6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales"

Transcripción

1 6. Autómatas a Pila Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar<nez Beatriz García Jiménez Juan Manuel Alonso Weber Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales

2 Introducción Definición Equivalencias Lenguajes Tipo 2 2

3 Jerarquía de Lenguajes Lenguajes Generales Lenguajes Dependientes del Contexto Lenguajes Independientes del Contexto No Deterministas Lenguajes Aceptados por Autómatas a Pila Deterministas Lenguajes Regulares 3

4 Jerarquía de Lenguajes Gramá;cas Regulares Autómatas Finitos Lenguajes Regulares (ER) Gramá;cas Independientes Contexto Autómatas a Pila Lenguajes Independientes Contexto 4

5 Limitaciones de los AF Falta de memoria No pueden reconocer expresiones matemádcas, pej. (2x+(2+n/25)), mas general el lenguaje X n Y n ( ( q r s... ) ) 5

6 Teoremas Para cada gramádca G independiente del contexto, existe un autómata de pila M tal que L(G)=L(M) Para cada autómata de pila M, existe una gramádca G independiente del contexto tal que L(M)=L(G) Existe un lenguaje independiente del contexto que no es el lenguaje aceptado por ningún autómata de pila determinista 6

7 Introducción Definición Equivalencias Lenguajes Tipo 2 7

8 De<inición de AP / 2 5 ) ) Q CONTROL DE ESTADOS CINTA Movimiento de la cinta B A o PILA 8

9 Aceptación por estados <inales Movimiento de la cinta q f CINTA Palabra leída Pila NO necesariamente vacía B... A o PILA 9

10 Aceptación por vaciado de pila Movimiento de la cinta q CINTA Palabra leída Pila NECESARIAMENTE vacía PILA 10

11 De<inición formal Gestión de Pila AF Σ Q q o f F AP A o q o Σ Γ Q f F 11

12 AP: (Σ, Γ, Q, A o, q o, f, F) Σ : alfabeto de entrada Palabras: x, y, z, ax, ay... Γ : alfabeto de pila Palabras: X, Y, Z, AX, AY... Q : conjunto finito de estados Q = {p,q,r,...} A o Γ : símbolo inicial de la pila q o Q : estado inicial del autómata f : función de transición F Q : conjunto de estados finales 12

13 Transición f(q,a,a)={(q 1,Z 1 ),(q 2, Z 2 ),...,(q n, Z n )} q (q,a,a;q n,y n ) a,a;y n q n 1. Leer un símbolo de la entrada 2. Extraer un símbolo de la pila 3. Insertar una palabra en la pila 4. Pasar a un nuevo estado 13

14 Función de Transición f : Q x (Σ {λ} ) x Γ P(Q x Γ *) Transiciones dependientes de la entrada Q x Σ x Γ Transiciones independientes de la entrada Q x λ x Γ AP Deterministas Q x Γ* AP No Deterministas P (Q x Γ*) 14

15 T. independientes de la entrada Sea la transición: f(q, λ,a) = {(q 1,Z 1 ), (q 2, Z 2 ),...,(q n, Z n )} donde: q, q i Q A Γ Z i Γ* 15

16 T. independientes de la entrada z.... a.... p q (q, az, AX) (p, az, X) f(q,λ,a) = (p, λ) A X 16

17 T. dependientes de la entrada Sea la transición: f(q,a,a) = {(q 1,Z 1 ), (q 2,Z 2 ),...,(q n,z n )} donde: q, q i Q a Σ A Γ Z i Γ* 17

18 T. dependientes de la entrada z.... a.... p q (q, az, AX) (p, z, X) f(q,a,a) = (p, λ) A X 18

19 Descripción Instantánea Permite describir sencillamente la configuración del AP en cada momento Terna (q,x,z) donde: q Q, x Σ*, z Γ* ConDene: el estado actual (q) lo que queda por leer de la entrada (x) y el símbolo en la cima de la pila (z) 19

20 Descripción Instantánea Movimiento: (q,ay,ax) (p,y,yx) describe el paso de una descripción instantánea a otra Sucesión de movimientos: (q,ay,ax) *(p,y,yx) representa que desde la primera descripción instantánea se puede alcanzar la segunda 20

21 Autómatas a Pila Deterministas (Σ,Γ,Q,A 0,q 0,f,F) es determinista si verifica: q Q, A Γ, f (q,λ,a) >0 f (q,a,a)=φ a Σ q Q, A Γ, a Σ {λ}, f (q,a,a) <2 si (p, x, y; q, z) y (p, x, y; r, w) son transiciones de un autómata a pila determinista entonces q r, z=w 21

