Ejemplo. Si en una reunión hay 3 hombres y 4 mujeres, de cuántas maneras es posible seleccionar una pareja hombre-mujer?

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejemplo. Si en una reunión hay 3 hombres y 4 mujeres, de cuántas maneras es posible seleccionar una pareja hombre-mujer?"

Transcripción

1 MATEMÁTICAS BÁSICAS ANÁLISIS CMBINATRI ANÁLISIS CMBINATRI CNTE Para calcular la cantidad de elementos ue tienen los conjuntos formados con ciertas reglas sin ue sea necesario saber enumerarlos uno a uno se utiliza el rinciio fundamental del conteo. Este rinciio establece ue si un evento uede tener lugar de m maneras diferentes y luego de sucedido éste un segundo evento uede suceder de maneras distintas el número de formas diferentes en ue ueden realizarse los dos eventos es: m Si en una reunión hay hombres y mujeres de cuántas maneras es osible seleccionar una areja hombre-mujer? Si h h h son los hombres y m m m m son las mujeres. Se arecia ue uede haber cuatro arejas en las ue h es el hombre otras cuatro en las ue h es el hombre y otras cuatro en las ue el hombre es h. De esta manera se concluye ue el número de arejas es + +. Si se establece ue e es el evento "elegir un hombre" y e al evento "elegir una mujer". Como e uede suceder de tres maneras diferentes y e de cuatro maneras diferentes la cantidad de maneras de formar una areja (esto es ue sucedan los eventos e y e ) es ( ). Consideremos el conjunto A { 5 } formar con los elementos del conjunto A? cuántos números de cinco cifras diferentes se ueden La rimera cifra uede elegirse de cinco maneras diferentes la segunda uede elegirse de cuatro maneras diferentes (no se uede usar el número colocado en el rimer lugar) la tercera de tres maneras diferentes la cuarta de dos maneras y la uinta de manera. Alicando el rinciio fundamental de conteo se obtiene: ( )( )( )( ) 0 5. El juego de lacas de un automóvil consta de tres dígitos de los cuales el rimero no es cero seguidas de tres letras diferentes. Cuántos juegos de lacas ueden formarse? (se consideran letras y 0 dígitos). La rimera letra uede elegirse de maneras diferentes lo mismo sucede ara las otras dos. En el rimer lugar de las cifras ueden colocarse 9 dígitos orue el cero no uede estar en el rimer lugar. En el siguiente lugar ueden colocarse 0 dígitos y lo mismo sucede en el tercer lugar. Alicando el rinciio de conteo la cantidad edida será: ( 0)( 0)( )( )( ) 5'

2 FACTRIAL DE UN NÚMER Se define como factorial de un número natural n al roducto de n or todos los números ue le receden. Se denota mediante n!: ( )( )( ) ( n )( n) n! Por definición el factorial de cero es uno: 0! El factorial de un número crece de forma muy considerable. Ejemlos: ( )( ) ( )( )( )( 5) 0 ( )( )( )( 5)( )( 7)( 8) 0 0 ( )( )( ) ( )( ) 8778'9 00! 5! 8!! RDENACINES Sea un conjunto de elementos distintos. Si de ellos se toman gruos ordenados de elementos diferentes a cada una de estas disosiciones se les llama ordenaciones de elementos tomados de en. Esto significa ue son las distintas agruaciones ue se ueden formar de manera ue dos diferentes agruaciones difieran de un elemento o en su orden. Dado el conjunto M{abcd} se uiere formar los tríos ordenados de elementos sin reetir. De cuántas maneras se uede hacer? Se forma una tabla con tres columnas. En la rimera se onen todos los elementos del conjunto. En la segunda los ares derivados de cada elemento y en la tercera las tercias derivadas de cada ar: a b c d ab ac ad ba bc bd ca cb cd da db dc abc abd acb acd adb adc bac bad bca bcd bda bdc cab cad cba cbd cda cdb dab dac dba dbc dca dcb

