APUNTE DE PROGRAMACION LINEAL ASIGNATURA: MATEMATICA II - U.N.R.N. AÑO: 2010

Tamaño: px
Comenzar la demostración a partir de la página:

Download "APUNTE DE PROGRAMACION LINEAL ASIGNATURA: MATEMATICA II - U.N.R.N. AÑO: 2010"

Transcripción

1 Pagina APUNTE DE PROGRAMACION LINEAL ASIGNATURA: MATEMATICA II - U.N.R.N. AÑO: 00 Muchos problemas de administración y economía están relacionados con la optimización (maximización o minimización) de una función sujeta a un sistema de igualdades o desigualdades. La función por optimizar es la función objetivo. Las funciones de ganancia y de costo son ejemplos de funciones objetivo. El sistema de igualdades o desigualdades a las que está sujeta la función objetivo reflejan las restricciones (por ejemplo, las limitaciones sobre recursos como materiales y mano de obra) impuestas a la solución (o soluciones) del problema. Los problemas de esta naturaleza se llaman problemas de programación matemática. En particular, aquellas donde la función objetivo y las restricciones se expresan como ecuaciones o desigualdades lineales se llaman problemas de programación lineal. Un problema de programación lineal Ejercicio : Un problema de programación lineal consta de una función objetivo lineal por maximizar o minimizar, sujeta a ciertas restricciones en la forma de igualdades o desigualdades lineales. Como ejemplo de un problema de programación lineal en que la función objetivo debe maximizarse, considere el siguiente problema de producción con dos variables: Un granjero tiene 480 hectáreas en la que se puede sembrar ya sea trigo o maíz. El calcula que tiene 800 horas de trabajo disponible durante la estación crucial del verano. Dados márgenes de utilidad y los requerimientos laborales mostrados a la derecha, Cuántas hectáreas de cada uno debe plantar para maximizar su utilidad? Cuál es ésta utilidad máxima? Maiz: Utilidad: $40 por ha. Trabajo: hs por ha. Trigo: Utilidad: $30 por ha. Trabajo: hs por ha. Solución: Como primer paso para la formulación matemática de este problema, se tabula la información dada. Si llamamos X a las hectáreas de maíz e X a las hectáreas de trigo. Entonces la ganancia total Z=40 X +30 X Que es la función objetivo por maximizar. Maíz Trigo Elementos disponibles Horas 800 Hectáreas 480 Utilidad por unidad $40 $30 La cantidad total de tiempo para sembrar maíz y trigo está dada por X +X horas que no debe exceder las 800 horas disponibles para el trabajo. Así se tiene la desigualdad: En forma análoga, la cantidad de hectáreas disponibles está dada por X +X, que no puede exceder las hectáreas disponibles para el trabajo, lo que conduce a la desigualdad. X e X no pueden ser negativas, de modo que X 0 X 0 En resumen, el problema en cuestión consiste en maximizar la función objetivo Z sujeta a las desigualdades. El planteo del problema es: Max Z=40 X +30 X Sa: X + X 800 X + X 480 X,X 0

2 Pagina Si el problema consiste en Minimizar el modelo seria de la siguiente manera: Ejemplo : Una destilería produce dos tipos de Whisky mezclando solo dos maltas destiladas distintas, A y B. El primero tiene un 70% de Malta A y su costo es de $/litro, mientras que el segundo tiene un 50% de dicha malta y su costo es de 6$/litro. Se debe utilizar como mínimo: malta A 3 litros y B 90 litros. Cuántos litros de cada Whisky debe producir la destilería para minimizar sus costos? El planteo del problema es: Min Z= X +6 X Sa: 0,7 X + 0,5 X 3 0,3 X + 0,5 X 90 X,X 0 Existen distintas formas de formular un problema de PL: Forma Canónica o de Inecuaciones: Por ejemplo si el problema es de maximización con dos variables y tres restricciones el PL se puede formular de la siguiente manera: MAX Z=c X + c X SA: a X +a X b a X +a X b a 3 X +a 3 X b 3 X,X 0 Sistema de inecuaciones o forma Canónica Los coeficientes c se denominan coeficientes del funcional, los coeficientes a coeficientes tecnológicos, SA: sujeto a: y los b son los términos independientes. Forma estándar: MAX Z=c X + c X SA: a X +a X +X 3 =b a X +a X +X 4 =b a 3 X +a 3 X +X 5 =b 3 X,X, X 3,X 4, X 5 0 X 3, X 4, X 5 se llaman variables slacks y se agregan según la cantidad de restricciones Producto Matricial: Y c c c 3 c 4 c 5 matriz A vector X vector B vector C vector X es decir AX=B y CX