22 Lenguaje aceptado por un AP Por vaciado de pila LV AP ={x (q 0,x,A 0 ) *(p,λ,λ), p Q, x Σ*} Por estado final LF AP ={x (q 0,x,A 0 ) *(p,λ,x), p F, x Σ*,X Γ*} 22

23 Ejemplo LENGUAJE: algunas instrucciones var ::= num; (asignación) if cond then BLOQUE (asignación ó if) if cond then BLOQUE (asignación ó if) else BLOQUE (asignación ó if) 23

24 Ejemplo AP= ({if, then, else, ::=, var, num, cond, ;}, {S, B, C, F, N, P, T, E}, {q}, q, S, f, φ) f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} ELEMENTOS DE Γ S Símbolo inicial F ::= N Numero P ; C Condición T Then B Bloque E Else 24

25 Ejemplo f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} q if cond then var ::= num ; S 25

26 Ejemplo f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} if cond q then var ::= num ; C T B P 26

27 Ejemplo f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} if cond then var ::= num ; q T B P 27

28 Ejemplo if cond f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} then var ::= num ; q B P 28

29 Ejemplo if cond f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} then var ::= num ; q F N P 29

30 Ejemplo if cond f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} then var ::= num ; q N P 30

31 Ejemplo if cond then var ::= num ; f(q, var, S) = {(q, FNP)} f(q, if, S) = {(q, CTBP), (q, CTBEBP)} f(q, if, B) = {(q, CTB), (q, CTBEB)} f(q, var, B) = {(q, FN)} f(q, cond, C) = {(q, λ)} f(q, ::=, F) = {(q, λ)} f(q, num, N) = {(q, λ)} f(q, ;, P) = {(q, λ)} f(q, then, T) = {(q, λ)} f(q, else, E) = {(q, λ)} q P 31

32 Ejemplo if cond then var ::= num ; Pila vacía Sentencia reconocida q 32

33 Introducción Definición Equivalencias Lenguajes Tipo 2 33

34 Equivalencias Teorema Para cada autómata de pila que acepte cadenas sin vaciar su pila, existe un autómata equivalente pero que vacía su pila antes de llegar a un estado de aceptación. 34

35 Paso de AP F a AP V AP F = (Σ, Γ, Q, A 0, q 0, f, F) AP V =(Σ, Γ B, Q p,r, B, p, f, φ) 1. Nuevo símbolo para la pila 2. Dos estados nuevos 3. Valor inicial de la pila 4. Nuevo estado inicial 5. SIN estados finales 35

36 Paso de AP F a AP V AP F = (Σ, Γ, Q, A 0, q 0, f, F) AP V =(Σ, Γ B, Q p,r, B, p, f, φ) f se define así: λ,b; A 0 B p q 0 a, A; Z q i q j q f q i, q j Q, a Σ {λ}, A Γ, Z Γ* A Γ B q f λ,a; λ r q f F, A Γ B λ,a; λ r 36

37 Paso de AP V a AP F AP V =(Σ, Γ, Q, A0, q0, f, φ) AP F =(Σ, Γ B, Q p, r, B, p, f, {r}) f' se define así: λ,b; A 0 B λ,b; λ p q q r* 0 f (p, λ,b) = (q 0, A 0 B) (r, λ) f (q, λ, B) q Q, f(q, a, A) = f (q, a, A) q Q, a Σ {λ}, A Γ

38 Introducción Definición Equivalencias Lenguajes Tipo 2 38

39 De Gramática Tipo 2 a AP V Dada una G2 en FNG, construir un AP V : G = (Σ T, Σ N, S, P) entrada pila inicial de pila AP V = (Σ T, Σ N, q, S, q, f, φ) Se obdene un AP V con un solo estado 39

40 De Gramática Tipo 2 a AP V f se define como: es decir: (q, Z) f(q, a, A) f(q, a, A) = (q, Z) si existe una producción del Dpo A ::= a Z f(q, a, A) = (q, λ) si existe una producción del Dpo A ::= a f(q, a, A) = {(q, Z), (q, λ)} dada una producción: A::= az ad b f(q, a, A)= {(q, Z), (q, D)} f(q, b, A) = (q, λ) Si S::= λ (q,λ) f(q,λ,s) 40

41 De Gramática Tipo 2 a AP F Dada una G2, construir un AP F donde: G = (Σ T, Σ N, S, P) AP V = (Σ T, Γ, Q, A 0, q 0, f, {q 2 }) Γ= Σ T Σ N {A 0 }, donde A 0 Σ T Σ N Q={q 0, q 1, q 2 } 41