3 De lo anterior se uede resaltar ue: Se han considerado distintas auellas disosiciones ue teniendo los mismos elementos estos se encuentran en distinto orden. Para cada elemento se obtuvieron tres disosiciones en forma de areja. Para cada areja se obtuvieron dos nuevas disosiciones en forma de tercia. A las disosiciones obtenidas al final se les llama ordenaciones de elementos tomados de entre dados. La cantidad obtenida es y se denota como: Suóngase ue se tiene un conjunto con elementos y ue se desea formar ordenaciones de elementos tomados de en. Siguiendo un criterio igual al usado en el ejemlo anterior se construye una tabla en la ue en la rimera columna se ubica a los elementos del conjunto tomándolos de uno en uno. En la siguiente columna se colocan todas las arejas osibles formadas or y los elementos ue uedan sin disoner en el conjunto. En la tercera columna se colocan las tercias formadas or las arejas y los elementos no usados. Así se uede continuar hasta formar los arreglos de orden. Para cada elemento el número de arejas ( ) número de tercias ( ) está dado or menos está dado or menos. Para cada areja el. Se arecia ue el roceso es sucesivo. Se uede concluir ue a artir de cada ordenación de orden se forman ( ) de orden. La cantidad obtenida será: [ ( )] recurrente ueda: [ ( ) ] 0 ( ) ( ) ( ) ( ) ( )( ) 0 Siguiendo el mismo razonamiento y teniendo en cuenta ue ( ) + ue ermite calcular la cantidad de arreglos de elementos de orden : ordenaciones. Alicando esta fórmula de forma se llega a la fórmula ( )( ) ( + ) Multilicando y dividiendo or ( )! se obtiene:! ( )! Cuántas señales diferentes de cuatro colores ueden formarse con 7 reflectores de distinto color uestos en una línea?

4 7 7! 7 ( 7! ) Dados los dígitos 57 y 9. ( )( 5)( ) 80 a) Cuántos números de tres dígitos se ueden formar?! 70 El número de ordenaciones distintas es: 0 (! ) b) Cuántos números mayores de 00 se ueden formar? Para ue sean mayores de 00 se deben descartar los dígitos y de la cifra más significativa así ue ara la rimera cifra hay osibilidades ara la segunda hay 5 y ara la tercera hay. Así ue se ueden formar ( 5)( ) 80 números. c) Cuántos números menores de 00 se ueden formar? Para ue sean menores de 00 el rimer dígito debe ser ó. es decir sólo hay dos osibilidades. 5 5! 0 Para el segundo dígito uede ser cualuiera de los cinco restantes: 5 ( 5! )! Para el tercer dígito uede ser cualuiera de los cuatro restantes:! 5 Por lo tanto se ueden formar: ( 5)( ) 0 números. ( ) PERMUTACINES Dados n objetos diferentes a a a a n de cuántas maneras es osible ordenarlos? Por ejemlo ara los elementos α β γ hay ordenaciones: αβγ αγβ βαγ βγα γαβ γβα. En el caso general se tendrán n maneras de escoger un elemento ue ocuará el rimer lugar n maneras de elegir el ue ocuará el segundo lugar n formas de escoger el ue ocua el tercer lugar y así sucesivamente hasta tener una forma de elegir el ue ocua el último lugar. Por lo tanto la cantidad de maneras de ordenar n elementos diferentes es: n ( n )( n ) n!. Cada ordenación de los n objetos se llama una ermutación simle de los n elementos y la cantidad de estas ermutaciones se reresenta P. De esta manera P n n!. Es decir las ermutaciones son las agruaciones de los elementos n tomados a la vez de manera ue dos agruaciones difieran entre sí en el orden de los elementos. Se uede concluir a artir de lo anterior ue las ermutaciones son un caso articular de ordenaciones cuando se consideran todos los elementos del conjunto. Cuántos son los anagramas (transosiciones de letras) de la alabra PRÁCTIC? Cada anagrama de PRÁCTIC es nada más ue una ordenación de las letras P R A C T I C. De esta manera la cantidad de anagramas de la alabra PRÁCTIC será P 8! Cuántos son los anagramas de la alabra PRÁCTIC ue comienzan y terminan en consonante?

