TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL"

Transcripción

1 ESTADÍSTICA II TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL II.1.- Distribución chi-cuadrado. II Definición. II.1..- Función de densidad. Representación gráfica. II Media y varianza. II Función de distribución. Uso de tablas. II..- Distribución F de Fisher-Snedecor. II..1.- Definición. II...- Función de densidad. Representación gráfica. II..3.- Media y varianza. II..4.- Función de distribución. Uso de tablas. II.3.- Distribución t-student. II Definición. II.3..- Función de densidad. Representación gráfica. II Media y varianza. II Función de distribución. Uso de las tablas. II.4.- Tablas. 1

2

3 ESTADÍSTICA II II.1.- Distribución chi-cuadrado (ji-cuadrado). II Definición. Sean x 1, x,..., x n variables independientes que siguen una distribución N(0,1). Sea X una nueva variable definida según: X = x1+ x+...+ xn= x n i=1 i en este caso, se dice que X se distribuye como una CHI- CUADRADO, con n grados de libertad, que representamos como: X χ n II.1..- Función de densidad. Representación gráfica. La obtenemos a partir de la función de densidad de la distribución GAMMA: α λ α-1 λx X e si x >0 Γ( α) f(x)= 0 si x 0 λ G(t)=( λ- t ) α para λ>t 397

4 Distribuciones relacionadas con la Normal 398

5 ESTADÍSTICA II n 1 sustituyendo los valores de α = y λ= en la función de densidad y generatriz de momentos de la GAMMA, obtenemos las funciones correspondientes de la distribución CHI- CUADRADO. f(x)= 1 ( ) n Γ( ) 0 n X n -1 e 1 - X si si x >0 x 0 La representación gráfica de la función de densidad, depende de los grados de libertad. Para valores pequeños de n la función de densidad de χ n tiene una larga cola a la derecha. Al crecer n, el centro de la distribución se desplaza hacia la derecha y la forma de la función de densidad se hace más simétrica; para n grande (n>30) la función χ n se puede aproximar por una N(n, n). II Media y varianza. Se puede demostrar fácilmente con el uso de la función generatriz e momentos y de la relación de la chi-cuadrado con la distribución Gamma que la media de una distribución chi-cuadrado de n grados de libertad vale n y su varianza n. II Función de distribución. Uso de las tablas. La función de distribución de una distribución chi- 399

6 Distribuciones relacionadas con la Normal cuadrado se obtiene mediante la integral de la función de densidad. F(x)= P(X x)= x 0 f(x)dx para X >0 Llegando al siguiente resultado F(x) = x 1 n ( ) n X ( ) 0 Γ que como se puede observar no es nada manejable. Es por ello que en vez de trabajar con esta expresión, y tal y como se hizo con la distribución normal, trabajaremos con tablas. Estas tablas pueden informarnos bien del propio valor de la función de distribución, o bien, el complementario de la función de distribución. En el apartado II.4 de este tema tenemos las tablas de la chicuadrado en la cual se nos da el complementario de la función de distribución. Como se puede observar, la tabla de la chi-cuadrado se encuentra dividida en dos partes. Centrándonos en la primera parte de la tabla (la segunda es totalmente similar en cuanto a interpretación), la primera columna no da los grados de libertad y la primera fila la probabilidad que deja a su derecha el punto que nos indica la parte central de la tabla. n -1 e 1 - x dx Esto significa que, por ejemplo, el valor de la variable.5581 correspondiente a una chi-cuadrado de 10 grados de libertad deja a su derecha una probabilidad igual a Obsérvese que a partir de esta tabla calcular la función de distribución es inmediato. De esta manera, la función de distribución de una chi-cuadrado de 15 grados de libertad en el punto es iagual a =

7 ESTADÍSTICA II EJEMPLO: La variable aleatoria U sigue una distribución Chi-cuadrado. Calcular "a" tal que: P(U>a) = 0,05 a) Para 18 grados de libertad. b) Para 55 grados de libertad. SOLUCION: a) P(U>8,9) = 0,05 b) P(U>73,3) = 0,05 En este caso hemos interpolado entre 50 y 60 grados de libertad. II..- Distribución F de Fisher-Snedecor. II..1.- Definición. Sean U y V dos variables aleatorias independientes, tal que: U χ m y V χ n Sea una variable X definida como: U/m X = V/n X así definida, sigue una distribución F DE FISHER- SNEDECOR de m y n grados de libertad, que representamos como: x F m, n II...- Función de densidad. Representación gráfica. La función de densidad de una F se obtiene a partir de la 401