3 Pagina 3 Producto Vectorial: MAX Z=c X + c X Ejercicio : Para el ejemplo del granjero formule los cuatro tipos de formas vistas anteriormente. Ejercicio : Para el ejemplo de la destilería formule los cuatro tipos de formas vistas anteriormente. Resolución de problemas: Para resolver el problema de PL se lo puede hacer gráficamente y analíticamente. Cuando tenemos modelos con solo dos variables básicas el problema resulta muy sencillo para resolverlo gráficamente, ya que la interpretación geométrica se produce en el plano, pero cuando tenemos mas de dos variables se lo resuelve con un método no grafico llamado Simplex. Tomando el ejemplo del granjero resolveremos gráficamente. Primero lo que tenemos que hacer es trazar las rectas de las desigualdades (en nuestro ejemplo son ) Luego pintamos la región que aparece entre las rectas y los ejes cartesianos. Siempre se trabaja en el cuadrante positivo, recordemos que las variables son Cada punto de la región S es candidato para resolver este problema y se conoce como solución factible. El objetivo es encontrar el o los puntos óptimos que se encuentren entre las soluciones factibles. Se lo conoce como solución optima S En particular los puntos candidatos para ser solución optima se encuentran en los vértices de la región. (A, B, C y D). S

4 Pagina 4 Luego se traza la recta del funcional Z, anulando Z=0 nos queda 0=40x+30y. Si despejamos y obtenemos y(-40/30)x que pasa por el origen de coordenadas. Por ultimo si proyectamos la recta Z paralelamente hacia arriba, iremos tocando los vértices de la región, primero pasaremos por A, luego por C y en ultimo lugar por B. Es decir que el optimo de todos los candidatos es el punto B que se encuentra mas alejado de la recta Z que pasa por el origen. El punto B es (30,60), por lo tanto la solución optima se obtiene reemplazando en la recta Z. Z= 40(30)+30(60) = 7600 Podria pasar que en otros casos la solución optima coincida con un borde, se dice entonces que tiene infinitas soluciones optimas Resolución Analítica: Para resolver este problema analíticamente, de las infinitas soluciones posibles se deberían calcular solamente aquellas que constituyan bases, y dentro de las soluciones básicas se deberían tomar solamente aquellas que sean factibles. Para empezar debemos escribir el problema de forma canónica: Max Z=40 X +30 X sa: X + X 800 X + X 480 X, X 0 MAX Z=40X + 30X sa: X + X + X 3 =800 X + X + X 4 =480 X,X, X 3,X 4 0 En un problema de PL con n variables (reales y slacks) y m restricciones, se define como solución básica a aquella en la que por lo menos n-m variables son nulas. En nuestro caso n=4 y m=, por lo tanto n-m= son las que deberían ser nulas. A continuación mostramos una tabla para la resolución analítica de nuestro ejemplo: Variables anuladas Sistema de ecuaciones Solución Valor del funcional Punto en la grafica X X X 3 = 800 X 4 = 480 Z = 0 D X X 3 X = 800 X 4 = -30 X X 4 X = 480 X 3 = 30 Z = 4400 A X X 3 X = 400 X 4 = 80 Z = 6000 C X X 4 X 3 X 4 Para llevarlo a forma estándar se agregan las variables slacks X 3, X 4 X = 480 X 3 = -60 X = 30 X = 60 Z = 7600 B

5 Pagina 5 Claramente, como se muestra en la tabla, la solución optima es 7600 (vértice B) con X =30 y X =60. Para el caso de minimización, la grafica se resuelve de la siguiente manera: Supongamos otro ejemplo: Un nutricionista asesora a un individuo que sufre una deficiencia de hierro y vitamina B, y le indica que debe ingerir al menos 400 mg de vitamina B- (tiamina) y 500 mg de vitamina B- (riboflavina) durante cierto período de tiempo. Existen dos píldoras de vitaminas disponibles, la marca A y la marca B. Cada píldora de la marca A contiene 40 mg de hierro, 0 mg de vitamina B-, 5 mg de vitamina B- y cuesta 6 centavos. Cada píldora de la marca B contiene 0 mg de hierro, 5 mg de vitamina B- y de vitamina B-, y cuesta 8 centavos (tabla ). Cuáles combinaciones de píldoras debe comprar el paciente para cubrir sus requerimientos de hierro y vitamina al menor costo? Marca A Marca B Requerimientos mínimos Hierro 40 mg 0 mg 400 mg Vitamina B- 0 mg 5 mg 00 mg Vitamina B- 5 mg 5 mg 500 mg Costo por píldora (US$) 0,06 0,08 Entonces el modelo de PL será: Min Z=6 X +8 X sa: 40X + 0X 400 0X + 5X 0 5X + 5X 500 X,X 0 En particular los puntos candidatos para ser solución optima se encuentran en los vértices de la región. (A, B, C y D). S Si proyectamos la recta Z hacia arriba de manera paralela el primer punto que tocaríamos de la región será B, es decir que es el optimo. El punto B es (30,0) por lo tanto el Z = 6(30)+8(0) Z = 40 Ejercicio 3: Hallar la solución del ejercicio del nutricionista de modo analítico. Ejercicio 4: Hallar la solución del ejercicio de la destilería de modo analítico. Casos especiales en la solución: No siempre obtenemos la solución optima (única), también se puede obtener solución alternativa (mas de una solución), esto ocurre cuando la recta Z (funcional) coincide con dos vértices. Por ejemplo: Al Problema del granjero le hacemos una modificación en el funcional: Max Z=30 X +30 X Para llevarlo a Max Z=30 X +30 X sa: X + X 800 forma estándar se sa: X + X + X 3 =800 X + X 480 agregan las variables X + X + X 4 =480 X, X 0 slacks X 3, X 4 X,X, X 3,X 4 0

