Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4"

Transcripción

1 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa desde su posición de equilibrio. a) Halle la ecuación de movimiento para la n-ésima masa. b) Asumiendo una solución de la forma A n = A sin(nka) para la amplitud de la n-ésima masa en un modo normal, encontrar la relación de dispersión ω(k) y las frecuencias mínima y máxima posibles. Ejercicio 2 (Examen diciembre 2004) Se considera un conjunto de partículas de igual masa m que pueden moverse sobre una línea recta. as mismas están unidas entre sí por resortes iguales de longitud natural nula y constante elástica k 1. os resortes extremos están unidos a paredes separadas una distancia. Además, cada masa está unida por un resorte de constante k 2 a puntos equiespaciados, como muestra la figura. a) Hallar las ecuaciones de movimiento de cada una de las masas. Escribir luego las ecuaciones para los desplazamientos con respecto a la posición de equilibrio. b) Hallar la relación de dispersión del sistema. Cuál es la frecuencia angular mínima posible, ω 0, para tener soluciones sinusoidales? c) Consideremos la situación límite en la que el número de masas tiende a infinito, manteniendo fija la distancia entre las paredes, la tensión en reposo τ y la densidad lineal de masa ρ. Supongamos que k 2 es del mismo orden que k 1. Cómo se comporta ω 0 en este límite? En dicho límite, el sistema se comportará como una cuerda continua? Qué condición debe cumplir k 2 para que sea posible el pasaje al continuo del sistema? Ejercicio 3 Hallar la ecuación de movimiento para las pequeñas oscilaciones transversales y polarizadas de una cuerda sometida a la acción de la gravedad, que tiene un extremo fijo a un techo y el otro libre. a posición de equilibrio es vertical. 1

2 Ejercicio 4 Una cuerda uniforme de 2,5m de longitud y 10g de masa se somete a una tensión de 10N. a) Cuál es la frecuencia de su modo fundamental? b) Si se pulsa transversalmente la cuerda de modo tal que aparecen todos los modos normales. uego, se se presiona la cuerda en un punto a 0,5m de su extremo, qué frecuencias persistirán? Ejercicio 5 a) Hallar la energía total de vibración de una cuerda de longitud, fija en ambos extremos, que oscila en su modo característico n con amplitud A. a tensión en la cuerda es T y su masa total M. b) Calcular la energía total de la cuerda si está vibrando en la siguiente superposición de modos normales. ( πx ) ( ) 3πx y(x, t) = A 1 sin cos(ω 1 t) + A 3 sin cos(ω 3 t π/4) Deberá comprobarse que es la suma de las energías de los dos modos normales considerados separadamente. c) Para el caso de una cuerda pulsada como en la figura y que inicialmente se encuentra en reposo, de la cual se conocen su densidad y tensión, describir el movimiento posterior q(x, t) luego de que la misma se deja libre. h d) Cuál va a ser la relación en db (decibeles) entre la intensidad sonora del armónico fundamental y el tercero o el quinto producidos al vibrar la cuerda? Suponga que la intensidad del sonido producido es proporcional a la energía de la cuerda. Ejercicio 6 Se consideran las siguientes cuerdas pulsadas. Inicialmente, todas están quietas y pulsadas con la forma indicada en la figura. Se verifica que h, y todas están sometidas a la misma tensión T y tienen la misma densidad de masa. a) Ordenar las cuerdas de mayor a menor de acuerdo a la energía que almacenan. b) Van a tener todas la misma frecuencia fundamental de oscilación? 2