8 Distribuciones relacionadas con la Normal función de densidad conjunta de U y V, y tiene la siguiente expresión. m+n Γ( ) m n m -1 m - f(x) = ( ) x (1+ x ) m n Γ( ) Γ( ) n n m+n para todo valor de x>0. Es evidente, por su construcción, que solo puede tomar valores positivos, como la chicuadrado. La forma de la representación gráfica depende de los valores m y n, de tal forma que si m y n tienden a infinitos, dicha distribución se asemeja a la distribución normal. II..3.- Media y varianza. La media existe si "n" es mayor o igual que 3, y la varianza existe si "n" es mayor o igual que 5 y sus valores son: n µ = α1= n - n (m +n - ) σ = α - α1 = m(n - ) (n - 4) II..4.- Función de distribución. Uso de tablas. La función de distribución la tendremos que calcular mediante la expresión general. 40

9 ESTADÍSTICA II F(x)= x 0 f(x)dx que dada la forma de la función de densidad se hace muy poco manejable por lo cual tendremos que recurrir de nuevo al uso de las tablas. En el epígrafe II.4 se muestran las tablas de la distribución F de Fisher-Snedecor. En este epígrafe se puede observar que las tablas de la distribución F se han dividido en 10 partes. Vamos a explicar la parte 1 solamente puesto que el resto tienen una lectura similar. En la tabla de la F de Fisher-Snedecor se presentan: en la primera columna, los grados de libertad del denominador, esto es el valor de n. En la primera fila se muestra primero el valor de α, que como puede verse en la gráfica de la tabla es la probabilidad que queda a la derecha del punto seleccionado. A continuación aparecen los grados de libertad del numerador, es decir, el valor de m. En el interior de la tabla se muestran los valores que dejan a su derecha una probabilidad α para los grados de libertad m y n seleccionados. Por ejemplo, el valor 9.1 de una distribución F de 4 y 3 grados de libertad deja a su derecha una probabilidad igual a Obsérvese que el cálculo de la función de distribución es inmediato. De esta manera, la función de distribución de una distribución F de 4 y 3 grados de libertad en el punto 9.1 es =0.95 Una PROPIEDAD de esta distribución es que la inversa de una variable aleatoria con distribución F m,n sigue también 403

10 Distribuciones relacionadas con la Normal una distribución F con n y m grados de libertad. Es decir, Si X F X -1 m, n F n, m Y como consecuencia de esta propiedad se cumple: 1 1 P( F n C)= P( )= P( Fn, m F m, n c m, 1 ) c Con este resultado podemos obtener los valores de F m,n correspondientes al 0.9, 0.95, 0.975, 0.99 y tomando los valores inversos de los valores de F n,m correspondientes al 0.1, 0.05, 0.05 y que son los que se muestran en las tablas de la F que se presentan en el epígrafe II.4. EJEMPLO: Las tablas nos dan, para m = 10 y n = 6, el percentil 90 =,94; el percentil 95 = 4,06. Calcular los valores de la distribución F de 6 y 10 grados de libertad que dejan a su izquierda una masa de probabilidad de 0.1 y 0.05 respectivamente. SOLUCION: P( F P( F 10,6 10,6,94) =0,9 4,06) =0,95 1 =0,34,94 1 4,06 =0,5 P( F P( F 6,10 6,10 0,34) =0,1 0,5)=0,05 II.3.- Distribución t-student. 404

11 ESTADÍSTICA II II Definición. Sea "U" una variable aleatoria que sigue una distribución N(0,1). Sea "V" una variable aleatoria que sigue una distribución Chi-cuadrado con "n" grados de libertad. Ambas variables, U y V, son independientes. La nueva variable formada como: X = U V/n sigue una distribución t-student con n grados de libertad. II.3..- La función de densidad. Representación gráfica. Esta variable toma valores en todo el conjunto de los números reales y su función de densidad es de la forma: f(x)= K n 1+ x n n X K n es el valor necesario para que sea una función de densidad, es decir, que la integral extendida a todo el campo de dicha función sea igual a la unidad. Propiedades de la función de distribución t-student: 405