6 Pagina 6 La tabla con la solución analítica quedaría de la siguiente manera: Variables anuladas Sistema de ecuaciones Solución Valor del funcional Punto en la grafica X X X 3 = 800 X 4 = 480 Z = 0 D X X 3 X = 800 X 4 = -30 X X 4 X = 480 X 3 = 30 Z = 4400 A X X 3 X = 400 X 4 = 80 Z = 000 C X X 4 X = 480 X 3 = -60 X 3 X 4 X = 30 X = 60 Z = 4400 B Es decir que la solución es alternativa, porque Z=4400 se da en dos de los vértices B y A. Entonces podemos concluir que la solución esta en la recta y = 480 X. Ejercicio 5: Hallar la solución de este último ejercicio gráficamente.

7 Pagina 7 TRABAJO PRACTICO Nº 6: PROGRAMACION LINEAL ASIGNATURA: MATEMATICA II - U.N.R.N. AÑO: 00 Ejercicio : Resolver Gráficamente y Analíticamente los siguientes Programas Lineales a) Max z = x + x sa: x + x 4 x + 5x x c) Min z x + x sa: x + x 3x x sol:.8574 b) Max sa: d) Max sa: z = x + x x + x 4 x + x sol: recta X =4-X = z = 9x + x 4 x + 5x 5x + 0 x sol: sol: 4.5 Ejercicio : a) Resolver gráficamente y analíticamente el ejercicio d) cambiando el funcional Z por 6X + 0X Sol: recta X =(-4X )/5 b) Resolver gráficamente y analíticamente el ejercicio d) cambiando el funcional Z por X - X Sol: recta X =-(-0X )/5 Ejercicio 3: Plantear y resolver el siguiente problema de minimización: Una empresa produce sacos para la preparación de cemento usando los ingredientes A y B. Cada kilo de ingrediente A cuesta $ 6 y contiene 4 unidades de arena fina, 3 de arena gruesa y 6 de pedregullo. Por su parte cada kilo de ingrediente del B cuesta $7 y contiene 3 unidades de arena fina, 5 de gruesa y de pedregullo. Cada saco debe contener por lo menos unidades de arena fina, 0 de gruesa y 9 de pedregullo. Sol: $ 8.09 Ejercicio 4: Plantear y resolver el siguiente problema de maximización: Estudiantes de Turismo necesitan ganar dinero y deciden pedir trabajo en una agencia para realizar encuestas, la misma contrata a dos tipos de equipos de jóvenes: Tipo A: parejas (un chico y una chica) y Tipo B: cuatro jóvenes (3 chicas y un chico). Los estudiantes interesados están conformados. Como deberán distribuirse para sacar el mayor provecho económico, sabiendo que disponemos de 0 chicos y 0 chicas? Sol: $ 4000 Ejercicio 5: Disponemos de euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 0% y las del tipo B, que rinden el 8%. Decidimos invertir un máximo de euros en las del tipo A y como mínimo en las del tipo B. Además queremos que la inversión en las del tipo A sea menor que el doble de la inversión en B. Cuál tiene que ser la distribución de la inversión para obtener el máximo interés anual? Resolverlo Graficamente únicamente. Sol: 0700 Ejercicio 6: En una pastelería se hacen dos tipos de tartas: Vienesa y Real. Cada tarta Vienesa necesita un cuarto de relleno por cada Kg. de bizcocho y produce un beneficio de 50 Pts, mientras que una tarta Real necesita medio Kg. de relleno por cada Kg. de bizcocho y produce 400 Ptas. de beneficio. En la pastelería se pueden hacer diariamente hasta 50 Kg. de bizcocho y 50 Kg. de relleno, aunque por problemas de maquinaria no pueden hacer mas de 5 tartas de cada tipo. Cuántas tartas Vienesas y cuantas Reales deben vender al día para que sea máximo el beneficio? Resolver gráficamente únicamente. Sol: $ 45000

SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL

SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL Muchos problemas de administración y economía están relacionados con la optimización (maximización o minimización) de una función sujeta a un sistema

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN

FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN Asignatura: Investigación de Operaciones 1 Periodo Académico: Julio - Diciembre de 2009 TALLER MÉTODO GRÁFICO 1. PROBLEMA DE PLANEACIÓN DE

Más detalles

Habilidad para lograr aprendizajes efectivos en matemática

Habilidad para lograr aprendizajes efectivos en matemática Curso: Habilidad para lograr aprendizajes efectivos en matemática Titulo: Programación lineal: Ejercicio Unidad: 2 Ejercicio Grandes tiendas encargan a un fabricante de Indonesia pantalones y chaquetas

Más detalles

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución:

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución: 1 LRJS05 1. Dibuja la región del plano definida por las siguientes inecuaciones: 0, 0 y 2, y + 2 4 Representando las rectas asociadas a cada una de las inecuaciones dadas se obtiene la región sombreada

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Problemas resueltos con el método gráfico 4 de junio de 2014 1. Resuelva el siguiente PL por el método gráfico Max z = x 1 + x 2 x 1 + x 2 4 x 1 x 2 5 En la figura 1

Más detalles

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones.

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones. A partir del planteamiento del problema de Programación Lineal expresado en su formulación estándar, vamos a estudiar las principales definiciones y resultados que soportan el aspecto teórico del procedimiento

Más detalles

1. INECUACIONES LINEALES CON DOS INCÓGNITAS.

1. INECUACIONES LINEALES CON DOS INCÓGNITAS. TEMA 2: PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS. Se llama inecuación lineal con dos incógnitas a una inecuación de la forma: a x +b y c ( puede ser >,

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 3 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Tema 4: Programación lineal

Tema 4: Programación lineal Tema 4: Programación lineal 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX) que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Investigación Operativa I. Programación Lineal. Informática de Gestión

Investigación Operativa I. Programación Lineal.  Informática de Gestión Investigación Operativa I Programación Lineal http://invop.alumnos.exa.unicen.edu.ar/ - 2013 Exposición Introducción: Programación Lineal Sistema de inecuaciones lineales Problemas de optimización de una

Más detalles

Prof. Pérez Rivas Lisbeth Carolina

Prof. Pérez Rivas Lisbeth Carolina Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística

Más detalles

Tema 4: Programación lineal

Tema 4: Programación lineal Tema 4: Programación lineal 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX) que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Fundamentos de la programación lineal. Función Objetivo (F.O.): Para seleccionar qué función objetivo debe elegirse se toma en cuenta lo siguiente:

Fundamentos de la programación lineal. Función Objetivo (F.O.): Para seleccionar qué función objetivo debe elegirse se toma en cuenta lo siguiente: Fundamentos de la programación lineal Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la situación siguiente: Optimizar (maximizar o minimizar) una función objetivo,

Más detalles

se trata de un problema de PROGRAMACIÓN LINEAL. Al conjunto de todas las soluciones del problema se le llama conjunto de soluciones factibles.

se trata de un problema de PROGRAMACIÓN LINEAL. Al conjunto de todas las soluciones del problema se le llama conjunto de soluciones factibles. TEMA 11: PROGRAMACIÓN LINEAL Ciertos problemas que se plantean en la economía, en la industria, en la medicina, tienen como objeto MAXIMIZAR O MINIMIZAR una función llamada FUNCIÓN OBJETIVO, sujeta a varias

Más detalles

Programación Lineal ALGEBRA. Curso:3 E.M. Unidad: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

Programación Lineal ALGEBRA. Curso:3 E.M. Unidad: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Inecuaciones en 2 variables Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes:

Más detalles

Programación lineal. Los problemas de programación lineal son problemas de optimización.