42 De Gramática Tipo 2 a AP F f se define como: f (q 0, λ, A 0 ) = {q 1, SA 0 } A Σ N, si A ::= α P, (α Σ*) (q 1, α) f (q 1, λ, A) es decir: f (q 1, λ, A) = {, (q 1, α), } a Σ T, (q 1, λ) f (q 1,a,a) es decir f (q1,a,a) = {, (q1,λ), } f (q 1, λ, A 0 ) = {q 2,A 0 } 42

43 De AP V a Gramática Tipo 2 Dado un AP V, construir una G2 tal que L(G2) = L(AP V ) Para construir P: AP V = (Σ, Γ, Q, A 0, q 0, f, φ) G = (Σ T, Σ N, S, P) {S} { (paq) p, q Q, A Γ} 1. S::= (q 0, A 0,q) q Q (se eligen las que empiezan por q 0 A 0 ) 2. De cada transición f(p,a,a) = (q, BB B...B ) donde: A,B,B,B,,B Γ ; a Σ {λ} se obdene: (p A z ) ::= a ( q B r ) ( r B s ) s... y ( y B z ) 3. De cada transición f( p, a, A) = (q, λ) se obdenen: ( p,a,q ) ::= a 43

44 Bibliogra<ía Libro Básico 1 Bibliograwa. Enrique Alfonseca Cubero, Manuel Alfonseca Cubero, Roberto Moriyón Salomón. Teoría de autómatas y lenguajes formales. McGraw- Hill (2007). Capítulo 4 y Apartado 8.1 Libro Básico 2 Bibliograwa. John E. Hopcroz, Rajeev Motwani, Jeffrey D.Ullman. Introducción a la teoría de autómatas, lenguajes y computación (3ª edición). Ed, Pearson Addison Wesley. Capítulo 6 Libro Básico 4 Bibliograwa. Manuel Alfonseca, Justo Sancho, Miguel Mar<nez Orga. Teoría de lenguajes, gramádcas y autómatas. Publicaciones R.A.E.C Capítulo 10 44

Teoría de Autómatas y Lenguajes Formales.

Teoría de Autómatas y Lenguajes Formales. Teoría de Autómatas y Lenguajes Formales Ejercicios de Autómatas a Pila Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

Más detalles

Unidad 4. Autómatas de Pila

Unidad 4. Autómatas de Pila Unidad 4. Autómatas de Pila Una de las limitaciones de los AF es que no pueden reconocer el lenguaje {0 n 1 n } debido a que no se puede registrar para todo n con un número finito de estados. Otro lenguaje

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

Equivalencia Entre PDA y CFL

Equivalencia Entre PDA y CFL Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede

Más detalles

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

Un autómata con pila no determinista (APND) es una septupla Q A B F en la que

Un autómata con pila no determinista (APND) es una septupla Q A B F en la que AUTÓMATAS CON PILA Un autómata con pila no determinista (APND) es una septupla Q A F en la que δ q 0 Q es un conjunto finito de estados A es un alfabeto de entrada es un alfabeto para la pila δ es la función

Más detalles

Teoría de Autómatas y Lenguajes Formales.

Teoría de Autómatas y Lenguajes Formales. Teoría de Autómatas y Lenguajes Formales Ejercicios de Lenguajes Regulares Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso

Más detalles

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 Teoría de Lenguajes Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 aterial compilado por el Profesor Julio Jacobo, a lo largo de distintas ediciones

Más detalles

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila. 0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)

Más detalles

Computabilidad y Lenguajes Formales: Autómatas de Pila

Computabilidad y Lenguajes Formales: Autómatas de Pila 300CIG007 Computabilidad y Lenguajes Formales: Autómatas de Pila Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Basado en [SIPSER, Chapter 2] Autómatas

Más detalles

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )

Más detalles

Clase 17: Autómatas de pila

Clase 17: Autómatas de pila Solicitado: Ejercicios 14: Autómatas de pila de GLC M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfrancom@ipn.mx 1 Contenido Autómata de pila Definición

Más detalles

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO Autómatas de pila y lenguajes independientes del contexto -1- AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO AUTÓMATAS DE PILA - Son autómatas finitos con una memoria en forma de pila. - Símbolos

Más detalles

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones 1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y

Más detalles

13.3. MT para reconocer lenguajes

13.3. MT para reconocer lenguajes 13.3. MT para reconocer lenguajes Gramática equivalente a una MT Sea M=(Γ,Σ,,Q,q 0,f,F) una Máquina de Turing. L(M) es el lenguaje aceptado por la máquina M. A partir de M se puede crear una gramática

Más detalles

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto

Más detalles

El Autómata con Pila: Transiciones

El Autómata con Pila: Transiciones El Autómata con Pila: Transiciones El Espacio de Configuraciones Universidad de Cantabria Esquema Introducción 1 Introducción 2 3 Transiciones Necesitamos ahora definir, paso por paso, como se comporta

Más detalles

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo

Más detalles

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007.