3 Ejercicio 7 Se considera una cuerda tensa de longitud, con un extremo fijo y el otro sometido a una excitación forzada externamente y(0, t). Determinar el movimiento de la cuerda en régimen en los siguientes casos: a) Excitación sinusoidal y(0, t) = A cos(ωt). b) Onda cuadrada de amplitud A y período T 0 con valor medio nulo. c) Onda triangular (diente de sierra) de amplitud A y período T 0 con valor medio no nulo. Discutir cuándo ocurre resonancia. Ejercicio 8 a cuerda de la figura, de longitud 2, tiene una masa m en su punto medio y una argolla sin masa en su extremo B, que desliza sin rozamiento sobre una guía perpendicular a la posición de equilibrio de la cuerda. a) Hallar la ecuación de las frecuencias naturales. Indicar las soluciones en un ábaco. b) Se fuerza ahora el extremo A con un desplazamiento U 0 cos(ωt). Hallar el movimiento. A m B 3

4 Ejercicio 9 Una cuerda formada por dos partes de igual longitud, densidades lineales ρ y ρ/4 y sometidas a una tensión T está fija en un extremo y en el otro es forzada a vibrar con un desplazamiento U 0 cos(ωt). a masa del nudo es despreciable. a) Hallar el desplazamiento de la cuerda. b) Hallar las frecuencias naturales del sistema cuando tiene ambos extremos fijos. S S/4 Ejercicio 10 (Segundo parcial 2004) Partiendo del modelo discreto de la cuerda, se pretende realizar una primera aproximación al problema de una cuerda vibrante que disipa energía por encontrarse en un medio viscoso. Para modelar este fenómeno consideraremos que sobre cada masita de la cuerda discreta actúa una fuerza viscosa de la forma F b = Bdv, donde v es la velocidad de la masa, B un coeficiente constante positivo y d la distancia entre dos masas consecutivas en el equilibrio. a) Pasar al caso continuo para hallar la nueva ecuación de movimiento de la cuerda. b) Suponiendo B pequeño, hallar soluciones de onda estacionaria de la ecuación de la forma u(x, t) = A(t)e ikx siendo A(t) una función exclusivamente del tiempo y k una constante. Hallar la forma de A(t). c) Considerando una cuerda de longitud con ambos extremos fijos, hallar las frecuencias de oscilación amortiguada ω n posibles y el tiempo en que las oscilaciones se atenúan en un factor 1/e. Ejercicio 11 Dada una cuerda con velocidad inicial nula y una deformación inicial de la forma sin ( ) 2πx λ para el intervalo 0 < x < λ y cero fuera del mismo, estudiar la propagación de la deformación inicial gráfica y analíticamente para los siguientes casos. a) Cuerda ilimitada. b) Cuerda limitada en un solo extremo fijo. c) Cuerda de longitud mucho mayor que λ con ambos extremos fijos (estudiar en este caso las dos primeras reflexiones). d) Para una cuerda de longitud igual a λ con ambos extremos fijos. Ejercicio 12 Sobre una cuerda semi-indefinida cuyo extremo accesible está conectado a un amortiguador de constante b por un nudo de masa despreciable (la carcaza del amortiguador está fija) incide una onda de forma triangular de tal modo que en t = 0 la cuerda presenta el aspecto de la figura, con el triángulo desplazándose a la derecha. Hallar la forma de la onda reflejada, discutiendo según que la tensión de la cuerda T 0 sea mayor, menor o igual que el producto bv. 4