Programación lineal. Los problemas de programación lineal son problemas de optimización. Programación lineal Los problemas de programación lineal son problemas de optimización. Tenemos un determinado problema, del cuál existen varias soluciones, pero queremos encontrar la mejor verificando

Más detalles

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc. PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Más detalles

Kg P1 Kg P Unidades Vitamina A

Kg P1 Kg P Unidades Vitamina A Dualidad El concepto de dualidad desempeña importantes papeles dentro de la programación lineal (también en la no lineal), tanto desde un punto de vista teórico como práctico. Todo programa lineal lleva

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

SOLUCIONES EJERCICIOS PROGRAMACIÓN LINEAL

SOLUCIONES EJERCICIOS PROGRAMACIÓN LINEAL SOLUCIONES EJERCICIOS PROGRAMACIÓN LINEAL Ejercicio nº 1. a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: 1 0 b) Indica si los puntos (0, 0), (, 1) (1, ) forman parte

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN)

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN) UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I Prof.: MSc. Ing. Julio Rito Vargas Avilés (SOLUCIÓN) I. Representar gráficamente la región determinada

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN

EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN 1.- Ejemplo resuelto Un herrero dispone de 80 kg. de acero y 120 kg. de aluminio quiere hacer bicicletas de paseo y de montaña que quiere vender, respectivamente

Más detalles

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades PROGRAMACIÓN LINEAL 1. Imaginemos que las necesidades semanales mínimas de una persona en proteínas, hidratos de carbono y grasas son, respectivamente, 8, 12 y 9 unidades. Supongamos que debemos obtener

Más detalles

Problemas de Maximizar

Problemas de Maximizar Problemas de Maximizar La Maine Snowmobile Company fabrica dos clases de máquinas, cada una requiere una técnica diferente de fabricación. La máquina de lujo requiere de 18 horas de mano de obra, 9 horas

Más detalles

MÉTODO GRÁFICO. PROFESORA: LILIANA DELGADO HIDALGO

MÉTODO GRÁFICO. PROFESORA: LILIANA DELGADO HIDALGO MÉTODO GRÁFICO PROFESORA: LILIANA DELGADO HIDALGO Liliana.delgado@correounivalle.edu.co Este método grafica las restricciones y la función objetivo del modelo en un plano cartesiano. Para poder representar

Más detalles

Tema 8: Programación lineal. Nociones elementales. Ejemplos.

Tema 8: Programación lineal. Nociones elementales. Ejemplos. Tema 8: Programación lineal. Nociones elementales. Ejemplos.. Introducción / motivación: -La optimización en problemas reales depende en general de varias variables -Las técnicas de diferenciabilidad siguen

Más detalles

3.1. La Optimización Lineal El Planteamiento

3.1. La Optimización Lineal El Planteamiento Gerardo Febres Última revisión: 2016.03.23 3.1. La Optimización Lineal 3.1.1.- El Planteamiento Planteemos un problema extremadamente sencillo. Hacer máximas las ganancias obtenidas al vender tornillos.

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad II Modelos de Programación Lineal

Más detalles

Programación lineal. Tema Introducción / motivación

Programación lineal. Tema Introducción / motivación Tema Programación lineal Mientras que para funciones reales de variable real la derivación ha permitido resolver el problema de optimalidad en su conjunto, en este tema, la programación lineal resuelve

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

Programación Lineal (PL)

Programación Lineal (PL) Programación Lineal (PL) Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la siguiente situación. El objetivo es Optimizar, una función objetivo, lo cual implica

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Método Simplex: Minimización 3 de enero de Método Simplex: Minimización () Optimización y Programación Lineal 3 de enero de / 4 Minimización Minimización En la definición

Más detalles

PROGRAMACIÓN LINEAL. FUNCIÓN OBJETIVO (Beneficio (en euros) obtenido por la venta de los dos tipos de cable):

PROGRAMACIÓN LINEAL. FUNCIÓN OBJETIVO (Beneficio (en euros) obtenido por la venta de los dos tipos de cable): Ejercicio 159 Para fabricar 2 tipos de cable, A y B, que se venderán a 1,50 y 1 el metro, respectivamente, se emplean 16Kg de plástico y 4Kg de cobre para cada hectómetro del tipo A y 6Kg de plástico y

Más detalles

TEMA 2: PROGRAMACIÓN LINEAL.

TEMA 2: PROGRAMACIÓN LINEAL. TEMA : PROGRAMACIÓN LINEAL.. 1. INTRODUCCIÓN. La Programación Lineal (PL) puede considerarse como uno de los grandes avances científicos habidos durante la primera mitad del siglo XX y sin duda es una

Más detalles

Programación lineal. 1. Resolver cada inecuación grá camente por separado indicando mediante echas o sombreando, el semiplano solución.

Programación lineal. 1. Resolver cada inecuación grá camente por separado indicando mediante echas o sombreando, el semiplano solución. I.E.S. CASTILLO DE LUNA Programación lineal En un problema de programación lineal con dos variables x; y, se trata de optimizar (hacer máximo o mínimo, según los casos) una función, llamada función objetivo

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

Para hallar, gráficamente, la solución de un problema de Programación Lineal con dos variables, procederemos del siguiente modo:

Para hallar, gráficamente, la solución de un problema de Programación Lineal con dos variables, procederemos del siguiente modo: Siempre que el problema incluya únicamente dos o tres variables de decisión, podemos representar gráficamente las restricciones para dibujar en su intersección el poliedro convexo que conforma la región

Más detalles

En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y.

En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y. PROGRAMACIÓN LINEAL EJERCICIO TIPO Una confitería se elaboran tartas de nata y de manzana. Cada tarta de nata requiere medio kilo de azúcar y 8 huevos; y una de manzana, 1 kg de azúcar y 6 huevos. En la

Más detalles

INECUACIONES LINEALES CON DOS INCÓGNITAS

INECUACIONES LINEALES CON DOS INCÓGNITAS pág.1 INECUACIONES LINEALES CON DOS INCÓGNITAS Llamamos inecuación de primer grado con dos incógnitas es una desigualdad algebraica que se puede transformar en otra equivalente a una de las siguientes

Más detalles

PRACTICA DIRIGIDA SOLUCIÓN DE MODELOS DE PROGRAMACIÓN LINEAL POR EL MÉTODO GRÀFICO

PRACTICA DIRIGIDA SOLUCIÓN DE MODELOS DE PROGRAMACIÓN LINEAL POR EL MÉTODO GRÀFICO 1 UNIVERSIDAD INCA GARCILASO DE LA VEGA FACULTAD DE INGENIERIA DE SISTEMAS, CÓMPUTO y TELECOMUNICACIONES Carrera Profesional de Ingeniería de Sistemas y Cómputo ASIGNATURA: INVESTIGACION DE OPERACIONES

Más detalles

MATEMATICAS APLICADAS II SELECTIVIDAD-PROGRAMACIÓN LINEAL EJERCICIO RESUELTOS. Sea x=nº de viviendas tipo A y= nº de viviendas tipo B.

MATEMATICAS APLICADAS II SELECTIVIDAD-PROGRAMACIÓN LINEAL EJERCICIO RESUELTOS. Sea x=nº de viviendas tipo A y= nº de viviendas tipo B. 1º) MATEMATICAS APLICADAS II SELECTIVIDAD-PROGRAMACIÓN LINEAL EJERCICIO RESUELTOS Sea x=nº de viviendas tipo A y= nº de viviendas tipo B. Planteamiento: Max: Z =20000x+40000y (Función objetivo) Sujeto

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL 1. Sistemas de inecuaciones lineales con dos incógnitas (Recuerda: Si multiplicamos o dividimos por un número negativo los dos miembros de una inecuación, debemos

Más detalles

PROBLEMAS DE SELECTIVIDAD. PROGRAMACIÓN LÍNEAL

PROBLEMAS DE SELECTIVIDAD. PROGRAMACIÓN LÍNEAL PROBLEMAS DE SELECTIVIDAD. PROGRAMACIÓN LÍNEAL 1. Se dispone de 200 hectáreas de terreno en las que se desea cultivar patatas y zanahorias. Cada hectárea dedicada al cultivo de patatas necesita 12,5 litros

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

Llamamos x a las unidades que se compran de tipo I e y a las que se compran de tipo II. Resumamos los datos en una tabla:

Llamamos x a las unidades que se compran de tipo I e y a las que se compran de tipo II. Resumamos los datos en una tabla: Ejercicio nº.- En una granja de pollos se da una dieta "para engordar" con una composición mínima de 1 unidades de una sustancia A otras 1 de una sustancia B. En el mercado solo se encuentran dos clases

Más detalles

Ejemplo 1: Programación Entera

Ejemplo 1: Programación Entera Repaso Prueba 2 Ejemplo 1: Programación Entera Supongamos que una persona está interesada en elegir entre un conjunto de inversiones {1,,7} y quiere hacer un modelo 0,1 para tomar la decisión. Modelar

Más detalles

Tema 7: Programación lineal En este tema veremos solamente unas nociones básicas de programación lineal.