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007. Universidad de Puerto Rico Recinto de Mayagüez Facultad de Artes y Ciencias DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Programa de Autómata y Lenguajes Formales Curso: Autómata y Lenguajes Formales Codificación:

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales

Más detalles

Tema: Autómata de Pila

Tema: Autómata de Pila Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores 1 Tema: Autómata de Pila Contenido La presente guía aborda los autómatas de pila, y se enfoca en la aplicación que se le puede dar a estas

Más detalles

El Autómata con Pila

El Autómata con Pila El Autómata con Pila Una Generalización del Autómata Finito Universidad de Cantabria Esquema 1 2 3 4 Los autómatas son abstracciones de maquinas de calcular, como hemos visto. Los más sencillos no tienen

Más detalles

Sentido de recorrido. q i

Sentido de recorrido. q i Sentido de recorrido σ Cinta Cabeza de lectura γ Pila i Unidad de control de estados Componentes básicos de un autómata con pila. σ i 1 σ i j σ i j+1 σ i p Z (a) γ l 1 γ l 2 γ l σ i 1 σ i j σ i j+1 σ i

Más detalles

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción

Más detalles

Teoría de Lenguajes. Clase Teórica 8 Propiedades de Lenguajes Independientes de Contexto y su Lema de Pumping Primer cuartimestre 2014

Teoría de Lenguajes. Clase Teórica 8 Propiedades de Lenguajes Independientes de Contexto y su Lema de Pumping Primer cuartimestre 2014 Teoría de Lenguajes Clase Teórica 8 Propiedades de Lenguajes Independientes de Contexto y su Lema de Pumping Primer cuartimestre 2014 Estas notas están basadas en el material compilado por el Profesor

Más detalles

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I Gramáticas independientes del contexto UTÓMTS Y LENGUJES FORMLES LENGUJES INDEPENDIENTES DEL CONTEXTO Y UTÓMTS DE PIL Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNM E-mail:

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en

Más detalles

2.Teoría de Autómatas

2.Teoría de Autómatas 2.Teoría de Autómatas Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar

Más detalles

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50 INAOE (INAOE) 1 / 50 Contenido 1 2 3 4 (INAOE) 2 / 50 Pushdown Automata Las gramáticas libres de contexto tienen un tipo de autómata que las define llamado pushdown automata. Un pushdown automata (PDA)

Más detalles

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto Universidad Autónoma del Estado de México Centro Universitario UAEM Texcoco Departamento de Ciencias Aplicadas. Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer,

Más detalles

DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas

DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas CÓDIGO ASIGNATURA 1129 DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas ASIGNATURA: Autómatas y Lenguajes Formales Ingeniería en Informática Año: 5 Cuatri: 1 1. OBJETIVOS Dar a los alumnos conocimientos

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas

Más detalles

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total.

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total. U.R.J.C. Ingeniera Técnica en Informática de Sistemas Teoría de Autómatas y Lenguajes Formales Junio 2009 2do. Parcial Normas : La duración del examen es de 2 horas. Todos los ejercicios se entregarán

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES

PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS 1. DATOS INFORMATIVOS MATERIA: DISEÑO DE LENGUAJES Y AUTOMATAS: CARRERA: INGENIERÍA DE SISTEMAS NIVEL:

Más detalles

Teoría de Lenguajes y Autómatas Conceptos y teoremas fundamentales

Teoría de Lenguajes y Autómatas Conceptos y teoremas fundamentales Se prohíbe la reproducción total o parcial de este documento, excepto para uso privado de los alumnos de la asignatura Teoría de Autómatas I de la UNED y los alumnos de asignaturas equivalentes de otras

Más detalles

Lenguajes y Gramáticas

Lenguajes y Gramáticas Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas

Más detalles

Cátedra de Sintaxis y Semántica de Lenguajes

Cátedra de Sintaxis y Semántica de Lenguajes Universidad Tecnológica Nacional Facultad Regional Córdoba Cátedra de Sintaxis y Semántica de Lenguajes Modalidad Académica Coordinador de Cátedra: Ing. Juan Giró Ciclo Lectivo: 2009 Nombre de la Materia