12 Distribuciones relacionadas con la Normal a) Es simétrica con respecto al origen. F(-x) = 1 - F(x) b) Su forma es muy parecida a la N(0, 1), aunque menos apuntada. c) La recta Y = 0 es una asíntota horizontal: Lim x f(x)= Lim x - f(x)=0 II Media y varianza. La MEDIA Y VARIANZA de esta distribución son: σ = µ = E[x]=0 n n - II La función de distribución. Uso de las tablas. Tal y como hicimos con las distribuciones chi-cuadrado y F de Fisher-Snedecor, para el cálculo de probabilidades en la distribución t-student utilizaremos tablas. La tabla correspondiente se muestra en el epígrafe II.4 En la primera fila se muestran los valores de α, es decir, la probabilidad de que la variable tome un valor mayor que el considerado. En la última columna se muestran los grados de libertad y en el centro de la tabla nos da los valores de la probabilidad. De esta manera, una t-student de 10 grados de libertad deja a la derecha del punto.764 una probabilidad igual a Con lo cual, la función de distribución en el punto.764 para una t-student de 10 grados de libertad vale =

13 ESTADÍSTICA II EJEMPLO: Calcular la probabilidad de que "t" esté comprendida entre 0,60 y 1,81 con 10 grados de libertad. SOLUCION: P[0,60 t10=1,81] = = F(1,81) - F(0,60) = =0,95-0,60 = 0,35 407

14 Distribuciones relacionadas con la Normal II.4.- Tablas. Tabla de la t de Student 408

15 ESTADÍSTICA II Tabla de la ji-cuadrado. Parte 1 409

16 Distribuciones relacionadas con la Normal Tabla de la ji-cuadrado. Parte 410

17 Tabla de la F de Fisher-Snedecor. Parte 1 ESTADÍSTICA II 411

18 Distribuciones relacionadas con la Normal Tabla de la F de Fisher-Snedecor. Parte 41

19 Tabla de la F de Fisher-Snedecor. Parte 3 ESTADÍSTICA II 413

20 Distribuciones relacionadas con la Normal Tabla de la F de Fisher-Snedecor. Parte 4 414

21 Tabla de la F de Fisher-Snedecor. Parte 5 ESTADÍSTICA II 415

22 Distribuciones relacionadas con la Normal Tabla de la F de Fisher-Snedecor. Parte 6 416

23 Tabla de la F de Fisher-Snedecor. Parte 7 ESTADÍSTICA II 417

24 Distribuciones relacionadas con la Normal Tabla de la F de Fisher-Snedecor. Parte 8 418

25 Tabla de la F de Fisher-Snedecor. Parte 9 ESTADÍSTICA II 419

26 Distribuciones relacionadas con la Normal Tabla de la F de Fisher-Snedecor. Parte10 40

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

Tema 5: Principales Distribuciones de Probabilidad

Tema 5: Principales Distribuciones de Probabilidad Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad

Más detalles

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN)

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) VARIABLE ALEATORIA: un experimento produce observaciones numéricas que varían de muestra a muestra. Una VARIABLE ALEATORIA se define como una función con valores

Más detalles

Tema 11: Intervalos de confianza.

Tema 11: Intervalos de confianza. Tema 11: Intervalos de confianza. Presentación y Objetivos. En este tema se trata la estimación de parámetros por intervalos de confianza. Consiste en aproximar el valor de un parámetro desconocido por

Más detalles

EJERCICIOS RESUELTOS TEMA 7

EJERCICIOS RESUELTOS TEMA 7 EJERCICIOS RESUELTOS TEMA 7 7.1. Seleccione la opción correcta: A) Hay toda una familia de distribuciones normales, cada una con su media y su desviación típica ; B) La media y la desviaciones típica de

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

LECTURA 03: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT. MANEJO DE TABLAS ESTADISTICAS.

LECTURA 03: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT. MANEJO DE TABLAS ESTADISTICAS. LECTURA 3: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT MANEJO DE TABLAS ESTADISTICAS 1 INTRODUCCION Se dice que una variable aleatoria T tiene una distribución t de

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar

Más detalles

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Estadística Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010 Contenidos...............................................................