5 Ejercicio 13 Se considera una cuerda semi-indefinida que tiene fijo su extremo accesible y que en el instante t = 0 presenta la forma que se muestra en la figura, con velocidad nula. En ese instante se suelta la cuerda. Considerando las oscilaciones transversales, graficar detalladamente la posición del punto que está en x = 0 en función del tiempo. a velocidad de propagación de las ondas es de 10m/s. Ejercicio 14 (Examen diciembre 2003) Se considera una cuerda ifinita de densidad lineal de masa µ, sometida a una tensión T, la cual en un punto tiene anudado un amortiguador como en la figura. El mismo ejerce una fuerza transversal, proporcional y opuesta a la velocidad del desplazamiento transversal de la cuerda en ese punto. El coeficiente del amortiguador, b, es conocido. En t = 0 la cuerda presenta la forma de un pulso q(x, 0) = g(x) viajando hacia la derecha con velocidad v. Se considera el pulso de tamaño finito. a) Cuál es el valor de la velocidad v? b) Mostrar que la energía mecánica total de la cuerda en este caso puede escribirse como E = T g (x) 2 dx g (u) = dg du c) Cuál es la altura del pulso que se transmite hacia la derecha del amortiguador relativa a la altura del pulso inicial g(x)? Cuál es la altura del pulso que se refleja en el amortiguador? Dibujar la cuerda en un instante muy posterior a aquel en que el pulso inicial llega al amortiguador. d) Hallar una expresión para la energía disipada en el amortiguador, en función de la función g(x) o su derivada. e) Verificar que la energía del pulso reflejado más la del transmitido más la energía dispada en el amortiguador es igual a la energía inicial. 5

6 Ejercicio 15 (Examen febrero 2005) Se consideran tres cuerdas infinitas distintas y coplanares, de densidades lineales de masa ρ 1, ρ 2 y ρ 3, respectivamente, unidas en un nudo de masa nula y sometidas todas a la misma tensión T. Se considerarán las vibraciones transversales en las mismas. Sobre la cuerda 1 inicialmente se tiene un pulso f 1 (x 1 ) viajando hacia la derecha a una velocidad v 1, como muestra la primera figura. a) Hallar el pulso reflejado en la cuerda 1 y los transmitidos en las otras dos cuerdas. b) Suponiendo ahora que el pulso inicial es de forma triangular, como el de la segunda figura: I. Discutir las distintas situaciones que se pueden presentar para el pulso reflejado. II. Dibujar el pulso reflejado y los transmitidos en cada caso. Nota: Puesto que las cuerdas tienen la misma tensión, el ángulo que forman las cuerdas 2 y 3 es de 120 o. Además, las vibraciones son transversales al plano de las tres cuerdas. 6

7 Ejercicio 16 (Examen febrero 2008): Una cuerda puede presentar oscilaciones transversales a lo largo de dos direcciones arbitrarias ortogonales entre si e 1 y e 2 ( e i = 1). Esta oscilación mas general de la cuerda, que introduce un grado de libertad adicional denominado polarización, se puede describir utilizando el vector q = q 1 e 1 + q 2 e 2, donde q i describe el movimiento oscilatorio transversal a lo largo de la dirección e i. a) El extremo de una cuerda ideal semi-infnita esta unido a una partícula de masa despreciable libre de desplazarse a lo largo de una guía rectilínea, perpendicular a la cuerda, como se muestra en la figura. Desde la izquierda del dibujo se propaga por la cuerda una onda sinusoidal q = Asen(ωt kx) a lo largo de la dirección e 2, que forma un ángulo de 45 o con la guía. Determine las oscilaciones de la cuerda después de que la onda haya llegado al extremo de la misma. b) Determine todos los puntos de la cuerda que tienen una trayectoria circular. Ejercicio 17 (Examen diciembre 2007): Sea una barra con momento de inercia I y de longitud 2d unida en sus extremos a dos cuerdas idénticas de longitud (sometidas a la misma tensión) como se muestra en la figura. os otros extremos A y B de las cuerdas se encuentran fijos y la barra puede girar libremente alrededor de un eje fijo perpendicular a la misma que pasa por su punto medio O. Se considerarán las vibraciones de las cuerdas en el mismo plano en el cual gira la barra. Se estudiará el movimiento del sistema en la aproximación de pequeños oscilaciones. a) Hallar la ecuación que verifican la/s frecuencia/s característica/s de vibración del sistema. Ubique en una gráfica esta/s frecuencia/s. Se considerará ahora que un torque externo µ se impone sobre la barra a lo largo de su eje de giro de modo que µ = A o cos(ω o t) y a los extremos A y B de las cuerdas se les impone el movimiento A 1 cos(ω 1 t) y A 1 cos(ω 1 t) respectivamente. b) Escriba la función que describe el movimiento de las cuerdas. A O B 2 d 7