Tema 7: Programación lineal En este tema veremos solamente unas nociones básicas de programación lineal. Tema 7: Programación lineal En este tema veremos solamente unas nociones básicas de programación lineal. 1. Concepto de problema de programación lineal Un problema de programación lineal consiste en un

Más detalles

Programación Lineal. El modelo Matemático

Programación Lineal. El modelo Matemático Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal Introducción a la Programación Lineal J. Montealegre I. Flores Febrero de 2015 1. Desigualdades en el plano cartesiano Si en un plano P consideramos una recta L éste queda dividido en tres conjuntos: el

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

Integradora 3. Modelos de Programación Lineal

Integradora 3. Modelos de Programación Lineal Métodos Cuantitativos para la Toma de Decisiones Integradora 3. Modelos de Programación Lineal Objetivo Al finalizar la actividad integradora, serás capaz de: R l bl d PL di d l ét d Resolver problemas

Más detalles

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2 INTRODUCCION AL METODO GRAFICO Antes de entrarnos por completo en los métodos analíticos de la investigación de operaciones es muy conveniente ver un poco acerca de las desigualdades de una ecuación lineal.

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza

Más detalles

Programación Lineal Introducción

Programación Lineal Introducción Programación Lineal Introducción Curso: Investigación de Operaciones Ing. Javier Villatoro fjvillatoro.wordpress.com Curso: Catedrático: Investigación de Operaciones Ing. Javier Villatoro Comunicación

Más detalles

Ejemplo: Buscar el máximo de la función 3x 2y sujeta a las siguientes restricciones: x 0 y 0 5x 4y 40 La región del plano es la calculada en el ejempl

Ejemplo: Buscar el máximo de la función 3x 2y sujeta a las siguientes restricciones: x 0 y 0 5x 4y 40 La región del plano es la calculada en el ejempl 3.3 PROGRAMACIÓN LINEAL La programación lineal sirve para hallar el máximo o el mínimo de una cierta expresión lineal, llamada función objetivo, sometida a una serie de restricciones expresadas como inecuaciones

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones de Modelos de LP 25 de julio de 2004. Descripción del Método ualquier problema de Programación Lineal de sólo 2 variables puede

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

x + y 20; 3x + 5y 70; x 0; y 0

x + y 20; 3x + 5y 70; x 0; y 0 PROGRAMACIÓN LINEAL: ACTIVIDADES 1. Sea el recinto definido por el siguiente sistema de inecuaciones: x + y 20; 3x + 5y 70; x 0; y 0 a) Razone si el punto de coordenadas (4.1, 11.7) pertenece al recinto.

Más detalles

a) Se representa gráficamente la recta que define la igualdad, dando dos valores cualesquiera, por ejemplo 6 2

a) Se representa gráficamente la recta que define la igualdad, dando dos valores cualesquiera, por ejemplo 6 2 Bloque 6. Programación Lineal Ejercicios resueltos 6.-1 Resolver las siguientes inecuaciones: x y a) x+ 2y 6; b) 2x y< 5; c) 3x+ 2y + 5 2 a) Se representa gráficamente la recta que define la igualdad,

Más detalles

Segmentos del borde o frontera Lados o aristas Intersecciones de éstos Vértices

Segmentos del borde o frontera Lados o aristas Intersecciones de éstos Vértices UNIDAD 4: PROGRAMACIÓN LINEAL 1 SISTEMAS DE INECUACIONES LINEALES CON DOS INCÓGNITAS RECINTOS CONVEXOS La solución de un sistema de inecuaciones lineales (SIL) con dos incógnitas viene representada por

Más detalles

PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS

PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS 1. Los 400 alumnos de un colegio van a ir de excursión. Para ello se contrata el viaje a una empresa que dispone de 8 autobuses de 40 plazas y 10

Más detalles

Asignatura: Investigación de Operaciones

Asignatura: Investigación de Operaciones Asignatura: Investigación de Operaciones Tema II: Programación Lineal Contenido: Definición de P.L. Planteamiento del modelo de P.L. Objetivos: Conocer e interpretar los elementos del modelo. Platear modelos

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización.

Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización. PROGRAMACION LINEAL [Introducción] Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización. Sirve para asignar

Más detalles

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios Ubicación dentro del Programa Unidad III UNIDAD II: PROGRAMACIÓN LINEAL 1. Característica. Formulación matemática de un problema de programación lineal. Planteo e interpretación de un sistema de inecuaciones.

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 1 1. Dada la función f(x, y) = 2x 3 + 6xy 2 6x 2 6y 2 a) Hallar los puntos críticos de f. b) Averiguar si los puntos

Más detalles

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos.

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos. EJERCICIO 1 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs.

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

Problemas de programación lineal.