Más detalles

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO Anejo Análisis estadístico de temperaturas Análisis estadístico de temperaturas - 411 - D.1 INTRODUCCIÓN Y OBJETIVO El presente anejo tiene por objeto hacer un análisis estadístico de los registros térmicos

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas

Más detalles

Distribuciones de Probabilidad Para Variables Aleatorias Continuas

Distribuciones de Probabilidad Para Variables Aleatorias Continuas Distribuciones de Probabilidad Para Variables Aleatorias Continuas Departamento de Estadística-FACES-ULA 20 de Diciembre de 2013 Introducción Recordemos la definición de Variable Aleatoria Continua. Variable

Más detalles

Propiedades en una muestra aleatoria

Propiedades en una muestra aleatoria Capítulo 5 Propiedades en una muestra aleatoria 5.1. Conceptos básicos sobre muestras aleatorias Definición 5.1.1 X 1,, X n son llamadas una muestra aleatoria de tamaño n de una población f(x) si son variables

Más detalles

Variable Aleatoria. Relación de problemas 6

Variable Aleatoria. Relación de problemas 6 Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

MODELO DE RESPUESTAS Objetivos del 1 al 9

MODELO DE RESPUESTAS Objetivos del 1 al 9 PRUEBA INTEGRAL LAPSO 05-764 - /9 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 6 Fecha: 0-04-06 MODELO DE RESPUESTAS Objetivos del al 9 OBJ

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp. República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD II FUNCIONES Ing. Ronny Altuve Esp. Ciudad Ojeda, Septiembre de 2015 Función Universidad

Más detalles

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE Estudiamos algunos ejemplos de distribuciones de variables aleatorias continuas. De ellas merecen especial mención las derivadas de la distribución normal (χ, t de Student y F de Snedecor), por su importancia

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

7. Distribución normal

7. Distribución normal 7. Distribución normal Sin duda, la distribución continua de probabilidad más importante, por la frecuencia con que se encuentra y por sus aplicaciones teóricas, es la distribución normal, gaussiana o

Más detalles

Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0

Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0 Funciones continuas Funciones continuas Continuidad de una función Si x 0 es un número, la función f(x) es continua en este punto si el límite de la función en ese punto coincide con el valor de la función

Más detalles

LA DISTRIBUCIÓN NORMAL

LA DISTRIBUCIÓN NORMAL LA DISTRIBUCIÓN NORMAL En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad que con más frecuencia aparece

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Bloque A JUNIO 2007 1.- Julia, Clara y Miguel reparten hojas de propaganda. Clara reparte siempre el 20 % del total, Miguel reparte 100 hojas más que Julia. Entre Clara y Julia reparten 850 hojas. Plantea

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,

Más detalles

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

8.2.5. Intervalos para la diferencia de medias de dos poblaciones

8.2.5. Intervalos para la diferencia de medias de dos poblaciones 8.. INTERVALOS DE CONFIANZA PARA LA DISTRIBUCIÓN NORMAL 89 distribuye de modo gaussiana. Para ello se tomó una muestra de 5 individuos (que podemos considerar piloto), que ofreció los siguientes resultados:

Más detalles

1. Línea Recta 2. 2. Rectas constantes 3 2.1. Rectas horizontales... 3 2.2. Rectas verticales... 4

1. Línea Recta 2. 2. Rectas constantes 3 2.1. Rectas horizontales... 3 2.2. Rectas verticales... 4 Líneas Rectas Contenido. Línea Recta. Rectas constantes.. Rectas horizontales.............................. Rectas verticales.............................. Rectas con ecuación y = ax.. Rectas con a > 0................................

Más detalles

TEMA 1: Funciones elementales

TEMA 1: Funciones elementales MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

Estimación por intervalos

Estimación por intervalos Método de construcción de intervalos de confianza Intervalos de confianza para una población normal Estadística II Universidad de Salamanca Curso 2011/2012 Método de construcción de intervalos de confianza

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

DISTRIBUCION F DE SNEDECOR

DISTRIBUCION F DE SNEDECOR DISTRIBUCION F DE SNEDECOR Jorge M. Galbiati Función de densidad: ( ) n+d Γ 2 f(x) = ( ) ( ) Γ Γ n 2 d 2 ( n/d) n/2 x n/2 1 (1+ nd x ) n+d 2 si x > 0 Espacio paramétrico: grados de libertad del numerador

Más detalles

1.5 Límites infinitos

1.5 Límites infinitos SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos

Más detalles

2.5. Asimetría y apuntamiento

2.5. Asimetría y apuntamiento 2.5. ASIMETRÍA Y APUNTAMIENTO 59 variable Z = X x S (2.9) de media z = 0 y desviación típica S Z = 1, que denominamos variable tipificada. Esta nueva variable carece de unidades y permite hacer comparables

Más detalles

La distribución normal o gaussiana es la distribución. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si

La distribución normal o gaussiana es la distribución. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si La distribución normal La distribución normal o gaussiana es la distribución continua más importante. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si f(x) = 1

Más detalles

4. Medidas de tendencia central

4. Medidas de tendencia central 4. Medidas de tendencia central A veces es conveniente reducir la información obtenida a un solo valor o a un número pequeño de valores, las denominadas medidas de tendencia central. Sea X una variable

Más detalles

Intervalos de Confianza para dos muestras

Intervalos de Confianza para dos muestras Intervalos de Confianza para dos muestras Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Comparación de dos poblaciones La comparación

Más detalles

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249 Hoja 3: robabilidad y variables aleatorias 1. La probabilidad de que un enfermo se recupere tomando un nuevo fármaco es 0.95. Si se les administra a 8 enfermos, hallar: a La probabilidad de que se recuperen

Más detalles

Tema 5. Variables aleatorias continuas

Tema 5. Variables aleatorias continuas Tema 5. Variables aleatorias continuas Cuestiones de Verdadero/Falso 1. Muchas medidas numéricas de diversos fenómenos, como por ejemplo errores de medida o medidas antropométricas, pueden modelarse mediante

Más detalles

Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez

Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Profesores: Mg. Cecilia Rosas Meneses Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Definición. La función de distribución acumulada F X de una v.a. X es definida para cada número real x como

Más detalles

Julia García Salinero. Departamento de Investigación FUDEN. Introducción

Julia García Salinero. Departamento de Investigación FUDEN. Introducción 1 Análisis de datos en los estudios epidemiológicos V Prueba de Chi cuadrado y Análisis de la varianza. Departamento de Investigación FUDEN. Introducción Continuamos el análisis de los estudios epidemiológicos,

Más detalles

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10 Estadistica II Tema 1. Inferencia sobre una población Curso 2009/10 Tema 1. Inferencia sobre una población Contenidos Introducción a la inferencia Estimadores puntuales Estimación de la media y la varianza

Más detalles

Institución Educativa Distrital Madre Laura. Límites al Infinito. En lo que sigue vamos a estudiar los límites al infinito para diversas funciones.

Institución Educativa Distrital Madre Laura. Límites al Infinito. En lo que sigue vamos a estudiar los límites al infinito para diversas funciones. Límites al Infinito En lo que sigue vamos a estudiar los límites al infinito para diversas funciones. Aquí consideraremos un problema diferente al considerado en capítulos anteriores. En ellos nos hemos

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 010-011 Opción A Ejercicio 1, Opción A, Modelo especifico de Junio de 011 [ 5 puntos] Una ventana normanda consiste en un rectángulo

Más detalles

0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 1.- Cómo utilizar la tabla de la distribución Binomial? Supongamos que lanzamos al aire una moneda trucada. Con esta moneda la probabilidad de obtener cara es del 30%. La probabilidad que salga cruz será,

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

Ejercicios de Vectores Aleatorios

Ejercicios de Vectores Aleatorios Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO MAGISTRAL GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES Otros M2 Calcular la función de densidad conjunta y las marginales

Más detalles

1 Variables aleatorias independientes

1 Variables aleatorias independientes 1 Variables aleatorias independientes El concepto de independencia es sumamente importante en teoría de probabilidad y su negación, la dependencia, es un importante objeto de estudio actualmente en diversas

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

Estadísticas y distribuciones de muestreo

Estadísticas y distribuciones de muestreo Estadísticas y distribuciones de muestreo D I A N A D E L P I L A R C O B O S D E L A N G E L 7/11/011 Estadísticas Una estadística es cualquier función de las observaciones en una muestra aleatoria que

Más detalles

Soluciones Examen de Estadística

Soluciones Examen de Estadística Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 15 de Febrero, 5 Cuestiones horas C1. Un programa se ejecuta desde uno cualquiera de cuatro periféricos A, B, C y D con arreglo

Más detalles

x R F (x) := P (X 1 (, x]) = P ({e Ω : X(e) x}) = P (X x) salvo que en este caso esta función es siempre una función continua.

x R F (x) := P (X 1 (, x]) = P ({e Ω : X(e) x}) = P (X x) salvo que en este caso esta función es siempre una función continua. PROBABILIDAD Tema 2.3: Variables aleatorias continuas Objetivos Distinguir entre variables aleatorias discretas y continuas. Dominar el uso de las funciones asociadas a una variable aleatoria continua.