8 8

FÍSICA. 2º BACHILLERATO. BLOQUE II. VIBRACIONES Y ONDAS. Examen 2

FÍSICA. 2º BACHILLERATO. BLOQUE II. VIBRACIONES Y ONDAS. Examen 2 Examen 2 1. Diga si es cierto o falso y razone la respuesta: La frecuencia con la que se percibe un sonido no depende de la velocidad del foco emisor. 2. Dibujar, superponiendo en la misma figura, dos

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

EJERCICIOS ONDAS PAU

EJERCICIOS ONDAS PAU EJERCICIOS ONDAS PAU 1 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS EJERCICIOS ADICIONALES: ONDAS MECÁNICAS Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández MAS Estudio dinámico y cinemático 1. (90-J11) Una pequeña plataforma horizontal sufre un movimiento armónico simple en sentido vertical, de 3 cm de amplitud y cuya frecuencia aumenta progresivamente. Sobre

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia:

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia: y : posición vertical www.clasesalacarta.com 1 Concepto de Onda ema 8.- Movimiento Ondulatorio. Ondas Mecánicas Onda es una forma de transmisión de la energía. Es la propagación de una perturbación en

Más detalles

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma Onda periódica Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma longitud de onda si miramos el movimiento del medio en algún punto

Más detalles

Bolilla 6. Movimiento Ondulatorio

Bolilla 6. Movimiento Ondulatorio Bolilla 6 Movimiento Ondulatorio 1 Definición de onda: Una onda es una propagación de una perturbación de alguna propiedad del espacio, por ejemplo: densidad, presión, campo eléctrico o campo magnético,

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Una onda consiste en el movimiento de la propagación de una perturbación sin que exista transporte neto de materia. En una onda se propaga energía pero no materia. Pero aunque no sea materia sí puede interaccionar

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

FENÓMENOS ONDULATORIOS

FENÓMENOS ONDULATORIOS FENÓMENOS ONDULATORIOS 1.- Halla la velocidad de propagación de un movimiento ondulatorio sabiendo que su longitud de onda es 0,25 m y su frecuencia es 500 Hz. R.- 125 m/s. 2.- La velocidad del sonido

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 ONDAS 1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 Å. a) Calcular la longitud de onda; b) Escribir la ecuación de onda correspondiente. (1 Å = 10-10 m; v sonido = 340

Más detalles

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones 1) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, se propaga por una

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO ELVER ANTONIO RIVAS CÓRDOBA MOVIMIENTO ONDULATORIO El movimiento ondulatorio se manifiesta cuando la energía que se propaga en un medio elástico produce movimientos que lo cambian. Para describir una onda

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones.

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones. Ondas. Función de onda 1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, y 3 dimensiones. ) Indique cómo pueden generarse ondas transversales y longitudinales en una varilla metálica.

Más detalles

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física.

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física. ONDAS Los fenómenos ondulatorios aparecen en todas las ramas de la Física. El movimiento ondulatorio se origina cuando una perturbación se propaga en el espacio. No hay transporte de materia pero si de

Más detalles

MOVIMIENTO ONDULATORIO.

MOVIMIENTO ONDULATORIO. Síntesis Física º Bach. Ondas. O - MOVIMIENTO ONDULTORIO. Ondas. Una onda es una perturbación que se propaga entre dos puntos sin transporte de materia, pero sí de energía y momento. Supongamos que dicha

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Ondas. Slide 1 / 28. Slide 2 / 28. Slide 3 / 28. Movimiento de Ondas. Movimiento de Ondas. Todo tipo de ondas que viajan transmiten energía