Más detalles

Capítulo 7: Expresiones Regulares

Capítulo 7: Expresiones Regulares Capítulo 7: Expresiones Regulares 7.1. Concepto de expresión regular 7.1.1. Definición 7.1.2. Lenguaje descrito 7.1.3. Propiedades 7.2. Teoremas de equivalencia 7.2.1. Obtener un AFND a partir de una expresión

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas Tema 3.1: Autómatas Finitos Deterministas Luis Peña luis.pena@urjc.es http://www.ia.urjc.es/cms/es/docencia/ic-msal Sumario Tema 3.1: Autómatas Finitos Deterministas. 1. Concepto de AFD 2. Equivalencia

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Analizadores sintácticos descendentes: LL(1) Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 Analizadores sintácticos

Más detalles

Autómatas Deterministas. Ivan Olmos Pineda

Autómatas Deterministas. Ivan Olmos Pineda Autómatas Deterministas Ivan Olmos Pineda Introducción Los autómatas son una representación formal muy útil, que permite modelar el comportamiento de diferentes dispositivos, máquinas, programas, etc.

Más detalles

ESCUELA: UNIVERSIDAD DEL ISTMO

ESCUELA: UNIVERSIDAD DEL ISTMO 1.-IDENTIFICACIÓN ESCUELA: UNIVERSIDAD DEL ISTMO CLAVE: 3041 GRADO: ING. EN COMPUTACIÓN, CUARTO SEMESTRE TIPO DE TEÓRICA/PRÁCTICA ANTECEDENTE CURRICULAR: 3033.- OBJETIVO GENERAL Proporcionar al alumno

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 45 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

LENGUAJES FORMALES Y AUTÓMATAS

LENGUAJES FORMALES Y AUTÓMATAS LENGUAJES FORMALES Y AUTÓMATAS Departamento de Lenguajes y Sistemas Informáticos Escuela Técnica Superior de Ingeniería Informática Universidad de Sevilla Víctor J. Díaz Madrigal José Miguel Cañete Valdeón

Más detalles

Carácter Modalidad Horas de estudio semestral (16 semanas)

Carácter Modalidad Horas de estudio semestral (16 semanas) PROGRAMA DE ESTUDIOS: TEORÍA DE LA COMPUTACIÓN PROTOCOLO Fechas Mes/año Clave Semestre 5 o Elaboración 05-2010 Nivel Licenciatura X Maestría Doctorado Aprobación Ciclo Integración Básico Superior Aplicación

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso 202-203 Universidad Rey Juan Carlos GUÍA PARA LA REALIZACIÓN DE LA HOJA DE PROBLEMAS No 3 (Tema 3: Expresiones Regulares)

Más detalles

El análisis descendente LL(1) 6, 7 y 13 de abril de 2011

El análisis descendente LL(1) 6, 7 y 13 de abril de 2011 6, 7 y 13 de abril de 2011 Analizadores sintácticos (repaso) Los analizadores descendentes: Corresponden a un autómata de pila determinista. Construyen un árbol sintáctico de la raíz hacia las hojas (del

Más detalles

Lenguajes (gramáticas y autómatas)

Lenguajes (gramáticas y autómatas) Lenguajes (gramáticas y autómatas) Elvira Mayordomo Universidad de Zaragoza 19 de septiembre de 2013 Elvira Mayordomo (Universidad de Zaragoza) Lenguajes (gramáticas y autómatas) 19 de septiembre de 2013

Más detalles

Paso 1: Autómata. A 1 sin estados inútiles, que reconoce el lenguaje denotado por a a* b*

Paso 1: Autómata. A 1 sin estados inútiles, que reconoce el lenguaje denotado por a a* b* UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS SEGUNDO CURSO, SEGUNDO CUATRIMESTRE TEORÍA DE AUTÓMATAS

Más detalles

Teoría de Lenguajes. Teoría de la Programación I

Teoría de Lenguajes. Teoría de la Programación I Teoría de Lenguajes Soluciones Consideraciones generales i) Escriba nombre y C.I. en todas las hojas. ii) Numere todas las hojas. iii) En la primera hoja indique el total de hojas. iv) Comience cada ejercicio

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 3

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 3 TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 3 1. Equivalencia entre autómatas 1.1. Equivalencia entre AFD y AFN 1.1. Equivalencia entre AFD y AFλ 2. Ejercicios propuestos 1. Equivalencia entre autómatas

Más detalles

Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta.

Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta. Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta. (a) Es posible aceptar por stack vacío el lenguaje {0 i 1 j i = j o j = 2i} con un AA determinístico.

Más detalles

3. Autómatas Finitos. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales

3. Autómatas Finitos. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales 3. Autómatas Finitos Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales 1. Estudiar el sistema de ecuaciones según los valores del parámetro a. ax + y + z = a x y + z = a 1 x + (a 1)y + az = a + 3 Resolverlo (si es posible) para a = 1. (Junio

Más detalles

Autómatas finitos no deterministas (AFnD)

Autómatas finitos no deterministas (AFnD) Autómatas finitos no deterministas (AFnD) Elvira Mayordomo Universidad de Zaragoza 1 de octubre de 2012 Contenido de este tema Introducción y ejemplos de autómatas finitos no deterministas Definición de

Más detalles

Clase 08: Autómatas finitos

Clase 08: Autómatas finitos Solicitado: Ejercicios 06: Autómatas finitos M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfrancom@ipn.mx 1 Contenido Autómata finito Definición formal

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES (TALF) BLOQUE II: LENGUAJES REGULARES Tema 2: Autómatas Finitos Parte 2 (de 3). Autómatas Finitos No Deterministas (AFNDs) Grado en Ingeniería Informática URJC

Más detalles

IIC2213. IIC2213 Teorías 1 / 42

IIC2213. IIC2213 Teorías 1 / 42 Teorías IIC2213 IIC2213 Teorías 1 / 42 Qué es una teoría? Una teoría es un cúmulo de información. Debe estar libre de contradicciones. Debe ser cerrada con respecto a lo que se puede deducir de ella. Inicialmente

Más detalles

Lenguajes, Gramáticas y Autómatas Conceptos

Lenguajes, Gramáticas y Autómatas Conceptos Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y

Más detalles

Convertir un AFND a un AFD

Convertir un AFND a un AFD Convertir un AFND a un AFD Existe una equivalencia entre los AFD y AFN, de forma que un autómata M es equivalente a un autómata M' si L(M) ) L(M'). Ejemplo: Los autómatas de la siguiente figura son equivalentes.

Más detalles

Autómatas y Lenguajes Formales. Tema 3.2: Autómatas Finitos No Deterministas. Luis Peña luis.pena@urjc.es

Autómatas y Lenguajes Formales. Tema 3.2: Autómatas Finitos No Deterministas. Luis Peña luis.pena@urjc.es Autómatas y Lenguajes Formales Tema 3.2: Autómatas Finitos No Deterministas Luis Peña luis.pena@urjc.es Sumario Tema 3.2: Autómatas Finitos No Deterministas. 1. Concepto de AFND 2. Teoremas de Equivalencia

Más detalles

Modelos Computacionales

Modelos Computacionales Análisis y Complejidad de Algoritmos Modelos Computacionales Arturo Díaz Pérez El circuito lógico La máquina de estados finitos La máquina de acceso aleatorio La máquina de Turing Compuertas Lógicas Compuerta

Más detalles

Introducción a los códigos compresores

Introducción a los códigos compresores Introducción a los códigos compresores Parte I de la Lección 2, Compresores sin pérdidas, de CTI Ramiro Moreno Chiral Dpt. Matemàtica (UdL) Febrero de 2010 Ramiro Moreno (Matemàtica, UdL) Introducción

Más detalles

GRAMATICAS LIBRES DEL CONTEXTO

GRAMATICAS LIBRES DEL CONTEXTO GRMTICS LIBRES DEL CONTEXTO Estas gramáticas, conocidas también como gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.

Más detalles

Lenguajes Formales. 27 de octubre de 2005

Lenguajes Formales. 27 de octubre de 2005 Apuntes de Teoría de Autómatas y Lenguajes Formales Gloria Martínez Luis A. García 27 de octubre de 2005 II Índice general 3.1. El Teorema de Myhill-Nerode. Minimización de Autómatas Finitos..... 41 3.2.

Más detalles

Teoría de Autómatas y Lenguajes Formales.

Teoría de Autómatas y Lenguajes Formales. Teoría de Autómatas y Lenguajes Formales Ejercicios de Autómatas Finitos Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

Más detalles

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003 Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación

Más detalles

Autómatas Finitos y Lenguajes Regulares

Autómatas Finitos y Lenguajes Regulares Autómatas Finitos y Lenguajes Regulares Problema: Dado un lenguaje L definido sobre un alfabeto A y una cadena x arbitraria, determinar si x L o x L. Cadena x AUTOMATA FINITO SI NO Lenguaje Regular Autómatas

Más detalles

Introducción a Autómatas Finitos

Introducción a Autómatas Finitos Introducción a e. Universidad de Cantabria Esquema 1 Introducción 2 3 Grafo de λ Transiciones Eliminación de las λ-transiciones 4 El Problema Podemos interpretar un autómata como un evaluador de la función

Más detalles

ESCUELA INTERNACIONAL DE IDIOMAS Avenida Pedro de Heredia, Calle 49a #31-45, barrio el Libano 6600671

ESCUELA INTERNACIONAL DE IDIOMAS Avenida Pedro de Heredia, Calle 49a #31-45, barrio el Libano 6600671 Página: Pág: 1 HORARIOS DE CLASES IDIOMAS Jornada: M Sem:01 Curso:01 A.1.1 AA A.1.1 AA A.1.1 AA 11:00AM-12:00PM VIONIS VIONIS Jornada: M Sem:01 Curso:02 A.1.1 AB A.1.1 AB A.1.1 AB VIONIS VIONIS Jornada:

Más detalles

Apuntes de Teoría de Autómatas y Lenguajes Formales. Gloria Martínez

Apuntes de Teoría de Autómatas y Lenguajes Formales. Gloria Martínez Apuntes de Teoría de Autómatas y Lenguajes Formales Gloria Martínez Luis A. García 11 de octubre de 2005 Índice general 1. Introducción 1 1.1. Alfabetos y Cadenas.............................. 1 1.2.

Más detalles

Gramáticas independientes del contexto. Tema 3: Lenguajes independientes del contexto. Derivaciones. Árbol de derivación

Gramáticas independientes del contexto. Tema 3: Lenguajes independientes del contexto. Derivaciones. Árbol de derivación Tema 3: Lenguajes independientes del contexto Gramáticas independientes de contexto (GIC) Conceptos básicos Ambigüedad Ejemplos de GICs Autómatas con pila (AP) Definición de autómata con pila Determinismo

Más detalles

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt holger.billhardt@urjc.es Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre

Más detalles

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ.

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ. Alfabetos, Cadenas y Lenguajes Definición 1 Un Alfabeto es cualquier conjunto finito, no vacío. Ejemplo 1 Sea Σ = {0, 1, 2, 3,..., 9} donde 0 Σ Definición 2 Una cadena sobre Σ es cualquier secuencia de

Más detalles

Introducción a los Autómatas Finitos

Introducción a los Autómatas Finitos Teoría de Introducción a los Un modelo de Computación. Universidad de Cantabria Esquema Introducción Teoría de 1 Introducción 2 Teoría de 3 4 5 El Problema Introducción Teoría de Nuestro objetivo en este

Más detalles

8.1 Indecibilidad 8.5 Indecibilidad en el problema de la correspondencia de Post

8.1 Indecibilidad 8.5 Indecibilidad en el problema de la correspondencia de Post 1 Curso Básico de Computación 8.1 Indecibilidad 8.5 Indecibilidad en el problema de la correspondencia de Post Los problemas indecidibles aparecen en varias áreas. En las próximas tres secciones se analizarán

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 0 REFLEXION Y RESUELVE Resolución de sistemas Ò mediante determinantes y Resuelve, aplicando x x e y, los siguientes sistemas de ecuaciones: 3x 5y 73 a

Más detalles

Facultad de Ingeniería de Sistemas 1.5 Carrera: Ingeniería de Sistemas 1.6 Código: ISI 1.7 Nivel: Pregrado

Facultad de Ingeniería de Sistemas 1.5 Carrera: Ingeniería de Sistemas 1.6 Código: ISI 1.7 Nivel: Pregrado 1. Identificación del curso 1.1 Escuela / Departamento: Ciencias Naturales e Ingeniería 1.3 Programa: 1.2 Código: CN 1.4 Código: FAC-ISI Facultad de Ingeniería de Sistemas 1.5 Carrera: Ingeniería de Sistemas

Más detalles

Tema 4. Espacio Proyectivo.

Tema 4. Espacio Proyectivo. Tema 4. Espacio Proyectivo. Definición y modelos. *) El origen de la geometría proyectiva está relacionado con el estudio de la perspectiva, para conseguir cuadros o planos realistas del mundo 3-dimensional;

Más detalles

AUTÓMATAS DE PILA. Nota: Si existe transición de tipo (2), sólo se garantiza que AP es determinístico si s A, δ( e i, s, X) está indefinida.

AUTÓMATAS DE PILA. Nota: Si existe transición de tipo (2), sólo se garantiza que AP es determinístico si s A, δ( e i, s, X) está indefinida. AUTÓMATAS DE PILA Los autómatas de pila, en forma similar a como se usan los autómatas finitos, también se pueden utilizar para aceptar cadenas de un lenguaje definido sobre un alfabeto A. Los autómatas

Más detalles

Conjunto R 3 y operaciones lineales en R 3

Conjunto R 3 y operaciones lineales en R 3 Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 4: Autómatas finitos deterministas. Holger Billhardt holger.billhardt@urjc.

Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 4: Autómatas finitos deterministas. Holger Billhardt holger.billhardt@urjc. Formales Tema 4: Autómatas finitos deterministas Holger Billhardt holger.billhardt@urjc.es Sumario: Bloque 2: Autómatas Finitos 4. Autómatas Finitos Deterministas 1. Concepto y Definición 2. Autómata finito

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

Clase 09: AFN, AFD y Construcción de Thompson

Clase 09: AFN, AFD y Construcción de Thompson Clase 09: AFN, AFD y Construcción de Thompson Solicitado: Ejercicios 07: Construcción de AFN scon Thompson M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom

Más detalles

Teoría de la Computabilidad

Teoría de la Computabilidad Teoría de la Computabilidad Módulo 7: Lenguajes sensibles al contexto 2016 Departamento de Cs. e Ing. de la Computación Universidad Nacional del Sur Bahía Blanca, Argentina Es este programa en Pascal sintácticamente

Más detalles

Extensiones de Thoth para la simulación de autómatas de pila y máquinas de Turing

Extensiones de Thoth para la simulación de autómatas de pila y máquinas de Turing Extensiones de Thoth para la simulación de autómatas de pila y máquinas de Turing César García-Osorio, Javier Jimeno-Visitación, Iñigo Mediavilla-Sáiz Dpto. de Ingeniería Civil Universidad de Burgos Avda.

Más detalles

Tema 2. Fundamentos de la Teoría de Lenguajes Formales

Tema 2. Fundamentos de la Teoría de Lenguajes Formales Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones

Más detalles

Sistemas lineales con parámetros

Sistemas lineales con parámetros 4 Sistemas lineales con parámetros. Teorema de Rouché Piensa y calcula Dado el siguiente sistema en forma matricial, escribe sus ecuaciones: 3 0 y = 0 z + y 3z = 0 y = Aplica la teoría. Escribe los siguientes

Más detalles

Tema 5 Lenguajes independientes del contexto. Sintaxis

Tema 5 Lenguajes independientes del contexto. Sintaxis Tema 5 Lenguajes independientes del contexto. Sintaxis 1 Gramáticas independientes del contexto Transformación de gramáticas independientes del contexto Autómatas de pila Obtención de un autómata de pila

Más detalles

Teoría de Autómatas y Lenguajes Formales.

Teoría de Autómatas y Lenguajes Formales. Teoría de Autómatas y Lenguajes Formales Prácticas Introducción a JFLAP Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

Más detalles

Autómatas finitos con salidas

Autómatas finitos con salidas Agnatura: Teoría de la Computación Unidad : Lenguajes Regulares Tema 2: Autómatas con salidas Autómatas finitos con salidas Importancia y aplicación de los autómatas finitos Los Autómatas finitos constituyen

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Autómatas Finitos. Leopoldo Altamirano, Eduardo Morales. Verano, 2011 INAOE. Introducción a. Autómatas. Definición formal de un. Finito Determinístico

Autómatas Finitos. Leopoldo Altamirano, Eduardo Morales. Verano, 2011 INAOE. Introducción a. Autómatas. Definición formal de un. Finito Determinístico los s s s s Leopoldo Altamirano, Eduardo Morales INAOE Verano, 2011 (INAOE) Verano, 2011 1 / 60 Contenido los s s 1 los s 2 3 4 s 5 (INAOE) Verano, 2011 2 / 60 los s los s los s s : Conjunto de estados

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Sucesiones y Suma Finita

Sucesiones y Suma Finita Sucesiones y Suma Finita Hermes Pantoja Carhuavilca Centro Pre-Universitario CEPRE-UNI Universidad Nacional de Ingeniería Algebra Hermes Pantoja Carhuavilca 1 de 21 CONTENIDO Convergencia de una sucesión

Más detalles

Transformaciones lineales

Transformaciones lineales Semana 8 [1/62] 8 de septiembre de 27 Definiciones básicas Semana 8 [2/62] Definición Transformación lineal U, V dos espacios vectoriales sobre el mismo cuerpo Ã. T : U V es una transformación (o función)

Más detalles