Más detalles

RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1

RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 Sabemos que la función inversa 1 Si f a b, entonces f b a 1 f (o recíproca) de f cumple la siguiente condición: Por lo tanto: 1 f f 1

Más detalles

Problemas resueltos. Temas 10 y 11 11, 9, 12, 17, 8, 11, 9, 4, 5, 9, 14, 9, 17, 24, 19, 10, 17, 17, 8, 23, 8, 6, 14, 16, 6, 7, 15, 20, 14, 15.

Problemas resueltos. Temas 10 y 11 11, 9, 12, 17, 8, 11, 9, 4, 5, 9, 14, 9, 17, 24, 19, 10, 17, 17, 8, 23, 8, 6, 14, 16, 6, 7, 15, 20, 14, 15. Temas 10 y 11. Contrastes paramétricos de hipótesis. 1 Problemas resueltos. Temas 10 y 11 1- las puntuaciones en un test que mide la variable creatividad siguen, en la población general de adolescentes,

Más detalles

Tipos de Funciones. 40 Ejercicios para practicar con soluciones. 1 Representa en los mismos ejes las siguientes funciones: 1 x

Tipos de Funciones. 40 Ejercicios para practicar con soluciones. 1 Representa en los mismos ejes las siguientes funciones: 1 x Tipos de Funciones. 40 Ejercicios para practicar con soluciones Representa en los mismos ejes las siguientes funciones: a) y = ; b) y = ; c) y = y= y= y= Representa las siguientes funciones: a) y = b)

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de Proporciones Existen ocasiones

Más detalles

Introducción al Tema 9

Introducción al Tema 9 Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables

Más detalles

Probabilidades. 11 de noviembre de 2013. Felipe Bravo Márquez

Probabilidades. 11 de noviembre de 2013. Felipe Bravo Márquez Felipe José Bravo Márquez 11 de noviembre de 2013 Motivación Las probabilidades son el lenguaje de la incertidumbre que a la vez es la base de la inferencia estadística. El problema estudiado en probabilidades

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

Test de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar

Más detalles

Nivel socioeconómico medio. Nivel socioeconómico alto SI 8 15 28 51 NO 13 16 14 43 TOTAL 21 31 42 94

Nivel socioeconómico medio. Nivel socioeconómico alto SI 8 15 28 51 NO 13 16 14 43 TOTAL 21 31 42 94 6. La prueba de ji-cuadrado Del mismo modo que los estadísticos z, con su distribución normal y t, con su distribución t de Student, nos han servido para someter a prueba hipótesis que involucran a promedios

Más detalles

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL 1) ASIMETRÍA MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL Es una medida de forma de una distribución que permite identificar y describir la manera como los datos tiende a reunirse de acuerdo con la

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

FUNCIONES RACIONALES. HIPÉRBOLAS

FUNCIONES RACIONALES. HIPÉRBOLAS www.matesronda.net José A. Jiménez Nieto FUNCIONES RACIONALES. HIPÉRBOLAS 1. FUNCIÓN DE PROPORCIONALIDAD INVERSA El área de un rectángulo es 18 cm 2. La siguiente tabla nos muestra algunas medidas que

Más detalles

Tema 4: Variable aleatoria. Métodos Estadísticos

Tema 4: Variable aleatoria. Métodos Estadísticos Tema 4: Variable aleatoria. Métodos Estadísticos Definición de v.a. Definición: Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio, es decir, una función

Más detalles

Tablas de Probabilidades

Tablas de Probabilidades Tablas de Probabilidades Ernesto Barrios Zamudio 1 José Ángel García Pérez2 Instituto Tecnológico Autónomo de México Agosto 2009 Versión 1.05 Índice 1. Distribución Binomial.......................................

Más detalles

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),

Más detalles

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola)

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola) UNIDAD III. PRUEBAS DE HIPÓTESIS 3.7 Prueba de hipótesis para la varianza La varianza como medida de dispersión es importante dado que nos ofrece una mejor visión de dispersión de datos. Por ejemplo: si

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 28 de mayo, 2013 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

3. VARIABLES ALEATORIAS

3. VARIABLES ALEATORIAS . VARIABLES ALEATORIAS L as variables aleatorias se clasiican en discretas y continuas, dependiendo del número de valores que pueden asumir. Una variable aleatoria es discreta si sólo puede tomar una cantidad

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

INTRODUCCIÓN. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

INTRODUCCIÓN. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS INTRODUCCIÓN. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS Tradicionalmente, el estudio de los logaritmos ha ido inevitablemente acompañado de las tablas logarítmicas y del estudio de conceptos tales como el

Más detalles

Aplicaciones de las integrales dobles

Aplicaciones de las integrales dobles Aplicaciones de las integrales dobles Las integrales dobles tienen multiples aplicaciones en física en geometría. A continuación damos una relación de alguna de ellas.. El área de una región plana R en

Más detalles

Práctica 2 Métodos de búsqueda para funciones de una variable

Práctica 2 Métodos de búsqueda para funciones de una variable Práctica 2 Métodos de búsqueda para funciones de una variable Introducción Definición 1. Una función real f se dice que es fuertemente cuasiconvexa en el intervalo (a, b) si para cada par de puntos x 1,

Más detalles

Distribuciones Continuas

Distribuciones Continuas Capítulo 5 Distribuciones Continuas Las distribuciones continuas mas comunes son: 1. Distribución Uniforme 2. Distribución Normal 3. Distribución Eponencial 4. Distribución Gamma 5. Distribución Beta 6.

Más detalles

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme.

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme. Tema 12. Contrastes No Paramétricos. 1 Problemas resueltos. Tema 12 1.- En una partida de Rol se lanza 200 veces un dado de cuatro caras obteniéndose 60 veces el número 1, 45 veces el número 2, 38 veces

Más detalles

Distribución de Probabilidades con Nombre Propio Problemas Propuestos

Distribución de Probabilidades con Nombre Propio Problemas Propuestos Distribución de Probabilidades con Nombre Propio Problemas Propuestos DISTRIBUCIÓN BINOMIAL (BERNOULLI) 2.167 Hallar la probabilidad de que al lanzar una moneda honrada 6 veces aparezcan (a) 0, (b) 1,

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

Distribuciones de probabilidad. El teorema central del límite

Distribuciones de probabilidad. El teorema central del límite 8 Distribuciones de probabilidad. El teorema central del límite Neus Canal Díaz 8.1. Introducción La distribución de frecuencias es uno de los primeros pasos que debemos realizar al inicio del análisis

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina

Más detalles

Estadística Descriptiva. SESIÓN 12 Medidas de dispersión

Estadística Descriptiva. SESIÓN 12 Medidas de dispersión Estadística Descriptiva SESIÓN 12 Medidas de dispersión Contextualización de la sesión 12 En la sesión anterior se explicaron los temas relacionados con la desviación estándar, la cual es una medida para

Más detalles

Examen de Junio de 2011 (Común) con soluciones (Modelo )

Examen de Junio de 2011 (Común) con soluciones (Modelo ) Opción A Junio 011 común ejercicio 1 opción A ['5 puntos] Se desea construir un depósito cilíndrico cerrado de área total igual a 54 m. Determina el radio de la base y la altura del cilindro para que éste

Más detalles

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2)

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2) UNIVERSIDAD DEL VALLE PROFESOR CARLOS IVAN RESTREPO CONTINUIDAD. 1.- Continuidad en un punto. Continuidad lateral..- Continuidad en un intervalo. 3.- Operaciones con funciones continuas 4.- Discontinuidades.

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

14.1 Introducción. 14.2 Caso 1: Area bajo una curva.

14.1 Introducción. 14.2 Caso 1: Area bajo una curva. Temas. Capacidades Calcular áreas de regiones del plano. 14.1 Introducción Area bajo una curva En esta sesión se inicia una revisión de las principales aplicaciones de la integral definida. La primera

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

Distribuciones Dis de Probabilidad Pr Contínuas Jhon Jairo Jair Pa P dilla a Aguilar, Aguilar PhD. PhD

Distribuciones Dis de Probabilidad Pr Contínuas Jhon Jairo Jair Pa P dilla a Aguilar, Aguilar PhD. PhD Distribuciones de Probabilidad Contínuas Jhon Jairo Padilla Aguilar, PhD. Introducción En esta sección se estudiarán algunas distribuciones de probabilidad contínuas que son bastante utilizadas en ingeniería

Más detalles

El método de mínimos cuadrados. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas

El método de mínimos cuadrados. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas El método de mínimos cuadrados Curso de Estadística TAE, 005 J.J. Gómez-Cadenas Mínimos cuadrados y máxima verosimilitud Teorema del límite central Una medida y, puede considerarse como un variable aleatoria,

Más detalles