Ondas. Slide 1 / 28. Slide 2 / 28. Slide 3 / 28. Movimiento de Ondas. Movimiento de Ondas. Todo tipo de ondas que viajan transmiten energía Slide 1 / 28 Ondas Movimiento de Ondas Slide 2 / 28 Una onda viaja a lo largo de su medio, pero las partículas individuales se mueven hacia arriba y abajo. Movimiento de Ondas Slide 3 / 28 Todo tipo de

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo A. Pregunta 2.- Un objeto está unido a un muelle horizontal de constante elástica 2 10 4 Nm -1. Despreciando el rozamiento: a) Qué masa ha de tener el objeto si se desea que oscile con una

Más detalles

Universidad de Chile Facultad de Ciencias Departamento de Física Mecánica II Ciencias Exactas

Universidad de Chile Facultad de Ciencias Departamento de Física Mecánica II Ciencias Exactas Universidad de Chile Facultad de Ciencias Departamento de Física Mecánica II Ciencias Exactas Profesor : Eduardo Menéndez Ayudantes : Patricio Figueroa Carolina Gálvez Gabriel Paredes Guía N 5. Movimiento

Más detalles

Física II clase 5 (25/03) Definición

Física II clase 5 (25/03) Definición Física II clase 5 (25/03) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carrera: Ingeniería Civil Informática Física II MAC I-2011 1 Definición Una onda

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

GUIA N o 1: ONDAS Física II

GUIA N o 1: ONDAS Física II GUIA N o 1: ONDAS Física II Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 9 Ondas I Nombre: Fecha Onda Es una perturbación que viaja a través del espacio o en un medio elástico, transportando energía

Más detalles

1 Interferencia. y(x, t) = A s e n(k x ωt)+asen(k x ωt + φ) Usando: )s e n(a. se tiene: y(x, t) = 2Acos( φ 2 )s e n(k x ωt + φ 2 )

1 Interferencia. y(x, t) = A s e n(k x ωt)+asen(k x ωt + φ) Usando: )s e n(a. se tiene: y(x, t) = 2Acos( φ 2 )s e n(k x ωt + φ 2 ) 1 Interferencia Como adelantamos al discutir la diferencia entre partí culas y ondas, el principio de superposición da a lugar al fenómeno de interferencia. Sean dos ondas idénticas que difieren en la

Más detalles

Tema 6: Movimiento ondulatorio.

Tema 6: Movimiento ondulatorio. Tema 6: Movimiento ondulatorio. 1. Ondas: conceptos generales. 2. Estudio cualitativo de algunas ondas. Fenómenos ondulatorios más evidentes en cada una: a) Ondas en una cuerda b) Ondas en la superficie

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

Física III clase 4 (22/03/2010) Velocidad de grupo y dispersión

Física III clase 4 (22/03/2010) Velocidad de grupo y dispersión Física III clase 4 (22/03/2010) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería Civil Mecánica, Ingeniería Civil

Más detalles

Districte universitari de Catalunya

Districte universitari de Catalunya SERIE 3 PAU. Curso 2003-2004 FÍSICA Districte universitari de Catalunya Resuelva el problema P1 y responda a las cuestiones C1 y C2. Escoja una de las opciones (A o B) y resuelva el problema P2 y responda

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: FENÓMENOS ONDULATORIOS GUÍA: 1201 ESTUDIANTE: E-MAIL: FECHA: MOVIMIENTO ARMÓNICO SIMPLE En las preguntas 1 a 10, el enunciado es una afirmación seguida de la palabra

Más detalles

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO 1 INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través

Más detalles

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 6: Ondas de propagación

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 6: Ondas de propagación Física 3 (Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 6: Ondas de propagación 1. Considere una onda transversal armónica plana, cuya frecuencia angular es ω = 10 s 1 y cuyo número

Más detalles

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2.

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2. MAS. EJERCICIOS Ejercicio 1.-Un oscilador consta de un bloque de 512 g de masa unido a un resorte. En t = 0, se estira 34,7 cm respecto a la posición de equilibrio y se observa que repite su movimiento

Más detalles

1. Escribe en el recuadro la letra correspondiente a cada elemento del movimiento oscilatorio.

1. Escribe en el recuadro la letra correspondiente a cada elemento del movimiento oscilatorio. COLEGIO JUVENTUDES UNIDAS Asignatura: undecimo Periodo: 1 Formulas EVALUACION DE COMPROBACION PRIMER PERIODO x = Acos (wt + φ) v = wasen(wt + φ) a = w 2 Acos(wt + φ) F = ma a = w 2 A v = wa w = 2π T, w

Más detalles

Ondas. Slide 2 / 28. Slide 1 / 28. Slide 4 / 28. Slide 3 / 28. Slide 5 / 28. Slide 6 / 28. Movimiento de Ondas. Movimiento de Ondas

Ondas. Slide 2 / 28. Slide 1 / 28. Slide 4 / 28. Slide 3 / 28. Slide 5 / 28. Slide 6 / 28. Movimiento de Ondas. Movimiento de Ondas Slide 1 / 28 Slide 2 / 28 Ondas Una onda viaja a lo largo de su medio, pero las partículas individuales se mueven hacia arriba y abajo. Slide 3 / 28 Slide 4 / 28 Todo tipo de ondas que viajan transmiten

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"

DEPARTAMENTO DE FÍSICA COLEGIO LA ASUNCIÓN COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud

Más detalles

Sistemas de Partículas

Sistemas de Partículas Sistemas de Partículas Los objetos reales de la naturaleza están formados por un número bastante grande de masas puntuales que interactúan entre sí y con los demás objetos. Cómo podemos describir el movimiento

Más detalles

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 = 01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga

Más detalles

EXAMEN FINAL DE FÍSICA

EXAMEN FINAL DE FÍSICA EXAMEN FINAL DE FÍSICA 1 er parcial Lic. En Química 7 - febrero 00 CUESTIONES PROBLEMAS 1 3 4 5 Suma 1 Suma Total APELLIDOS.NOMBRE.GRUPO. Cuestiones (1 punto cada una) 1. Qué energía hay que proporcionar

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica.

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. 1(9) Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 4 2 4 6 8 t(s) -4 Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 3 1 2 3 t(s) -3 Ejercicio

Más detalles

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π ONDAS. 1. Considere la siguiente ecuación de una onda : y ( x, t ) = A sen ( b t - c x ) ; a. qué representan los coeficientes A, b, c? ; cuáles son sus unidades? ; b. qué interpretación tendría que la

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro?

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro? Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

1.2. ONDAS. Lo anterior implica que no todas las fluctuaciones de presión producen una sensación audible en el oído humano.

1.2. ONDAS. Lo anterior implica que no todas las fluctuaciones de presión producen una sensación audible en el oído humano. .2. ONDAS. El sonido puede ser definido como cualquier variación de presión en el aire, agua o algún otro medio que el oído humano puede detectar. Lo anterior implica que no todas las fluctuaciones de

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

ÍNDICE El movimiento del péndulo físico Objetivos Objetivos parciales. Hitos... 2

ÍNDICE El movimiento del péndulo físico Objetivos Objetivos parciales. Hitos... 2 ÍNDICE 1 Proyectos de Computación Algunos ejemplos de posibles proyectos para la asignatura de Computación. Los objetivos nales y parciales se indican a modo de ejemplo y se pueden redenir, modicar etc.

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Guía 4: Leyes de Conservación: Energía

Guía 4: Leyes de Conservación: Energía Guía 4: Leyes de Conservación: Energía NOTA : Considere en todos los casos g = 10 m/s² 1) Imagine que se levanta un libro de 1,5 kg desde el suelo para dejarlo sobre un estante situado a 2 m de altura.

Más detalles

TEMA I.12. Ondas Estacionarias en una Cuerda. Dr. Juan Pablo Torres-Papaqui

TEMA I.12. Ondas Estacionarias en una Cuerda. Dr. Juan Pablo Torres-Papaqui TEMA I.12 Ondas Estacionarias en una Cuerda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

Problemas de Física I

Problemas de Física I Problemas de Física I DINÁMICA DEL SÓLIDO RÍGIDO (1 er Q.:prob impares, 2 ndo Q.:prob pares) 1. (T) Dos partículas de masas m 1 y m 2 están unidas por una varilla de longitud r y masa despreciable. Demostrar

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select)

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) FÍSICA IES Los Álamos PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) 1. Explique y razone la veracidad o falsedad de las siguientes afirmaciones: a. El trabajo realizado por todas las fuerzas que actúan sobre

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO.

PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO. Problemas de Física. 2º de Bachillerato. I.E.L. Curso 2015-2016 1 PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO. ECUACION DEL MOVIMIENTO VIBRATORIO 1 Una partícula de masa m = 20g oscila armónicamente

Más detalles

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS.

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. En nuestro quehacer cotidiano nos encontramos con diversos cuerpos u objetos, elementos que suelen vibrar u oscilar como por ejemplo un péndulo, un diapasón, el

Más detalles

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente.

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. TORQUE Y EQUILIBRIO DE CUERPO RÍGIDO. En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. De traslación a lo largo de una trayectoria, de rotación mientras se está trasladando,

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

Fundamentos Físicos II Convocatoria extraordinaria Julio 2011

Fundamentos Físicos II Convocatoria extraordinaria Julio 2011 P1.- Una antena emite ondas de radio frecuencia de 10 8 Hz con una potencia de 5W en un medio caracterizado por una constante dieléctrica 5 y permeabilidad magnética µ o. Puede suponerse que está transmitiendo

Más detalles

Física II clase 12 (27/04) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío

Física II clase 12 (27/04) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Física II clase 12 (27/04) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carrera: Ingeniería Civil Informática Física II MAC I-2011 1 Ejemplo Suponga que

Más detalles

Olimpiadas de Física Córdoba 2010

Olimpiadas de Física Córdoba 2010 E n el interior encontrarás las pruebas que componen esta fase local de las olimpiadas de Física 2012. Están separadas en tres bloques. Uno relativo a dinámica y campo gravitatorio (obligatorio) y otros

Más detalles

FISICA 2º BACHILLERATO

FISICA 2º BACHILLERATO A) Definiciones Se llama movimiento periódico a aquel en que la posición, la velocidad y la aceleración del móvil se repiten a intervalos regulares de tiempo. Se llama movimiento oscilatorio o vibratorio

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

Técnico Profesional FÍSICA

Técnico Profesional FÍSICA Programa Técnico Profesional FÍSICA Ondas I: ondas y sus características Nº Ejercicios PSU 1. Dentro de las características de las ondas mecánicas se afirma que MC I) en su propagación existe transmisión

Más detalles

, para que pase por el punto de coordenadas (0,0,0). Con qué velocidad pasará por dicho punto?

, para que pase por el punto de coordenadas (0,0,0). Con qué velocidad pasará por dicho punto? Movimiento de cargas en campos magnéticos Febrero 97 Dado un campo magnético definido por la siguiente condición: B = 0 para z < 0 obtener razonadamente las coordenadas del punto del plano z = 0 por el

Más detalles

2.003 Primavera 2002 Prueba 1: soluciones. Problema 1: Este problema tiene en cuenta el sistema mecánico rotacional de la Figura 1.

2.003 Primavera 2002 Prueba 1: soluciones. Problema 1: Este problema tiene en cuenta el sistema mecánico rotacional de la Figura 1. Problema 1: Este problema tiene en cuenta el sistema mecánico rotacional de la Figura 1. Figura 1. Sección transversal y vista superior. Este montaje es parecido al que se utilizó en la práctica 2. El

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 SOLUCIÓN Analice las siguientes preguntas

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles