FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador."

Transcripción

1 FRACCIONES Una fracción, en general, es la expresión de una cantidad dividida por otra, y una fracción propia representa las partes que tomamos de un todo. El ejemplo clásico es el de un queso que partimos en porciones. En el dibujo, hemos hecho 8 porciones, 3 rosas y 5 verdes. Si tomamos las 3 rosas, representan 3 porciones de las ocho en las que hemos dividido el queso, es decir 3 / 8 del queso, y si tomamos las 5 verdes, representan 5 porciones de las ocho en las que hemos dividido el queso, es decir 5 / 8 del queso. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador. Para leer una fracción, el numerador se lee normalmente pero, como veremos a continuación, el denominador tiene una forma especial de leerse. Denominador Lectura Ejemplos 2 medios 5 / 2 = cinco medios 3 tercios 2 / 3 = dos tercios 4 cuartos 3 / 4 = tres cuartos 5 quintos 4 / 5 = cuatro quintos 6 sextos 5 / 6 = cinco sextos 7 séptimos 6 / 7 = seis séptimos 8 octavos 7 / 8 = siete octavos 9 novenos 8 / 9 = ocho novenos 10 décimos 9 / 10 = nueve décimos mayor de 10 Se agrega al número la terminación avos 10 / 11 = diez onceavos Clasificación De Las Fracciones Las fracciones se pueden clasificar de distintas formas; en la siguiente tabla se muestran las características de las más importantes. Tipo Características Ejemplos Propia El numerador es menor que el denominador 1 / 2, 7 / 9 Impropia El numerador es mayor que el denominador 4 / 3, 5 / 2 Homogéneas Tienen el mismo denominador 2 / 5, 4 / 5 Heterogéneas Tienen distinto denominador 3 / 7, 2 / 8 Entera Equivalentes El numerador es igual al denominador; representan un entero Cuando tienen el mismo valor. Dos fracciones son equivalentes si son iguales sus productos cruzados 6 / 6 = 1 2 / 3 y 4 / 6 2 x 6 = 3 x 4 Si en una fracción multiplicamos o dividimos el numerador y el denominador por un mismo número, obtenemos una fracción equivalente a la primera, pues ambas tienen el mismo valor. Por ejemplo:

2 1 (1 x 4) 4 3 (3 : 3) 1 = = = 0,5 ; = = = 0,2 2 (2 x 4) 8 15 (15 : 3) 5 Simplificar o Reducir una fracción consiste en hallar la fracción equivalente más pequeña posible; para ello, lo primero que hacemos es buscar el mayor número que divide exactamente (resto = 0) al numerador y al denominador (mayor divisor común) y después dividimos el numerador y el denominador por este mayor divisor común, ya que como hemos visto antes, dividiendo el numerador y el denominador de una fracción por un mismo número obtenemos una fracción equivalente (de igual valor). Por ejemplo: Simplificar 30/42 Los números que dividen exactamente a 30 (divisores) son: 2, 3, 5, 6, 10 y 15. Los números que dividen exactamente a 42 (divisores) son: 2, 3, 6, 7, 14 y 21. Los divisores comunes a ambos son 2, 3 y 6. El mayor divisor común es 6, por tanto, dividimos numerador y denominador por /6 5 = = 42 42/6 7 Cuando en una fracción, el numerador y el denominador no tienen ningún divisor común, se dice que es una fracción irreducible. Suma Y Resta De Fracciones Si las fracciones tienen el mismo denominador (homogéneas), se suman o restan los numeradores y se pone el mismo denominador. Ejemplo: 3 2 (3 + 2) (5 2) 3 + = = ; = = Si las fracciones tienen distinto denominador (heterogéneas), lo primero que tenemos que hacer es igualar los denominadores. Para conseguirlo, buscamos dos fracciones equivalentes a las dadas, multiplicando el numerador y el denominador de cada una de ellas por el denominador de la otra. Una vez obtenido el mismo denominador, procedemos como en el caso anterior, sumamos los numeradores y ponemos el denominador común. Ejemplo: 2 3 (2 x 7) (3 x 5) = + = + = 5 7 (5 x 7) (7 x 5) Multiplicación De Fracciones El producto de varias fracciones es igual a otra fracción que tiene por numerador el producto de los numeradores y por denominador el producto de los denominadores. Ejemplo: (3 x 4 x 2) 24 2 x x = = simplificando = (4 x 5 x 3) 60 5

3 Fracción De Un Número Calcular la fracción de un número es lo mismo que multiplicar la fracción por ese número. Ejemplo: Calcular los 2 / 3 de 60: 2 2 (2 x 60) 120 de 60 = x 60 = = = División De Fracciones El cociente de dos fracciones es otra fracción que tiene por numerador el producto del numerador de la primera por el denominador de la segunda, y por denominador el producto del denominador de la primera por el numerador de la segunda. Ejemplo: 4 3 (4 x 5) 20 : = = 9 5 (9 x 3) 27 NÚMEROS DECIMALES Los números decimales son valores que denotan números racionales e irracionales, es decir que los números decimales son la expresión de números no enteros, que a diferencia de los números fraccionarios, no se escriben como el cociente de dos números enteros sino como una aproximación de tal valor. Qué son números decimales? Un número decimal, por definición, es la expresión de un número no entero, que tiene una parte decimal. Es decir, que cada número decimal tiene una parte entera y una parte decimal que va separada por una coma, y son una manera particular de escribir las fracciones como resultado de un cociente inexacto. La parte decimal de los valores decimales se ubica al lado derecho de la coma y en la recta numérica, esta parte estaría ubicada entre el cero y el uno, mientras que la parte entera se la escribe en la parte derecha. En el caso de que un número decimal no posea una parte entera, se procede a escribir un cero al lado izquierdo o delante de la coma. Aquí varios ejemplos para ilustrar estos casos: 7,653 En este valor podemos ver que el número entero se encuentra primero es siete o 7, delante de la coma o a su izquierda, mientras que la parte decimal, que en es te caso contra de tres cifras es 653 y se encuentra a la derecha de la cifra. 0,23 En este otro ejemplo, vemos que la parte decimal tiene solo dos cifras, pero la parte entera se reduce a cero, por lo tanto se deduce que la parte entera es nula y debe ser expresada de esa manera ,23 = 4,23

4 Este ejercicio nos demuestra como la parte entera se une con la parte decimal a través de una suma que indica que la parte entera es 4 mientras que la parte decimal se reduce a un número menor que uno pero mayor que cero, en este caso 0,23. Clasificación de los números decimales Existen varias formas de separar los números decimales; puede ser con una coma, con un punto o con un apóstrofe según se acostumbre y se desee, pero también existen varias formas de números decimales, entre los que tenemos: Números decimales exactos.- estos son valores cuya parte decimal posee un número limitado de cifras decimales y se pueden escribir sin un excesivo esfuerzo, como estos: 0,75; 2,6563; 6,32889 Números decimales periódicos.- son aquellos que tienen un número ilimitado o infinito de cifras decimales, pero que se repiten en un patrón o período determinado que es visible dentro de un número de cifras variable en cada caso. Para denotar que se trata de un número infinito, que no puede ser escrito indefinidamente por un ser humano, se utilizan tres puntos seguidos que significa infinidad, por ejemplo. 1, ; 6, ; 5, Números decimales periódicos puros.-donde los números decimales son parte del mismo grupo como: 3, Números decimales periódicos mixtos.- donde existen cifras que están fuera del periodo o patrón de cifras decimales, como en: 9, Números decimales no periódicos.- estos números tienen cifras decimales infinitas que no pueden ser definidas como un patrón, un buen ejemplo de números decimales no periódicos, son los números irracionales, como: El número Pi, o como se lo conoce mejor con su símbolo π. Su valor es el cociente entre la longitud o perímetro de la circunferencia y la longitud de su diámetro. De él se han calculado millones de cifras decimales y aún sigue sin ofrecer un patrón. La aproximación de su número es Composición de un número decimal Los números decimales se componen de cifras que son separadas de la parte entera con una como, un punto o un apóstrofe, como se señalaba en la parte anterior. Pero estas cifras también tienen una característica que las diferencia según la posición de su denominador. Las décimas se ubican un lugar después de la coma o separador; las centésimas están dos lugares después del separador; las milésimas en el tercer lugar y así podríamos seguir con las diezmilésimas, las cienmilésimas, etc. Por ejemplo en el número 7,951 notamos que 7 es la parte entera, 9 es la décima, 5 es la centésima y 1 es la milésima.

5 Operaciones con números decimales Suma y resta Para sumar y restar números decimales, debemos anotar cada valor en forma vertical, para facilitar la operación, de tal manera que la coma quede en la misma columna, incluso si la parte entera de un valor tenga más cifras que el otro, como se ve en el ejemplo siguiente: 3,48 9,657 A continuación, se iguala el número de cifras decimales de cada valor si es necesario, añadiendo uno o varios ceros al valor con menos cifras decimales para que queden con el mismo número, pues el cero añadido a la derecha de la parte decimal no altera el valor, así: 3,480 9,6570 Finalmente se suma de manera tradicional, sin tomar en cuenta la coma, y al resultado final se le añade la coma en l misma posición que se encuentra en ambos valores sumados o restados. 3,480 +9,657 =13,137 Multiplicación Para multiplicar dos números decimales, o un número decimal por un número entero, se resuelve la operación sin tomar en cuenta la coma. Luego el número de cifras decimales será la suma del número de cifras decimales de los dos factores, es decir que si un factor tiene dos cifras decimales y el otro tiene una cifra decimal, quiere decir que el resultado deberá tener tres cifras decimales, como en el siguiente ejemplo 3,25 x 2,7 325 X =8,775 Ahora con un ejemplo, como multiplicar un número decimal por un entero, donde simplemente se siguen las reglas anteriores, con la diferencia de que el número entero tiene cero cifras decimales por lo tanto el número de cifras decimales del resultado se mantiene como en el factor decimal, veamos: 3,25 x =650 =6,50 Para multiplicar números decimales por cifras que son múltiplos de diez, solo recorremos la coma hacia la derecha tantos espacios como ceros tenga el múltiplo de diez, y en el caso de que tengamos que seguir recorriendo y ya no haya cifras decimales, añadimos ceros al resultado, de esta manera: 3, = 35,68 3, = 356,8

6 3, = , = División Para dividir números decimales, tenemos varios casos según los decimales se encuentren en el divisor, en el dividendo o en ambos. Para dividir cuando el decimal se encuentra en el divisor, se debe recorrer la coma hasta el final de la cifra del divisor, mientras que en el dividendo se añaden ceros por el mismo número de espacios recorridos por la coma. Y se procede a dividir de manera normal / 36, / 3658 Cuando el dividendo y el divisor son números decimales, recorremos las comas por tantos espacios sean necesarios para que desaparezca del número con más cifras decimales. Mientras que en el número que tiene menos cifras decimales se irán añadiendo ceros según los espacios que falten, y se procede a dividir de la manera tradicional. 32,698 / 8, / 8250 Para dividir un número decimal para una cifra múltiplo de diez se debe retroceder la coma hacia la izquierda según el número de ceros que tenga el múltiplo de diez, y si excede el número de espacios, se debe añadir ceros mientras se mantiene la coma y un cero a su izquierda, como a continuación. 3568/10 = 356,8 3568/100 = 35, /1000 = 3, /10000 = 0, / = 0,03568 Fracción a decimal Para transformar una fracción a número decimal basta dividir el numerador por el denominador. Ejemplos: Otro: Transformar decimal a fracción Los números decimales pueden clasificarse en: a) decimales finitos: son aquellos que tienen fin, es decir, no hay un número que se repita.

7 Ejemplos: 4,56 ; 0,0003 ; 2,9876 : 0,1 ; 3,42, etc. Siempre que se divida el numerador por el denominador, y la división termine y se obtenga resto cero, la división es exacta y su resultado será un decimal finito. Un decimal finito representa una fracción decimal. b) decimales infinitos: son aquellos números que no se acaban, es decir, hay uno o varios números que se repiten infinitamente. Por ejemplo: 0, es infinito por que el 3 se repite indefinidamente. Estos números son divisiones inexactas. No representan una fracción decimal. Los decimales infinitos pueden ser: infinitos puros, infinitos periódicos e infinitos semiperiódicos. Al conjunto de los números racionales sólo pertenecen los números decimales infinitos periódicos y semiperiódicos. Los decimales infinitos puros pertenecen al conjunto de los números irracionales, porque no pueden transformarse en fracción. c) decimales infinitos periódicos: son aquellos que tiene una o más cifras que se repiten sucesiva e infinitamente, formando el período. Se escribe en forma abreviada coronando al período con un pequeño trazo. d) decimales infinitos semiperiódicos: En estos decimales aparecen una o más cifras antes del período. El número formado por dichas cifras se llama anteperíodo (es un número que está entre la coma y la rayita). Transformación de un decimal finito a fracción Se convierte el número a fracción decimal y, si se puede, se simplifica. Para transformar el número decimal a fracción decimal se utilizan potencias de diez (10, 100, 1.000, etc.). Se colocan tantos ceros como cifras decimales tenga el número. Ejemplo 1:

8 Se anota el número, en este caso 45. Se divide por 1.000, porque hay tres espacios decimales ocupados, luego simplificamos por 5 Ejemplo 2: Transformación de un decimal infinito periódico en fracción Los pasos a seguir son los siguientes: 1) Se anota el número y se le resta él o los números que están antes del período (de la rayita) 2) Se coloca como denominador un 9 por cada número que está en el período (si hay un número bajo la rayita se coloca un 9, si hay dos números bajo el período se coloca 99, etc.). Si se puede simplificar, se simplifica. Otro ejemplo: Expresar como fracción 57, Transformación de decimal infinito semiperiódico a fracción 1) El numerador de la fracción se obtiene, al igual que en el caso anterior, restando al número la parte entera y el anteperíodo, o sea, todo lo que está antes de la rayita. 2) El denominador de la fracción se obtiene colocando tantos 9 como cifras tenga el período y tantos 0 como cifras tenga el anteperíodo. Como siempre, el resultado se expresa como fracción irreductible (no se puede simplificar más) o como número mixto.

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1.

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1. UNIDAD 6: FRACCIONES ÍNDICE 6. Conocimiento de fracciones: 6.. Términos de las fracciones. 6.. Representación 6.. Interpretación 6. Lectura y escritura de fracciones. 6. Comparación de fracciones. 6..

Más detalles

MATAFUEGOS DRAGO- DISTRIBUIDORA SAN MARTIN 4752-0841 4755-4702 DISTRIBUIDORA SAN MARTIN. Notas de interés. Fecha: 12/07/2013 CC:

MATAFUEGOS DRAGO- DISTRIBUIDORA SAN MARTIN 4752-0841 4755-4702 DISTRIBUIDORA SAN MARTIN. Notas de interés. Fecha: 12/07/2013 CC: MATAFUEGOS DRAGO- DISTRIBUIDORA SAN MARTIN 4752-0841 4755-4702 DISTRIBUIDORA SAN MARTIN MATAFUEGOS DRAGO Notas de interés Para: SR/S. CLIENTES- De: MATAFUEGOS DRAGODSM Fax: Fecha: 12/07/2013 Páginas: Teléfono:

Más detalles

2º Se lee número que hay antes de la coma, se añade la palabra coma y luego se lee la parte decimal

2º Se lee número que hay antes de la coma, se añade la palabra coma y luego se lee la parte decimal Qué son los decimales? Los decimales son una manera distinta de escribir fracciones con denominadores como 10, 100 y 1,000. Tanto los decimales como las fracciones indican una parte de un entero. Un decimal

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

Lección 11: Fracciones. Equivalencia y orden

Lección 11: Fracciones. Equivalencia y orden GUÍA DE MATEMÁTICAS I LECCIÓN Lección : Fracciones. Equivalencia y orden Fracciones equivalentes No siempre podemos trabajar con unidades divididas decimalmente; con frecuencia nos conviene partir de otra

Más detalles

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2009 Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 0/0/2009 INDICE: 0. UNIDADES DECIMALES: 02. DESCOMPOSICIÓN

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

Números fraccionarios y decimales

Números fraccionarios y decimales Unidad didáctica Números fraccionarios y decimales 1.- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número

Más detalles

TEMA 2. Números racionales. Teoría. Matemáticas

TEMA 2. Números racionales. Teoría. Matemáticas 1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden

Más detalles

UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES

UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES ÍNDICE 7.1 Unidad decimal. 7.2 Escritura, lectura y descomposición de números decimales. 7.2.1 Escritura de números decimales. 7.2.2 Lectura de números decimales.

Más detalles

FRACCIONES. numerador. denominador. Tres cuartos. Cuatro séptimos. Un medio. Once veinteavos. Tres quintos. Cuatro sextos. Ocho décimos.

FRACCIONES. numerador. denominador. Tres cuartos. Cuatro séptimos. Un medio. Once veinteavos. Tres quintos. Cuatro sextos. Ocho décimos. Código Centro 80080 C/ Valderribas, 7 C.P. 8007 Tfno/fax 989 FRACCIONES Una fracción es un número representado por otros dos separados por una línea recta horizontal. Al número de abajo le llamamos denominador

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES . Numeros racionales Ejemplo: TEMA : NÚMEROS REALES 4.............................................. Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible.

Más detalles

UNIDAD III NÚMEROS FRACCIONARIOS

UNIDAD III NÚMEROS FRACCIONARIOS UNIDAD III NÚMEROS FRACCIONARIOS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica los números fraccionarios y realiza operaciones con ellos. Identifica los porcentajes, decimales y fraccionarios y realiza

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B Números Racionales Repaso para la prueba Profesora: Jennipher Ferreira Curso: 7 B Tipos de Fracciones Fracciones propias: Son aquellas en las que el denominador es mayor al numerador, y su valor es menor

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas 1. Fracciones Una fracción es una expresión del tipo a b, donde a y b son números naturales llamados numerador y denominador, respectivamente. 1.1. Interpretación de una fracción a) Fracción como parte

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2

Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2 Instituto Raúl calabrini Ortiz Matemática º año NUMERO RACIONALE En la ecuación 0, todos los números que aparecen son enteros in embargo, cuando tratamos de resolverla, vemos que la ecuación no tiene solución

Más detalles

Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones

Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones Unidad fraccionaria Concepto de fracción La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Concepto de fracción Una fracción es el cociente de dos

Más detalles

OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL

OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL COMPRENDER OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: SIGNIICADO DE LOS NÚMEROS DECIMALES En nuestra vida diaria medimos, calculamos, comparamos, etc. Hablamos de cantidades que no son

Más detalles

TEMA 4: LAS FRACCIONES

TEMA 4: LAS FRACCIONES TEMA : LAS FRACCIONES Hasta ahora has trabajado con números naturales, enteros y decimales, pero sigue habiendo situaciones que no podemos expresar con estos números, por ejemplo, cuando decimos: Medio

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

Unidad 1 Los números de todos los días

Unidad 1 Los números de todos los días CUENTAS ÚTILES Módulo nivel intermedio. 3ra. Edición. Primaria Unidad 1 Los números de todos los días Los números naturales son aquellos que utilizamos para contar: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción

Más detalles

Institución Educativa Distrital Madre Laura

Institución Educativa Distrital Madre Laura Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones

Más detalles

UNIDAD 5. FRACCIONES Y OPERACIONES

UNIDAD 5. FRACCIONES Y OPERACIONES UNIDAD. FRACCIONES Y OPERACIONES. FRACCIONES.. LA FRACCIÓN COMO OPERADOR Y COMO NÚMERO.. FRACCIONES EQUIVALENTES.. REDUCCIÓN DE FRACCIONES A COMÚN DENOMINADOR.. OPERACIONES CON FRACCIONES.. FRACCIONES

Más detalles

TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo:

TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo: TEMA : NÚMEROS REALES. Numeros racionales Ejemplo: 4... Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible. En nuestro caso Otro ejemplo de número racional

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

1 Números racionales

1 Números racionales 8 _ 0-0.qxd //0 : Página Números racionales INTRODUCCIÓN Esta unidad desarrolla conceptos y técnicas ya conocidos de otros cursos. Sin embargo, es conveniente repasar las distintas interpretaciones que

Más detalles

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac FRACCIÓN Contenido 1. Definición... 3 2. Tipos de fracciones..... 8 3. Fracción igual a la unidad 9 4. Fracción propia... 10 5. Fracción impropia... 11 6. Fracciones decimales... 14 7. Fracciones equivalentes...

Más detalles

DIVISION: Veamos una división: Tomamos las dos primeras cifra de la izquierda del dividendo (57).

DIVISION: Veamos una división: Tomamos las dos primeras cifra de la izquierda del dividendo (57). DIVISION: Dividir es repartir un número en grupos iguales (del tamaño que indique el divisor). Por ejemplo: 45/ 5 es repartir 45 en grupos de 5. Los términos de la división son: Dividendo: es el número

Más detalles

IES CUADERNO Nº 3 NOMBRE: FECHA: / / Números decimales

IES CUADERNO Nº 3 NOMBRE: FECHA: / / Números decimales Números decimales Contenidos 1. Números decimales Elementos de un número decimal Redondeo y truncamiento de un decimal 2. Operaciones con decimales Suma de números decimales Resta de números decimales

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

CLASIFICACION DE LOS NUMEROS

CLASIFICACION DE LOS NUMEROS CLASIFICACION DE LOS NUMEROS NÚMEROS NATURALES En el desarrollo de las culturas fue evolucionando esta forma primitiva de representar objetos o cosas reales a través de símbolos naciendo así el primer

Más detalles

primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en

primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en Unidad 1. Conjuntos de números II. Operaciones y expresiones 1. Operaciones con números racionales. Las operaciones con números racionales las estamos realizando desde los grados 12 primarios. 1 + 2 =

Más detalles

GUÍA NÚMERO 2 NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma b

GUÍA NÚMERO 2 NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma b Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO NÚMEROS RACIONALES Los números racionales son todos aquellos

Más detalles

Tema 6: Fracciones. Fracciones

Tema 6: Fracciones. Fracciones Fracciones Un quebrado o número fraccionario se expresa por dos números naturales, el denominador que indica en cuántas partes se ha dividido la unidad y el numerador, que indica cuántas partes de esta

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama 3. NÚMEROS RACIONALES. 3.1. Introducción. Expresiones comunes tales como "un tercio de cerveza", "medio litro de agua", "tres cuartos de kilo de carne", "son las doce cuarto",... no pueden ser representadas,

Más detalles

Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales)

Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales) Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales) Vamos a recordar los conjuntos numéricos estudiados hasta el momento. (1.) Conjunto de los números Naturales Son aquellos que utilizamos

Más detalles

UNIDAD 5: LA DIVISIÓN.

UNIDAD 5: LA DIVISIÓN. UNIDAD 5: LA DIVISIÓN. ÍNDICE 5.1 Repaso de la división de números naturales. 5.1.1 Términos de la división 5.1.2 Palabras clave de la división 5.1.3 Prueba de la división 5.1.4 Tipos de divisiones según

Más detalles

NÚMEROS RACIONALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda

NÚMEROS RACIONALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda NÚMEROS RACIONALES Evaluación A 1. Ordena de menor a mayor estas fracciones: 1 2, 9 20, 18 25, 3 5 Para ordenar fracciones, expresamos la solución mediante las fracciones iniciales, no las equivalentes

Más detalles

Números decimales. 1.1. Lectura de las fracciones decimales

Números decimales. 1.1. Lectura de las fracciones decimales Números decimales 1. Fracción decimal Son de uno muy frecuente y se las representa con la notación particular, que consiste en escribir sólo el numerador y recordar el número de ceros que siguen a la unidad

Más detalles

Los Conjuntos de Números

Los Conjuntos de Números Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes

Más detalles

3 Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Significado de los números decimales. Representación en la recta numérica.

3 Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Significado de los números decimales. Representación en la recta numérica. 829485 _ 024-008.qxd 12/9/07 15:10 Página 27 Números decimales INTRODUCCIÓN RESUMEN DE LA UNIDAD En esta unidad estudiamos el sistema de numeración decimal, e introducimos las denominaciones de la parte

Más detalles

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos

Más detalles

MATEMÁTICAS Cuaderno de ejercicios NÚMEROS REALES

MATEMÁTICAS Cuaderno de ejercicios NÚMEROS REALES MATEMÁTICAS Cuaderno de ejercicios NÚMEROS REALES 1.* Relacionad cada número con su fracción equivalente. a) 0,625 b) c) 3 d) 0,4203821 e) 2.* Indicad si estas parejas están constituidas o no por fracciones

Más detalles

Dos fracciones son equivalentes cuando expresan la misma porción de la unidad. = 4: 8 = 0,5

Dos fracciones son equivalentes cuando expresan la misma porción de la unidad. = 4: 8 = 0,5 TEMA FRACCIONES. FRACCIONES EQUIVALENTES Dos fracciones son equivalentes cuando expresan la misma porción de la unidad. 8 Dos fracciones equivalentes tienen el mismo valor numérico. = : = 0, = : 8 = 0,

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad.

Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad. UNIDAD 6: FRACCIONES 6. Conocimiento de fracciones Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad. 6.. Términos Los términos

Más detalles

Lección 2: Notación exponencial

Lección 2: Notación exponencial GUÍA DE MATEMÁTICAS III Lección 2: Notación exponencial En la lección anterior hemos visto cómo trabajar con números reales y cómo para facilitar el trabajo con ellos es conveniente utilizar aproximaciones,

Más detalles

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras. 1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más

Más detalles

Victoria Aguilera Fernández

Victoria Aguilera Fernández Victoria Aguilera Fernández G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Fracciones.- / 1 FRACCIÓN Una fracción es la expresión numérica que representa la división de un todo

Más detalles

TEMA 6. LAS FRACCIONES. Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales.

TEMA 6. LAS FRACCIONES. Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales. 1. LA FRACCIÓN Y SUS TÉRMINOS TEMA 6. LAS FRACCIONES Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales. Fracción es una o varias partes iguales

Más detalles

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006 LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES Los números decimales tienen dos partes separadas por una coma. 28,246 es un número decimal. Parte entera Parte decimal 6º de E. Primaria Decenas

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

FRACCIONES. FRACCIÓN: es una o varias partes iguales en que se divide la unidad.

FRACCIONES. FRACCIÓN: es una o varias partes iguales en que se divide la unidad. Teoría er Ciclo Primaria Página 9 FRACCIONES FRACCIÓN es una o varias partes iguales en que se divide la unidad. La fracción está formada por dos números naturales a y b colocado uno encima del otro y

Más detalles

UNIDAD 3: NÚMEROS DECIMALES

UNIDAD 3: NÚMEROS DECIMALES UNIDAD 3: NÚMEROS DECIMALES Si dividimos la unidad en 10 partes iguales, cada parte es una DÉCIMA. Cuando necesitamos expresar cantidades más pequeñas que la unidad, utilizamos LAS UNIDADES DECIMALES.

Más detalles

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS GRADO:6 O DOCENTE: Nubia E. Niño C. FECHA: 5 / 08 / 15 Guía Didáctica 3-6 Desempeños: * Resuelve operaciones y polinomios

Más detalles

Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes :

Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes : Las fracciones Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes : En un partido de baloncesto, que está dividido en cuatro tiempos

Más detalles

PASAPALABRA BLOQUE NÚMEROS

PASAPALABRA BLOQUE NÚMEROS EMPIEZA POR A 1) Rama de las Matemáticas que se encarga del estudio de los números y sus propiedades: ARITMÉTICA 2) Valor de una cifra, independientemente del lugar que ocupe o del signo que la precede:

Más detalles

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES 1. SISTEMA DE NUMERACIÓN DECIMAL. 2. LECTURA, ESCRITURA, DESCOMPOSICIÓN Y ORDENACIÓN DE NÚMEROS NATURALES. 3. SUMA DE NÚMEROS NATURALES. PROPIEDADES. 4. RESTA

Más detalles

EL CONCEPTO DE FRACCIÓN. IDENTIFICAR SUS TÉRMINOS

EL CONCEPTO DE FRACCIÓN. IDENTIFICAR SUS TÉRMINOS COMPRENDER OBJETIVO EL CONCEPTO DE RACCIÓN. IDENTIICAR SUS TÉRMINOS NOMBRE: CURSO: ECHA: Para expresar una cantidad de algo que es incompleto o partes de un total sin usar números o expresiones numéricas,

Más detalles

1. NUMEROS REALES a. Los Números Reales

1. NUMEROS REALES a. Los Números Reales 1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números

*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números *Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto, y se llama cardinal de dicho conjunto. *Los números naturales son infinitos. El conjunto de todos ellos

Más detalles

RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a

RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a UD : Los números reales RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a (que es lo mismo que decir que a b si

Más detalles

Fracciones, Decimales, Redondeo

Fracciones, Decimales, Redondeo Fracciones, Decimales, Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido : Contenido Discutiremos: fracción aritmética : Contenido Discutiremos: fracción aritmética clasificación de fracciones

Más detalles

UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES

UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES 1. PARTES DE UN NÚMERO DECIMAL. 2. LECTURA Y ESCRITURA DE DECIMALES. 3. DESCOMPOSICIÓN DE NÚMEROS. DECIMALES Y VALOR RELATIVO DE LAS CIFRAS. 4. COMPARACIÓN Y ORDENACIÓN

Más detalles

CURSO UNICO DE INGRESO 2010

CURSO UNICO DE INGRESO 2010 INSTITUTO SUPERIOR ZARELA MOYANO DE TOLEDO PROF. ING. ELSA MEDINA CURSO UNICO DE INGRESO 2010 MATEMATICAS INTRODUCCION El presente material supone un REPASO sobre los temas fundamentales y necesarios para

Más detalles

CLASIFICACIÓN DE LOS NÚMEROS

CLASIFICACIÓN DE LOS NÚMEROS LOS NÚMEROS REALES.. FRACCIIONES CLASIFICACIÓN DE LOS NÚMEROS Los números surgen de la necesidad de contar. Pero el Hombre no se limitó sólo a contar, sino que acumulaba o intercambiaba o repartía bienes.

Más detalles

1.1. Los números reales

1.1. Los números reales 1.1. Los números reales El conjunto de los números reales está compuesto por todos los números racionales (Q) y todos los irracionales (I). Sin olvidar que los números racionales incluyen a los naturales

Más detalles

OBJETIVO 1 COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: FECHA: Centena Decena Unidad Décima Centésima Milésima.

OBJETIVO 1 COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: FECHA: Centena Decena Unidad Décima Centésima Milésima. OBJETIVO COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: El sistema de numeración decimal tiene dos características:. a Es decimal: unidades de un orden forman unidad del orden siguiente..

Más detalles

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original

Más detalles

NÚMEROS DECIMALES. 1 LECTURA Y ORDENACIÓN DE NÚMEROS DECIMALES Todo número decimal se compone de una parte entera, la coma y la parte decimal.

NÚMEROS DECIMALES. 1 LECTURA Y ORDENACIÓN DE NÚMEROS DECIMALES Todo número decimal se compone de una parte entera, la coma y la parte decimal. NÚMEROS DECIMALES 1 LECTURA Y ORDENACIÓN DE NÚMEROS DECIMALES Todo número decimal se compone de una parte entera, la coma y la parte decimal. Parte entera, Décimas Centésimas Milésimas Diezmilésimas Cienmilésimas

Más detalles

NÚMEROS DECIMALES. 1 LECTURA Y ORDENACIÓN DE NÚMEROS DECIMALES Todo número decimal se compone de una parte entera, la coma y la parte decimal.

NÚMEROS DECIMALES. 1 LECTURA Y ORDENACIÓN DE NÚMEROS DECIMALES Todo número decimal se compone de una parte entera, la coma y la parte decimal. NÚMEROS DECIMALES 1 LECTURA Y ORDENACIÓN DE NÚMEROS DECIMALES Todo número decimal se compone de una parte entera, la coma y la parte decimal. Parte entera, Décimas Centésimas Milésimas Diezmilésimas Cienmilésimas

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

LAS FRACCIONES. Si el numerador es menor que el denominador, la fracción es menor que

LAS FRACCIONES. Si el numerador es menor que el denominador, la fracción es menor que LAS FRACCIONES 1. Las fracciones y sus términos.. Nº mixto.. La fracción de un número.. Cálculo de una cantidad, cuando sabemos la fracción de ella.. Fracciones equivalentes.. Fracción irreducible.. Reducción

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Estamos acostumbrados a trabajar con números naturales o enteros en la vida cotidiana pero en algunas ocasiones tendrás

Más detalles

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y

Más detalles

CAPÍTULO 4: VARIABLES Y RAZONES

CAPÍTULO 4: VARIABLES Y RAZONES Capítulo 4: Variables y razones CAPÍTULO 4: VARIABLES Y RAZONES Fecha: 33 2014 CPM Educational Program. All rights reserved. Core Connections en español, Curso 2 Fecha: Caja de herramientas 2014 CPM Educational

Más detalles

Divisibilidad I. Nombre Curso Fecha

Divisibilidad I. Nombre Curso Fecha Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra

Más detalles

Lección 1: Números reales

Lección 1: Números reales GUÍA DE MATEMÁTICAS III Lección 1: Números reales Los números irracionales En los grados anteriores estudiamos distintas clases de números: Vimos en primer lugar: los naturales, que son aquellos que sirven

Más detalles

Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS

Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS 8 _ 0-088.qxd //0 09: Página Números decimales INTRODUCCIÓN El estudio de los números decimales comienza recordando el sistema de numeración decimal, que es la base de la expresión escrita de los números

Más detalles

Matemáticas y Tecnología. Unidad 2 Los números racionales

Matemáticas y Tecnología. Unidad 2 Los números racionales CENTRO PÚBLICO DE EDUCACIÓN DE PERSONAS ADULTAS ESPA Matemáticas y Tecnología Unidad Los números racionales Nota Al final del texto se encuentra la solución de los ejercicios de la página del libro Concepto

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL. 2.533 Ante período

SISTEMA DE NUMERACIÓN DECIMAL. 2.533 Ante período Los números Decimales, esas comas SISTEMA DE NUMERACIÓN DECIMAL Relación Fracción-Nº Decimal. Parte entera Parte decimal 2.533 Ante período Período Toda fracción se puede escribir en forma decimal, para

Más detalles

04-A-1/12 DECI (10) males

04-A-1/12 DECI (10) males 04-A-1/12 DECI (10) males Los números decimales, como los números naturales cambian de 10 en 10. Escribo: Primer orden: Segundo orden: Tercer orden: 1 Enteros 10 A las unidades de primer orden las llamamos

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS

Más detalles

NÚMEROS RACIONALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda

NÚMEROS RACIONALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda NÚMEROS RACIONALES Evaluación A 1. Ordena de menor a mayor estas fracciones: 1 2, 9 20, 18 25, 3 5 Ten en cuenta Para ordenar fracciones, expresamos la solución mediante las fracciones iniciales, no las

Más detalles

5º lección TEMA 5.- LAS OPERACIONES CON FRACCIONES

5º lección TEMA 5.- LAS OPERACIONES CON FRACCIONES º lección TEMA.- LAS OPERACIONES CON FRACCIONES Para calcular la fracción de una cantidad, dividimos la cantidad entre el denominador y el resultado lo multiplicamos por el numerador. -. Calcula: Ejemplo

Más detalles

Unidad Didáctica I: El conjunto de los números reales

Unidad Didáctica I: El conjunto de los números reales Unidad Didáctica I: El conjunto de los números reales Concepto de número racional Cuando en una determinada situación se hace necesaria la partición de objetos (unidades), los números enteros se manifiestan

Más detalles

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban.

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban. DEFINICIÓN Los números naturales son aquellos números que utilizamos para contar cosas. Los números naturales empiezan en el 0 y nunca se acaban. Los números naturales se usan para la el DNI, los números

Más detalles