Problemas de programación lineal. Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante

Más detalles

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i

Más detalles

Tema II: Programación Lineal

Tema II: Programación Lineal Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución

Más detalles

ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO. ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL

ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO. ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO TEMA: ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL 1) Un taller fabrica y vende dos tipos de alfombras, de seda y de lana. Para la elaboración de una unidad se necesita

Más detalles

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO 1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UC3M Curso 08/09 1. Una compañía de transporte dispone de 10 camiones con capacidad de 40000 libras y de 5 camiones con

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A a) (1 punto) Dada la matriz a 1 A =, calcule el valor de a para que A a 0 sea la matriz nula 1 1 t b) ( puntos) Dada la matriz M =, calcule la matriz ( M M ) 1 1 x + 1 Sea la función f definida

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 2, Ejercicio

Más detalles

Forma estándar de un programa lineal

Forma estándar de un programa lineal Forma estándar de un programa lineal Sin pérdida de generalidad, todo programa lineal se puede escribir como: min cx s.t Ax = b x 0 Objetivo: minimizar Todas las desigualdades como ecuaciones Todas las

Más detalles

Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla

Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla COLEGIO SANTÍSIMA TRINIDAD Sevilla Dpto de Matemáticas Curso 2009-10 Boletín de Programación Lineal Matemáticas 2º Bach CC.SS. 1. Un frutero necesita 16 cajas de naranjas, 5 de plátanos y 20 de manzanas.

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín

La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín Una ecuación lineal es una ecuación polinómica de grado uno con una o varias incógnitas. Si la ecuación solamente tiene

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Programación Lineal Encuentro #3 Tema: Introducción a la programación lineal Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /2016 Objetivos: Obtener las

Más detalles

Forma estándar de un PPL con m restricciones y n variables. (b 0)

Forma estándar de un PPL con m restricciones y n variables. (b 0) Forma estándar de un PPL con m restricciones y n variables Maximizar (minimizar) Z = c 1 x 1 + c 2 x 2 +... + c n x n a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 +a 22 x 2 +... + a 2n x n = b 2...

Más detalles

Apellidos: Nombre: 2º Grupo: _D _ Día: 22-XI-2011 CURSO

Apellidos: Nombre: 2º Grupo: _D _ Día: 22-XI-2011 CURSO MATEMATICAS CC SS 1ª EVALUACIÓN Apellidos: Nombre: º Grupo: _D _ Día: -XI-011 CURSO 011-1 OPCIÓN A 0 3 (a) (1, puntos) Dadas las matrices M y N t 3 0, razone cuales de las siguientes operaciones tienen

Más detalles

Matemáticas.

Matemáticas. euresti@itesm.mx El método gráfico de solución de problemas de programación lineal (PL) sólo aplica a problemas con dos variables de decisión; sin embargo, ilustra adecuadamente los conceptos que nos permitirán

Más detalles

Repaso del algoritmo SIMPLEX

Repaso del algoritmo SIMPLEX Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN70K: Clase Auxiliar Repaso del algoritmo SIMPLEX Marcel Goic F. 1 1 Esta es una versión bastante

Más detalles

Capítulo 4 Método Algebraico

Capítulo 4 Método Algebraico Capítulo 4 Método Algebraico Introducción En la necesidad de desarrollar un método para resolver problemas de programación lineal de más de dos variables, los matemáticos implementaron el método algebraico,

Más detalles

Departamento de Matemáticas IES Giner de los Ríos

Departamento de Matemáticas IES Giner de los Ríos Departamento de Matemáticas IES Giner de los Ríos La programación lineal hace historia: El puente aéreo de Berlín En 1946 comienza el largo período de la guerra fría entre la antigua Unión Soviética (URSS)

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

x 1, x 2 0 Maximizar 3x 1 + x 2 s.a 2x 1 + x 2 4 2x 1 + 3x 2 4 x 1 + 3x 2 3

x 1, x 2 0 Maximizar 3x 1 + x 2 s.a 2x 1 + x 2 4 2x 1 + 3x 2 4 x 1 + 3x 2 3 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja. Dado el PL: Maximizar x + x x s.a x + x + x x x x x, x, x Calcula la solución del problema aplicando el algoritmo del Simplex. Existe más de una solución óptima?

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra 12. Sistemas de ecuaciones 1. Sistemas de ecuaciones Un sistema de ecuaciones es un conjunto de dos o más ecuaciones con varias incógnitas que conforman un problema matemático

Más detalles

Función de dos variables

Función de dos variables Funciones de dos y más variables, dominio y rango, y curva de nivel Marlon Fajardo Molinares - fenix.75@hotmail.com 1. Función de dos variables 2. Funciones de varias variables 3. Método para hallar el

Más detalles

UNIDAD 4. La Parábola

UNIDAD 4. La Parábola UNIDAD 4. La Parábola Practicando con la parábola Juan Adolfo Álvarez Martínez Autor Es el lugar geométrico de un punto que se mueve en un plano de tal manera que su distancia a una recta fija, situada

Más detalles

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1 Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles