6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales"

Transcripción

1 6. Autómatas a Pila Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar<nez Beatriz García Jiménez Juan Manuel Alonso Weber Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales

2 Introducción Definición Equivalencias Lenguajes Tipo 2 2

3 Jerarquía de Lenguajes Lenguajes Generales Lenguajes Dependientes del Contexto Lenguajes Independientes del Contexto No Deterministas Lenguajes Aceptados por Autómatas a Pila Deterministas Lenguajes Regulares 3

4 Jerarquía de Lenguajes Gramá;cas Regulares Autómatas Finitos Lenguajes Regulares (ER) Gramá;cas Independientes Contexto Autómatas a Pila Lenguajes Independientes Contexto 4

5 Limitaciones de los AF Falta de memoria No pueden reconocer expresiones matemádcas, pej. (2x+(2+n/25)), mas general el lenguaje X n Y n ( ( q r s... ) ) 5

6 Teoremas Para cada gramádca G independiente del contexto, existe un autómata de pila M tal que L(G)=L(M) Para cada autómata de pila M, existe una gramádca G independiente del contexto tal que L(M)=L(G) Existe un lenguaje independiente del contexto que no es el lenguaje aceptado por ningún autómata de pila determinista 6

7 Introducción Definición Equivalencias Lenguajes Tipo 2 7

8 De<inición de AP / 2 5 ) ) Q CONTROL DE ESTADOS CINTA Movimiento de la cinta B A o PILA 8

9 Aceptación por estados <inales Movimiento de la cinta q f CINTA Palabra leída Pila NO necesariamente vacía B... A o PILA 9

10 Aceptación por vaciado de pila Movimiento de la cinta q CINTA Palabra leída Pila NECESARIAMENTE vacía PILA 10

11 De<inición formal Gestión de Pila AF Σ Q q o f F AP A o q o Σ Γ Q f F 11

12 AP: (Σ, Γ, Q, A o, q o, f, F) Σ : alfabeto de entrada Palabras: x, y, z, ax, ay... Γ : alfabeto de pila Palabras: X, Y, Z, AX, AY... Q : conjunto finito de estados Q = {p,q,r,...} A o Γ : símbolo inicial de la pila q o Q : estado inicial del autómata f : función de transición F Q : conjunto de estados finales 12

13 Transición f(q,a,a)={(q 1,Z 1 ),(q 2, Z 2 ),...,(q n, Z n )} q (q,a,a;q n,y n ) a,a;y n q n 1. Leer un símbolo de la entrada 2. Extraer un símbolo de la pila 3. Insertar una palabra en la pila 4. Pasar a un nuevo estado 13

14 Función de Transición f : Q x (Σ {λ} ) x Γ P(Q x Γ *) Transiciones dependientes de la entrada Q x Σ x Γ Transiciones independientes de la entrada Q x λ x Γ AP Deterministas Q x Γ* AP No Deterministas P (Q x Γ*) 14

15 T. independientes de la entrada Sea la transición: f(q, λ,a) = {(q 1,Z 1 ), (q 2, Z 2 ),...,(q n, Z n )} donde: q, q i Q A Γ Z i Γ* 15

16 T. independientes de la entrada z.... a.... p q (q, az, AX) (p, az, X) f(q,λ,a) = (p, λ) A X 16

17 T. dependientes de la entrada Sea la transición: f(q,a,a) = {(q 1,Z 1 ), (q 2,Z 2 ),...,(q n,z n )} donde: q, q i Q a Σ A Γ Z i Γ* 17

18 T. dependientes de la entrada z.... a.... p q (q, az, AX) (p, z, X) f(q,a,a) = (p, λ) A X 18

19 Descripción Instantánea Permite describir sencillamente la configuración del AP en cada momento Terna (q,x,z) donde: q Q, x Σ*, z Γ* ConDene: el estado actual (q) lo que queda por leer de la entrada (x) y el símbolo en la cima de la pila (z) 19

20 Descripción Instantánea Movimiento: (q,ay,ax) (p,y,yx) describe el paso de una descripción instantánea a otra Sucesión de movimientos: (q,ay,ax) *(p,y,yx) representa que desde la primera descripción instantánea se puede alcanzar la segunda 20

21 Autómatas a Pila Deterministas (Σ,Γ,Q,A 0,q 0,f,F) es determinista si verifica: q Q, A Γ, f (q,λ,a) >0 f (q,a,a)=φ a Σ q Q, A Γ, a Σ {λ}, f (q,a,a) <2 si (p, x, y; q, z) y (p, x, y; r, w) son transiciones de un autómata a pila determinista entonces q r, z=w 21

22 Lenguaje aceptado por un AP Por vaciado de pila LV AP ={x (q 0,x,A 0 ) *(p,λ,λ), p Q, x Σ*} Por estado final LF AP ={x (q 0,x,A 0 ) *(p,λ,x), p F, x Σ*,X Γ*} 22

23 Ejemplo LENGUAJE: algunas instrucciones var ::= num; (asignación) if cond then BLOQUE (asignación ó if) if cond then BLOQUE (asignación ó if) else BLOQUE (asignación ó if) 23

24 Ejemplo AP= ({if, then, else, ::=, var, num, cond, ;}, {S, B, C, F, N, P, T, E}, {q}, q, S, f, φ) f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} ELEMENTOS DE Γ S Símbolo inicial F ::= N Numero P ; C Condición T Then B Bloque E Else 24

25 Ejemplo f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} q if cond then var ::= num ; S 25

26 Ejemplo f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} if cond q then var ::= num ; C T B P 26

27 Ejemplo f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} if cond then var ::= num ; q T B P 27

28 Ejemplo if cond f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} then var ::= num ; q B P 28

29 Ejemplo if cond f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} then var ::= num ; q F N P 29

30 Ejemplo if cond f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} then var ::= num ; q N P 30

31 Ejemplo if cond then var ::= num ; f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} q P 31

32 Ejemplo if cond then var ::= num ; Pila vacía Sentencia reconocida q 32

33 Introducción Definición Equivalencias Lenguajes Tipo 2 33

34 Equivalencias Teorema Para cada autómata de pila que acepte cadenas sin vaciar su pila, existe un autómata equivalente pero que vacía su pila antes de llegar a un estado de aceptación. 34

35 Paso de AP F a AP V AP F = (Σ, Γ, Q, A 0, q 0, f, F) AP V =(Σ, Γ B, Q p,r, B, p, f, φ) 1. Nuevo símbolo para la pila 2. Dos estados nuevos 3. Valor inicial de la pila 4. Nuevo estado inicial 5. SIN estados finales 35

36 Paso de AP F a AP V AP F = (Σ, Γ, Q, A 0, q 0, f, F) AP V =(Σ, Γ B, Q p,r, B, p, f, φ) f se define así: λ,b; A 0 B p q 0 a, A; Z q i q j q f q i, q j Q, a Σ {λ}, A Γ, Z Γ* A Γ B q f λ,a; λ r q f F, A Γ B λ,a; λ r 36

37 Paso de AP V a AP F AP V =(Σ, Γ, Q, A0, q0, f, φ) AP F =(Σ, Γ B, Q p, r, B, p, f, {r}) f' se define así: λ,b; A 0 B λ,b; λ p q q r* 0 f (p, λ,b) = (q 0, A 0 B) (r, λ) f (q, λ, B) q Q, f(q, a, A) = f (q, a, A) q Q, a Σ {λ}, A Γ

38 Introducción Definición Equivalencias Lenguajes Tipo 2 38

39 De Gramática Tipo 2 a AP V Dada una G2 en FNG, construir un AP V : G = (Σ T, Σ N, S, P) entrada pila inicial de pila AP V = (Σ T, Σ N, q, S, q, f, φ) Se obdene un AP V con un solo estado 39

40 De Gramática Tipo 2 a AP V f se define como: es decir: (q, Z) f(q, a, A) f(q, a, A) = (q, Z) si existe una producción del Dpo A ::= a Z f(q, a, A) = (q, λ) si existe una producción del Dpo A ::= a f(q, a, A) = {(q, Z), (q, λ)} dada una producción: A::= az ad b f(q, a, A)= {(q, Z), (q, D)} f(q, b, A) = (q, λ) Si S::= λ (q,λ) f(q,λ,s) 40

41 De Gramática Tipo 2 a AP F Dada una G2, construir un AP F donde: G = (Σ T, Σ N, S, P) AP V = (Σ T, Γ, Q, A 0, q 0, f, {q 2 }) Γ= Σ T Σ N {A 0 }, donde A 0 Σ T Σ N Q={q 0, q 1, q 2 } 41

42 De Gramática Tipo 2 a AP F f se define como: f (q 0, λ, A 0 ) = {q 1, SA 0 } A Σ N, si A ::= α P, (α Σ*) (q 1, α) f (q 1, λ, A) es decir: f (q 1, λ, A) = {, (q 1, α), } a Σ T, (q 1, λ) f (q 1,a,a) es decir f (q1,a,a) = {, (q1,λ), } f (q 1, λ, A 0 ) = {q 2,A 0 } 42

43 De AP V a Gramática Tipo 2 Dado un AP V, construir una G2 tal que L(G2) = L(AP V ) Para construir P: AP V = (Σ, Γ, Q, A 0, q 0, f, φ) G = (Σ T, Σ N, S, P) {S} { (paq) p, q Q, A Γ} 1. S::= (q 0, A 0,q) q Q (se eligen las que empiezan por q 0 A 0 ) 2. De cada transición f(p,a,a) = (q, BB B...B ) donde: A,B,B,B,,B Γ ; a Σ {λ} se obdene: (p A z ) ::= a ( q B r ) ( r B s ) s... y ( y B z ) 3. De cada transición f( p, a, A) = (q, λ) se obdenen: ( p,a,q ) ::= a 43

44 Bibliogra<ía Libro Básico 1 Bibliograwa. Enrique Alfonseca Cubero, Manuel Alfonseca Cubero, Roberto Moriyón Salomón. Teoría de autómatas y lenguajes formales. McGraw- Hill (2007). Capítulo 4 y Apartado 8.1 Libro Básico 2 Bibliograwa. John E. Hopcroz, Rajeev Motwani, Jeffrey D.Ullman. Introducción a la teoría de autómatas, lenguajes y computación (3ª edición). Ed, Pearson Addison Wesley. Capítulo 6 Libro Básico 4 Bibliograwa. Manuel Alfonseca, Justo Sancho, Miguel Mar<nez Orga. Teoría de lenguajes, gramádcas y autómatas. Publicaciones R.A.E.C Capítulo 10 44

7. Máquinas de Turing.

7. Máquinas de Turing. 7. Máquinas de Turing. Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar

Más detalles

Teoría de Autómatas y Lenguajes Formales.

Teoría de Autómatas y Lenguajes Formales. Teoría de Autómatas y Lenguajes Formales Ejercicios de Autómatas a Pila Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

Más detalles

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle CONJUNTOS REGULARES Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 19 de Octubre de 2008 Contenido Expresiones regulares Teorema de Kleene Autómatas

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

Unidad 4. Autómatas de Pila

Unidad 4. Autómatas de Pila Unidad 4. Autómatas de Pila Una de las limitaciones de los AF es que no pueden reconocer el lenguaje {0 n 1 n } debido a que no se puede registrar para todo n con un número finito de estados. Otro lenguaje

Más detalles

Teoría de Autómatas y Lenguajes Formales.

Teoría de Autómatas y Lenguajes Formales. Teoría de Autómatas y Lenguajes Formales Ejercicios de Lenguajes Regulares Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso

Más detalles

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS Licenciatura en Sistemas de Información PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS UNSE FCEyT 1. DESCRIPCIÓN Este taller consta de tres partes. En cada una de ellas se especifican

Más detalles

Coordinación de Ciencias Computacionales INAOE. Teoría de Autómatas y Lenguajes Formales. Temario detallado para examen de ingreso 2012

Coordinación de Ciencias Computacionales INAOE. Teoría de Autómatas y Lenguajes Formales. Temario detallado para examen de ingreso 2012 Coordinación de Ciencias Computacionales INAOE Teoría de Autómatas y Lenguajes Formales Temario detallado para examen de ingreso 2012 1. Autómatas 1.1. Por qué estudiar la teoría de autómatas? 1.1.1. Introducción

Más detalles

Teoría de Autómatas y Lenguajes Formales.

Teoría de Autómatas y Lenguajes Formales. Teoría de Autómatas y Lenguajes Formales Prueba de Evaluación de Lenguajes y Gramáticas Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel

Más detalles

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y CONTENIDO Reconocedores [HMU2.1]. Traductores [C8]. Diagramas de Estado [HMU2.1]. Equivalencia entre AF deterministas y no deterministas [HMU2.2-2.3]. Expresiones [HMU3]. Propiedades de [HMU4]. Relación

Más detalles

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

Equivalencia Entre PDA y CFL

Equivalencia Entre PDA y CFL Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede

Más detalles

Computabilidad y Lenguajes Formales: Autómatas de Pila

Computabilidad y Lenguajes Formales: Autómatas de Pila 300CIG007 Computabilidad y Lenguajes Formales: Autómatas de Pila Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Basado en [SIPSER, Chapter 2] Autómatas

Más detalles

Clase 17: Autómatas de pila

Clase 17: Autómatas de pila Solicitado: Ejercicios 14: Autómatas de pila de GLC M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfrancom@ipn.mx 1 Contenido Autómata de pila Definición

Más detalles

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 Teoría de Lenguajes Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 aterial compilado por el Profesor Julio Jacobo, a lo largo de distintas ediciones

Más detalles

Traductores Push Down

Traductores Push Down Push Down Extensión de Autómatas Universidad de Cantabria Outline El Problema 1 El Problema 2 3 El Problema Hemos estudiado anteriormente los autómatas con pila y hemos visto su relación con los lenguajes

Más detalles

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila. 0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)

Más detalles

Un autómata con pila no determinista (APND) es una septupla Q A B F en la que

Un autómata con pila no determinista (APND) es una septupla Q A B F en la que AUTÓMATAS CON PILA Un autómata con pila no determinista (APND) es una septupla Q A F en la que δ q 0 Q es un conjunto finito de estados A es un alfabeto de entrada es un alfabeto para la pila δ es la función

Más detalles

Tema 1: Introducción. Teoría de autómatas y lenguajes formales I

Tema 1: Introducción. Teoría de autómatas y lenguajes formales I Tema 1: Introducción Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison Wesley.

Más detalles

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO Autómatas de pila y lenguajes independientes del contexto -1- AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO AUTÓMATAS DE PILA - Son autómatas finitos con una memoria en forma de pila. - Símbolos

Más detalles

Universidad de Valladolid

Universidad de Valladolid Universidad de Valladolid Departamento de Informática Teoría de autómatas y lenguajes formales. 2 o I.T.Informática. Gestión. Examen de primera convocatoria. 18 de junio de 29 Apellidos, Nombre... Grupo:...

Más detalles

Introducción a la Lógica y la Computación

Introducción a la Lógica y la Computación Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 7 de Noviembre de 2014 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/20 Lenguajes Formales

Más detalles

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )

Más detalles

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I Tema 4: Gramáticas independientes del contexto Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación.

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña Máquinas Secuenciales, Autómatas y Lenguajes Tema 4: Expresiones Regulares Luis Peña Sumario Tema 4: Expresiones Regulares. 1. Concepto de Expresión Regular 2. Teoremas de Equivalencia Curso 2012-2013

Más detalles

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas Gramáticas Introducción Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas En algunos lenguajes, una sucesión de símbolos depende del

Más detalles

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones 1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y

Más detalles

Introducción a la Lógica y la Computación

Introducción a la Lógica y la Computación Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 4 de Noviembre de 2015 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/21 Lenguajes Formales

Más detalles

Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares

Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares Autómata = Lógica Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares Pero antes: Vamos a hacer un breve repaso sobre

Más detalles

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007.

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007. Universidad de Puerto Rico Recinto de Mayagüez Facultad de Artes y Ciencias DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Programa de Autómata y Lenguajes Formales Curso: Autómata y Lenguajes Formales Codificación:

Más detalles

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto

Más detalles

Tema: Autómata de Pila

Tema: Autómata de Pila Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores 1 Tema: Autómata de Pila Contenido La presente guía aborda los autómatas de pila, y se enfoca en la aplicación que se le puede dar a estas

Más detalles

1. Cadenas EJERCICIO 1

1. Cadenas EJERCICIO 1 LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada

Más detalles

Computabilidad y Lenguajes Formales: Autómatas Finitos

Computabilidad y Lenguajes Formales: Autómatas Finitos 300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. No Determinismo Hasta ahora cada

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales

Más detalles

Analizadores sintácticos LR(0) y SLR

Analizadores sintácticos LR(0) y SLR Teoría de Lenguajes Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Clase de Hoy Anteriores: Parsing descendente (LL(1), ELL) Recursivos e iterativos Generan árbol de derivación desde

Más detalles

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I Tema 3: Gramáticas regulares Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison

Más detalles

Teoría de Lenguajes. Propiedades y caracterizaciones de los lenguajes incontextuales

Teoría de Lenguajes. Propiedades y caracterizaciones de los lenguajes incontextuales Teoría de Lenguajes Propiedades y caracterizaciones de los lenguajes incontextuales José M. empere Departamento de istemas Informáticos y Computación Universidad Politécnica de Valencia Propiedades y caracterizaciones

Más detalles

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción

Más detalles

13.3. MT para reconocer lenguajes

13.3. MT para reconocer lenguajes 13.3. MT para reconocer lenguajes Gramática equivalente a una MT Sea M=(Γ,Σ,,Q,q 0,f,F) una Máquina de Turing. L(M) es el lenguaje aceptado por la máquina M. A partir de M se puede crear una gramática

Más detalles

Lenguaje Regular. Sumario. Lenguaje Regular. Autómatas y Lenguajes Formales. Capítulo 8: Propiedades de los Lenguajes Regulares

Lenguaje Regular. Sumario. Lenguaje Regular. Autómatas y Lenguajes Formales. Capítulo 8: Propiedades de los Lenguajes Regulares Lenguaje Regular Capítulo 8: Propiedades de los Lenguajes Regulares José Miguel Buenaposada Josemiguel.buenaposada@urjc.es Definición 1 (Lenguaje Regular) Un lenguaje L se denomina regular si y sólo si

Más detalles

El Autómata con Pila

El Autómata con Pila El Autómata con Pila Una Generalización del Autómata Finito Universidad de Cantabria Esquema 1 2 3 4 Los autómatas son abstracciones de maquinas de calcular, como hemos visto. Los más sencillos no tienen

Más detalles

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo

Más detalles

Cátedra de Sintaxis y Semántica de Lenguajes

Cátedra de Sintaxis y Semántica de Lenguajes Universidad Tecnológica Nacional Facultad Regional Córdoba Cátedra de Sintaxis y Semántica de Lenguajes Modalidad Académica Coordinador de Cátedra: Ing. Juan Giró Ciclo Lectivo: 2009 Nombre de la Materia

Más detalles

DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas

DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas CÓDIGO ASIGNATURA 1129 DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas ASIGNATURA: Autómatas y Lenguajes Formales Ingeniería en Informática Año: 5 Cuatri: 1 1. OBJETIVOS Dar a los alumnos conocimientos

Más detalles

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Prof. Hilda Y. Contreras Departamento de Computación hyelitza@ula.ve http://webdelprofesor.ula.ve/ingenieria/hyelitza Objetivo Lenguajes

Más detalles

Compiladores: Sesión 3. Análisis léxico, expresiones regulares

Compiladores: Sesión 3. Análisis léxico, expresiones regulares Compiladores: Sesión 3. Análisis léxico, expresiones regulares Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad Javeriana Cali 29 de enero de

Más detalles

Las Gramáticas Formales

Las Gramáticas Formales Definición de Las Como definir un Lenguaje Formal Universidad de Cantabria Esquema Motivación Definición de 1 Motivación 2 Definición de 3 Problema Motivación Definición de Dado un lenguaje L, se nos presenta

Más detalles

Teoría de Lenguajes. Gramáticas incontextuales

Teoría de Lenguajes. Gramáticas incontextuales Teoría de Lenguajes Gramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Gramáticas incontextuales 1. Definiciones básicas.

Más detalles

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I Gramáticas independientes del contexto UTÓMTS Y LENGUJES FORMLES LENGUJES INDEPENDIENTES DEL CONTEXTO Y UTÓMTS DE PIL Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNM E-mail:

Más detalles

El Autómata con Pila: Transiciones

El Autómata con Pila: Transiciones El Autómata con Pila: Transiciones El Espacio de Configuraciones Universidad de Cantabria Esquema Introducción 1 Introducción 2 3 Transiciones Necesitamos ahora definir, paso por paso, como se comporta

Más detalles

PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES

PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA

Más detalles

Expresiones Regulares

Expresiones Regulares Conjuntos Regulares y Una forma diferente de expresar un lenguaje Universidad de Cantabria Conjuntos Regulares y Esquema 1 Motivación 2 Conjuntos Regulares y 3 4 Conjuntos Regulares y Motivación El problema

Más detalles

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto Universidad Autónoma del Estado de México Centro Universitario UAEM Texcoco Departamento de Ciencias Aplicadas. Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer,

Más detalles

2.Teoría de Autómatas

2.Teoría de Autómatas 2.Teoría de Autómatas Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar

Más detalles

AUTÓMATAS PROBABILÍSTICOS O ESTOCÁSTICOS

AUTÓMATAS PROBABILÍSTICOS O ESTOCÁSTICOS AUTÓMATAS PROBABILÍSTICOS O ESTOCÁSTICOS Autómatas Probabilísticos En su funcionamiento interviene el concepto de probabilidad, asociada a que se produzca una determinada transición. Son autómatas finitos

Más detalles

Sentido de recorrido. q i

Sentido de recorrido. q i Sentido de recorrido σ Cinta Cabeza de lectura γ Pila i Unidad de control de estados Componentes básicos de un autómata con pila. σ i 1 σ i j σ i j+1 σ i p Z (a) γ l 1 γ l 2 γ l σ i 1 σ i j σ i j+1 σ i

Más detalles

Expresiones regulares y derivadas

Expresiones regulares y derivadas Expresiones regulares y derivadas Teoría de Lenguajes 1 er cuatrimestre de 2002 1 Expresiones regulares Las expresiones regulares son expresiones que se utilizan para denotar lenguajes regulares. No sirven

Más detalles

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars)

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Análizador Sintáctico de abajo hacia arriba Es un proceso de Reducción,

Más detalles

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total.

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total. U.R.J.C. Ingeniera Técnica en Informática de Sistemas Teoría de Autómatas y Lenguajes Formales Junio 2009 2do. Parcial Normas : La duración del examen es de 2 horas. Todos los ejercicios se entregarán

Más detalles

Teoría de Lenguajes. Clase Teórica 8 Propiedades de Lenguajes Independientes de Contexto y su Lema de Pumping Primer cuartimestre 2014

Teoría de Lenguajes. Clase Teórica 8 Propiedades de Lenguajes Independientes de Contexto y su Lema de Pumping Primer cuartimestre 2014 Teoría de Lenguajes Clase Teórica 8 Propiedades de Lenguajes Independientes de Contexto y su Lema de Pumping Primer cuartimestre 2014 Estas notas están basadas en el material compilado por el Profesor

Más detalles

PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE INTRODUCCIÓN Y TEORÍA DE LA COMPUTACIÓN

PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE INTRODUCCIÓN Y TEORÍA DE LA COMPUTACIÓN CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE INTRODUCCIÓN Y TEORÍA DE LA COMPUTACIÓN 1. DATOS DE IDENTIFICACIÓN DE LA ASIGNATURA. Título: Facultad:

Más detalles

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50 INAOE (INAOE) 1 / 50 Contenido 1 2 3 4 (INAOE) 2 / 50 Pushdown Automata Las gramáticas libres de contexto tienen un tipo de autómata que las define llamado pushdown automata. Un pushdown automata (PDA)

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica Fa.M.A.F., Universidad Nacional de Córdoba 22//4 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes y computación.

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 4

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 4 UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes Tema 4 Análisis Sintáctico Ascendente Javier Vélez Reyes jvelez@lsi.uned.es Objetivos

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica y la Computación Fa.M.A.F., Universidad Nacional de Córdoba 26/0/6 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes

Más detalles

Tema 2 Gramáticas y Lenguajes Libres de Contexto

Tema 2 Gramáticas y Lenguajes Libres de Contexto Tema 2 Gramáticas y Lenguajes Libres de Contexto 1. Definiciones Básicas 2. 3. Forma Normal de Chomsky 4. Autómatas de Pila 5. Propiedades de los Lenguajes Libres de Contexto 1. Definiciones básicas 1.

Más detalles

Lenguajes y Gramáticas

Lenguajes y Gramáticas Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 7: Máquinas Transductoras. Holger Billhardt

Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 7: Máquinas Transductoras. Holger Billhardt Formales Tema 7: Máquinas Transductoras Holger Billhardt holger.billhardt@urjc.es Sumario: Bloque 3: Otras Máquinas Secuenciales 7. Máquinas Transductoras 1. Concepto y Definición 2. Función respuesta,

Más detalles

Carácter Modalidad Horas de estudio semestral (16 semanas)

Carácter Modalidad Horas de estudio semestral (16 semanas) PROGRAMA DE ESTUDIOS: TEORÍA DE LA COMPUTACIÓN PROTOCOLO Fechas Mes/año Clave Semestre 5 o Elaboración 05-2010 Nivel Licenciatura X Maestría Doctorado Aprobación Ciclo Integración Básico Superior Aplicación

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS 1. DATOS INFORMATIVOS MATERIA: DISEÑO DE LENGUAJES Y AUTOMATAS: CARRERA: INGENIERÍA DE SISTEMAS NIVEL:

Más detalles

Analizador Sintáctico Ascendente

Analizador Sintáctico Ascendente Analizador Sintáctico Ascente Un Analizador Sintáctico (A. St.) Ascente construye el árbol desde las hojas hacia la raíz. Funciona por reducción-desplazamiento, lo cual quiere decir que, siempre que puede,

Más detalles

Tema 4. Autómatas Finitos

Tema 4. Autómatas Finitos Tema 4. Autómatas Finitos 4.1. Autómatas finitos. 4.1.1. Introducción. 4.1.2. Máquinas secuenciales. 4.2. Autómatas finitos deterministas (A.F.D.). 4.2.1. Introducción. 4.2.2. Definición AFD. Representación.

Más detalles

ESCUELA: UNIVERSIDAD DEL ISTMO

ESCUELA: UNIVERSIDAD DEL ISTMO 1.-IDENTIFICACIÓN ESCUELA: UNIVERSIDAD DEL ISTMO CLAVE: 3041 GRADO: ING. EN COMPUTACIÓN, CUARTO SEMESTRE TIPO DE TEÓRICA/PRÁCTICA ANTECEDENTE CURRICULAR: 3033.- OBJETIVO GENERAL Proporcionar al alumno

Más detalles

Departamento de Tecnologías de la Información. Tema 4. Máquinas de Turing. Ciencias de la Computación e Inteligencia Artificial

Departamento de Tecnologías de la Información. Tema 4. Máquinas de Turing. Ciencias de la Computación e Inteligencia Artificial Departamento de Tecnologías de la Información Tema 4 Máquinas de Turing Ciencias de la Computación e Inteligencia Artificial Índice 4.1 Límites de los autómatas 4.2 Definición de Máquina de Turing 4.3

Más detalles

Equivalencia. Máquinas con alfabeto binario, Máquinas no deterministas. Máquinas con dos cintas MT para reconocer lenguajes

Equivalencia. Máquinas con alfabeto binario, Máquinas no deterministas. Máquinas con dos cintas MT para reconocer lenguajes Capítulo 13. Máquinas de Turing 13.1. Conceptos generales Definición. Descripciones instantáneas. Lenguaje reconocido por una MT. Función computada por una MT. 13.2. Otras definiciones Equivalencia. Máquinas

Más detalles

Tema 2: Los Autómatas y su Comportamiento

Tema 2: Los Autómatas y su Comportamiento Departamento de Computación Universidade da Coruña Bisimulación y procesos concurrentes Tema 2: Los Autómatas y su Comportamiento Carmen Alonso Montes carmen@dc.fi.udc.es Noelia Barreira Rodríguez noelia@dc.fi.udc.es

Más detalles

Capítulo 7: Expresiones Regulares

Capítulo 7: Expresiones Regulares Capítulo 7: Expresiones Regulares 7.1. Concepto de expresión regular 7.1.1. Definición 7.1.2. Lenguaje descrito 7.1.3. Propiedades 7.2. Teoremas de equivalencia 7.2.1. Obtener un AFND a partir de una expresión

Más detalles

LENGUAJES FORMALES Y AUTÓMATAS

LENGUAJES FORMALES Y AUTÓMATAS LENGUAJES FORMALES Y AUTÓMATAS Departamento de Lenguajes y Sistemas Informáticos Escuela Técnica Superior de Ingeniería Informática Universidad de Sevilla Víctor J. Díaz Madrigal José Miguel Cañete Valdeón

Más detalles

Departamento de Tecnologías de la Información. Tema 3. Autómatas finitos y autómatas de pila. Ciencias de la Computación e Inteligencia Artificial

Departamento de Tecnologías de la Información. Tema 3. Autómatas finitos y autómatas de pila. Ciencias de la Computación e Inteligencia Artificial Departamento de Tecnologías de la Información Tema 3 Autómatas finitos Ciencias de la Computación e Inteligencia Artificial Índice 3.1 Funciones sobre conjuntos infinitos numerables 3.2 Autómatas finitos

Más detalles

Controla el flujo de tokens reconocidos por parte del analizador léxico. 4.2 Introduccion a las gramaticas libres de contexto y arboles de derivacion

Controla el flujo de tokens reconocidos por parte del analizador léxico. 4.2 Introduccion a las gramaticas libres de contexto y arboles de derivacion UNIDAD IV Analisis Sintactico 4.1 Introduccion Sintaxis significa estructura del orden de las palabras en una frase. La tarea del analisis sintactico es revisar si los símbolos aparecen en el orden correcto

Más detalles

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003.

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Examen IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Este examen tiene

Más detalles

Teoría de Lenguajes y Autómatas Conceptos y teoremas fundamentales

Teoría de Lenguajes y Autómatas Conceptos y teoremas fundamentales Se prohíbe la reproducción total o parcial de este documento, excepto para uso privado de los alumnos de la asignatura Teoría de Autómatas I de la UNED y los alumnos de asignaturas equivalentes de otras

Más detalles

Paréntesis: Una aplicación en lenguajes formales

Paréntesis: Una aplicación en lenguajes formales Paréntesis: Una aplicación en lenguajes formales Vamos a ver una aplicación del Teorema de Immerman-Szelepcsényi en la área de lenguajes formales. IIC3242 Clases de Complejidad 35 / 69 Paréntesis: Una

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 3.

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 3. UNIVRSIDAD NACIONAL D DUCACIÓN A DISTANCIA scuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes Tema 3 Parte I Análisis Sintáctico Javier Vélez Reyes jvelez@lsi.uned.es Objetivos

Más detalles

Tema: Autómatas de Estado Finitos

Tema: Autómatas de Estado Finitos Compiladores. Guía 2 1 Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores Tema: Autómatas de Estado Finitos Contenido En esta guía se aborda la aplicación de los autómatas en el campo de

Más detalles

Autómatas Deterministas. Ivan Olmos Pineda

Autómatas Deterministas. Ivan Olmos Pineda Autómatas Deterministas Ivan Olmos Pineda Introducción Los autómatas son una representación formal muy útil, que permite modelar el comportamiento de diferentes dispositivos, máquinas, programas, etc.

Más detalles

300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos

300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos 300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Qué es un computador? Todos lo sabemos!!!

Más detalles

Analizador De léxico. V A R i : I N T E G E R ; \n...

Analizador De léxico. V A R i : I N T E G E R ; \n... UNIDAD III Analisis de Lexico 3.1 Analizador de Lexico La tarea del análisis de léxico es reconocer símbolos en un flujo de caracteres y presentarlos en una representación mas util para el análisis sintáctico.

Más detalles

INSTITUTO POLITÉCNICO NACIONAL

INSTITUTO POLITÉCNICO NACIONAL PROGRAMA SINTÉTICO UNIDAD ACADÉMICA: ESCUELA SUPERIOR DE CÓMPUTO PROGRAMA Ingeniero en Sistemas Computacionales ACADÉMICO: UNIDAD DE APRENDIZAJE: Teoría Computacional NIVEL: II OBJETIVO GENERAL: Implementar

Más detalles

SSL Guia de Ejercicios

SSL Guia de Ejercicios 1 SSL Guia de Ejercicios INTRODUCCIÓN A LENGUAJES FORMALES 1. Dado el alfabeto = {a, b, c}, escriba las palabras del lenguaje L = {x / x }. 2. Cuál es la cardinalidad del lenguaje L = {, a, aa, aaa}? 3.

Más detalles

Curso Básico de Computación

Curso Básico de Computación Curso Básico de Computación 3 Propiedades de los conjuntos regulares Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) 3 Propiedades

Más detalles

Objetivos Que el estudiante logre conocer, comprender y manejar conceptos y técnicas vinculados con el Analizador Léxico, para lo cual debe:

Objetivos Que el estudiante logre conocer, comprender y manejar conceptos y técnicas vinculados con el Analizador Léxico, para lo cual debe: 09:19 1 2 Temas Funciones del Analizador Léxico Manejo de buffers de entrada Especificación y reconocimiento de tokens Generación automática de Analizadores Léxicos Objetivos Que el estudiante logre conocer,

Más detalles

ÁRBOLES DE SINTAXIS. Los nodos no terminales (nodos interiores) están rotulados por los símbolos no terminales.

ÁRBOLES DE SINTAXIS. Los nodos no terminales (nodos interiores) están rotulados por los símbolos no terminales. ÁRBOLES DE SINTAXIS ÁRBOL grafo dirigido acíclico. Los nodos no terminales (nodos interiores) están rotulados por los símbolos no terminales. Los nodos terminales (nodos hojas) están rotulados por los

Más detalles

Propiedades de lenguajes independientes del contexto

Propiedades de lenguajes independientes del contexto Capítulo 12. Propiedades de lenguajes independientes del contexto 12.1. Identificación de lenguajes independientes del contexto Lema de bombeo. 12.2. Propiedades Cierre, Complemento de lenguajes, Sustitución,

Más detalles