más detalles

UNIDAD 3. SISTEMA DE NUMERACIÓN DECIMAL. SISTEMA SEXAGESIMAL.

UNIDAD 3. SISTEMA DE NUMERACIÓN DECIMAL. SISTEMA SEXAGESIMAL. UNIDAD 3. SISTEMA DE NUMERACIÓN DECIMAL. SISTEMA SEXAGESIMAL. Al final deberás haber aprendido... Utilizar con soltura el sistema de numeración decimal. Representar números decimales en la recta numérica.

Más detalles

Enteros y Decimales APRENDO JUGANDO

Enteros y Decimales APRENDO JUGANDO 09 Lección Refuerzo Matemáticas Enteros y Decimales APRENDO JUGANDO Competencia Comprende e interpreta valores posicionales de los números. Diseño instruccional El maestro recuerda el orden de posición

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

La lección de hoy es sobre las expresiones algebraicas. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.1

La lección de hoy es sobre las expresiones algebraicas. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.1 La lección de hoy es sobre las expresiones algebraicas. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.1 Las expresiones algebraicas consisten en uno o más números y variables, junto

Más detalles

1. LOS NÚMEROS DE TRES CIFRAS

1. LOS NÚMEROS DE TRES CIFRAS 1. LOS NÚMEROS DE TRES CIFRAS Los números son necesarios para contar objetos, para realizar compras, para decir la hora, para expresar la edad de una persona, para numerar las páginas de un libro, etc.

Más detalles

Lección 8: Suma y resta de en teros

Lección 8: Suma y resta de en teros LECCIÓN 8 bajo el nivel del mar, y el buzo B baja a 81 metros bajo el nivel del mar. Cuál de los dos está más cerca de la superficie? d) El saldo de la empresa Caluro, S.A. es de $12 807 en números rojos,

Más detalles

1. ESQUEMA - RESUMEN Página. 2. EJERCICIOS DE INICIACIÓN Página. 3. EJERCICIOS DE DESARROLLO Página. 4. EJERCICIOS DE AMPLIACIÓN Página

1. ESQUEMA - RESUMEN Página. 2. EJERCICIOS DE INICIACIÓN Página. 3. EJERCICIOS DE DESARROLLO Página. 4. EJERCICIOS DE AMPLIACIÓN Página 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 12 3. EJERCICIOS DE DESARROLLO Página 25 4. EJERCICIOS DE AMPLIACIÓN Página 26 5. EJERCICIOS DE REFUERZO Página 28 6. EJERCICIOS RESUELTOS

Más detalles

NÚMEROS DECIMALES. Teoría 3 er Ciclo Primaria Colegio Romareda 2011/2012 Página 28

NÚMEROS DECIMALES. Teoría 3 er Ciclo Primaria Colegio Romareda 2011/2012 Página 28 Teoría 3 er Ciclo Primaria Colegio Romareda 20/202 Página 28 NÚMEROS DECIMALES Los números decimales nacen como una forma especial de escritura de las fracciones decimales, de manera que la coma separa

Más detalles

Desarrolla tus habilidades

Desarrolla tus habilidades EDUCANDO CORAZONES PARA TRANSFORMAR EL MUNDO Profesores: Nayaret Sanhueza Inostroza Carlos Sanhueza Valenzuela GUÍA Nº 1: NÚMEROS NATURALES Contenidos: - Lectura y escritura de números naturales - Composición

Más detalles

Los números de seis cifras

Los números de seis cifras Los números de seis cifras Trabajamos las centenas de millar y los millones Diez decenas de millar (DM) forman una centena de millar (CM). CM DM UM C D U CM DM UM C D U 1 CM = 10 DM 1 CM = 10 DM = 100

Más detalles

TEMA 2. En esta unidad didáctica se da un repaso teórico general y se realizan una serie de actividades sencillas de aplicación.

TEMA 2. En esta unidad didáctica se da un repaso teórico general y se realizan una serie de actividades sencillas de aplicación. FRACCIONES TEMA 2 INTRODUCCIÓN Para aplicar esta unidad didáctica es conveniente que ya se hayan estudiado las fracciones en clase de forma tradicional, es decir, empleando la pizarra, el papel y el lápiz.

Más detalles

Por ejemplo: el número se tiene que separar por una coma cada tres números contando de derecha a izquierda, entonces queda 678,345.

Por ejemplo: el número se tiene que separar por una coma cada tres números contando de derecha a izquierda, entonces queda 678,345. LEYENDO LOS NÚMEROS 13 Pone en práctica la lectura y escritura de los números. El maestro recuerda a sus alumnos que para leer una cifra se habrá de separar por una coma; explica de qué forma se pone y

Más detalles

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador.

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador. FRACCIONES Una fracción, en general, es la expresión de una cantidad dividida por otra, y una fracción propia representa las partes que tomamos de un todo. El ejemplo clásico es el de un queso que partimos

Más detalles

Developed in Consultation with Texas Educators

Developed in Consultation with Texas Educators Developed in Consultation with Texas Educators Índice Carta al estudiante.......................................6 Lista de revisión para tomar exámenes......................7 Correlación de expectativas

Más detalles

NÚMEROS NÚMEROS REALES

NÚMEROS NÚMEROS REALES NÚMEROS NÚMEROS REALES A los números que utilizamos para contar la cantidad de elementos de un conjunto no vacío se los denomina números naturales. Designamos con N al conjunto de dichos números. N = {,,,,,...

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES

UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES ÍNDICE 7.1 Unidad decimal. 7.2 Escritura, lectura y descomposición de números decimales. 7.2.1 Escritura de números decimales. 7.2.2 Lectura de números decimales.

Más detalles

Unidad 1 Los números de todos los días

Unidad 1 Los números de todos los días CUENTAS ÚTILES Módulo nivel intermedio. 3ra. Edición. Primaria Unidad 1 Los números de todos los días Los números naturales son aquellos que utilizamos para contar: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

Más detalles

1 Números naturales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Sistema de numeración decimal. Orden, equivalencia y posición de los números.

1 Números naturales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Sistema de numeración decimal. Orden, equivalencia y posición de los números. 826464 _ 0237-0248.qxd 2/2/07 09:8 Página 237 Números naturales INTRODUCCIÓN El estudio de los números naturales implica el conocimiento y la comprensión del sistema de numeración decimal que actualmente

Más detalles

EJERCICIOS DE NÚMEROS REALES

EJERCICIOS DE NÚMEROS REALES EJERCICIOS DE NÚMEROS REALES 1. Clasifica los siguientes números en racionales o irracionales: 3/5, 0 75, 7, -4, 632, 0 141441114 2. Escribe tres números irracionales que estén dados por raíces y tres

Más detalles

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS)

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS) UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE HORAS) Saberes procedimentales Saberes declarativos Identifica y realiza operaciones básicas con expresiones aritméticas. Jerarquía de las operaciones aritméticas.

Más detalles

Испанский язык Количественные числительные. испанский. испанский. испанский. испанский. испанский. испанский. испанский. испанский.

Испанский язык Количественные числительные. испанский. испанский. испанский. испанский. испанский. испанский. испанский. испанский. 16 17 18 20 21 22 23 30 33 35 40 43 50 52 54 56 diecisiete dieciseis veinte dieciocho veintidós veintiuno treinta veintitres treinta y cinco treinta y tres cuarenta y tres cuarenta cincuenta y dos cincuenta

Más detalles