5 Como la alabra tiene ocho letras y hay tres vocales la consonante inicial uede ser elegida de 5 maneras. Al emezar con una consonante la consonante final sólo uede elegirse de formas. Las restantes ueden ser arregladas entre esas dos consonantes de P! 70 formas. La resuesta es: ( )(! ) En un arue de cuántas maneras ueden sentarse cinco chicos y cinco chicas en cinco bancas ara dos de modo ue en cada banca ueden un chico y una chica? El rimer chico uede escoger un lugar de 0 formas el segundo de 8 maneras el tercero de modos el cuarto de formas y el uinto de maneras. Colocados los chicos debemos colocar las 5 chicas en los 5 lugares ue sobran lo ue uede ser hecho de P 5! 0 formas. La resuesta es: ( 8)( )( )( )( 5! ) CMBINACINES Sea el conjunto: B {mno} Todos los subconjuntos ue tienen tres elementos son: {mno} {mn} {mn} {mo} {mo} {m} {no} {no} {n}{o}. La elección de los elementos de los subconjuntos uede ser efectuada considerando las ordenaciones de cinco elementos tomados de en. Sin embargo algunos subconjuntos serían considerados diferentes siendo idénticos or ejemlo los subconjuntos {mno} {mon} {nmo} {nom} {omn} {onm}. Esto sucede orue en las ordenaciones son diferentes auellas disosiciones ue tienen los mismos 5 5! elementos en diferente orden. Esto significa ue la cantidad 0 está contando cada ( 5! ) subconjunto una vez ara cada ordenación diferente de sus elementos. Como en cada subconjunto los elementos ueden ser ordenados de! 5 0 P formas el total de subconjuntos será 0 P Definición: Dado un conjunto A con elementos se denomina combinaciones de elementos tomados de en (con ) a todos los subconjuntos de elementos cada uno tomados de entre los dados. Esto significa ue son todas las diferentes agruaciones ue ueden formarse de tal manera ue desde dichas agruaciones difieran entre sí en al menos un elemento. Se denota mediante o como C. Generalizando considerados los arreglos de elementos tomados de en se debe descartar auellos ue teniendo los mismos elementos están disuestos en distinto orden. Entonces resulta:. P! ( )!! 5

6 Cuántas ensaladas conteniendo exactamente cuatro frutas se ueden hacer si se disone de diez frutas diferentes? Para hacer una ensalada basta escoger cuatro de las diez frutas lo ue uede ser efectuado de 0 0! 0!! ( 0 ) ( 9)( 8)( 7) 0 formas. De cuántas formas uede escogerse un comité comuesto de cuatro hombres y tres mujeres de un gruo de ocho hombres y seis mujeres? De los ocho hombres se ueden escoger cuatro: De las seis mujeres se ueden escoger tres: ( 7)( )( 5) 8 8! 8 ( 8!! )! ( 5)( ) 0 (!! ) maneras. Por lo tanto la forma en ue el comité uede escogerse es: ( ) 00 maneras. Se marcan cinco untos sobre una recta r y ocho untos sobre otra recta s aralela a r. Cuántos triángulos existen con vértices en tres de esos trece untos? Para determinar un triángulo se debe tomar un unto sobre r y dos sobre s o uno sobre s y dos sobre r. 8 El número de triángulos en el rimer caso es: 5 5 El número de triángulos en el segundo caso es: La resuesta será: RDENACINES CN REPETICIÓN Cuando se exuso el subtema de ordenaciones se suuso ue los elementos se disonían sin reetir (las ordenaciones simles o sin reetición). Ahora se abordará el caso en ue un mismo elemento ueda aarecer reetido en una misma ordenación. Sea el conjunto A {abcd}. Siguiendo un razonamiento análogo al de la formación de las ordenaciones simles se disonen las ordenaciones con reetición:

7 a b c aa ab ac ba bb bc ca cb cc aaa aab aac aba abb abc aca acb acc baa bab bac bba bbb bbc bca bcb bcc caa cab cac cba cbb cbc cca ccb ccc Se arecia ue en la rimera columna se colocaron los elementos en la segunda las ordenaciones de dos en dos y en la tercera las ordenaciones de tres en tres. En este caso or cada elemento se obtienen tantas ordenaciones con reetición como elementos hay en el conjunto. Las ordenaciones con reetición de elementos tomados de entre dados es 9 y las ordenaciones con reetición de elementos tomados de entre dados es 7. Las ordenaciones con reetición se denotan como: R De esta manera si se tienen elementos las ordenaciones con reetición con orden el resectivo serán: R R ( ) ( )( ) R y así sucesivamente or lo ue: R Con una cerradura de combinación de seis discos de diez letras cada uno (las mismas letras en cada disco) cuántas disosiciones ueden obtenerse? Serán las ordenaciones con reetición de diez letras tomadas de seis en seis. Por lo tanto: R 0 0 '

8 CMBINACINES CN REPETICIÓN De forma análoga a las ordenaciones se uede suoner ue en una combinación un determinado elemento ueda figurar varias veces es decir se tratan de combinaciones con reetición. La cantidad de combinaciones con reetición de elementos tomados de en se denota como CR. Este número uede ser evidentemente mayor ue el de las combinaciones simles de elementos tomados de en. Para observar cómo se forman estas combinaciones considérense los elementos a b y c. Para obtener las combinaciones de orden dos con reetición será necesario agregar a las combinaciones simles de orden dos ab ac bc los nuevos gruos donde una misma letra uede figurar hasta dos veces o sea aa bb cc teniendo en total las combinaciones con reetición de orden dos: aa ab ac bb bc cc. Se deduce ue las combinaciones de orden dos con reetición de elementos se obtienen agregando sucesivamente a la derecha de cada combinación de orden uno dicho elemento y cada uno de los subsecuentes. A artir de lo anterior se uede concluir ue ara formar las combinaciones con reetición de elementos tomados de en se forman las de orden anterior y a la derecha de cada una de estas se coloca sucesivamente el último de los elementos ue figura en ella y cada uno de los siguientes hasta el último de los elementos dados suuestos alineados los elementos de cada gruo en orden numérico o alfabético. La exresión ue ermite calcular la cantidad de combinaciones con reetición es: Dados los elementos: { } obtener: P a) b) R R c) d) e) CR CR CR f) Mostrar cada caso. a)! P! (! )! (! )! c) ( )!! ( )! (!! ) ( )!! CR b) ( )! (!! ) ( ) ( + ) (! )!!!! ( )! (!! ) ( ) 8

9 d) e) R R ( ) +! ( +! ) 0 CR CR 0 CR!!!! ( ) ( ) ( ) ( ) f) a) { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } P b ) { } { } { } { } ( +! ) 70 (!! ) ( ) b ) { } { } { } { } { } { } { } { } { } { } { } { } b ) { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } b ) { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } P c ) { } { } { } { } C c ) { }{ } { } { } { } { } C c ) { } { } { } { } C c ) { } C d ) { } { } { } { } R d ) { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } R e ) { } { } { } { } CR e ) { } { } { } { } { } { } { } { } { } { } CR 0 e ) { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } CR 0 0 9

Técnicas de conteo. Permutaciones y combinaciones. Álvaro José Flórez. Febrero - Junio Facultad de Ingenierías

Técnicas de conteo. Permutaciones y combinaciones. Álvaro José Flórez. Febrero - Junio Facultad de Ingenierías Técnicas de conteo Permutaciones y combinaciones Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Técnicas de conteo En el enfoque clásico,

Más detalles

67.- El triángulo ABC es equilátero; BD y DE son bisectrices. Entonces AED =?

67.- El triángulo ABC es equilátero; BD y DE son bisectrices. Entonces AED =? GUIA 4 MEDIO MATEMATICA UNIDAD 3: GEOMETRIA. CONTENIDOS: Calculo de ángulos NOMBRE: 65.- Fecha:.. 66.- En el triángulo ABC de la figura, AC BC. Entonces α + β =? A) 90º B) 180º C) 240º D) 270º E) 290º

Más detalles

ESTADISTICA 1 CONTEO

ESTADISTICA 1 CONTEO ESTADISTICA 1 CONTEO PRINCIPIO DE ENUMERACION PERMUTACIONES Y COMBINACIONES PRINCIPIO DE ENUMERACION Si un suceso puede ocurrir de m maneras diferentes y, después de que ha sucedido, un segundo suceso

Más detalles

CONCURSO NACIONAL DE MATEMÁTICA SECUNDARIA BÁSICA CURSO TEMARIO COMÚN

CONCURSO NACIONAL DE MATEMÁTICA SECUNDARIA BÁSICA CURSO TEMARIO COMÚN CONCURSO NACIONAL DE MATEMÁTICA SECUNDARIA BÁSICA CURSO 2005 2006 TEMARIO COMÚN NOMBRE: GRADO: ESCUELA: MUNICIPIO: TIEMPO: 4 HORAS. Una panadería vende panecillos a $0.30 cada uno, o 7 panecillos en $.00

Más detalles

Teoría de la decisión

Teoría de la decisión Teoría de la decisión Repaso de Estadística Unidad 1. Conceptos básicos. Teoría de. Espacio muestral. Funciones de distribución. Esperanza matemática. Probabilidad condicional 1 Teoría de la decisión Teoría

Más detalles

Normalmente usamos la palabra "combinación" descuidadamente, sin pensar en si el orden de las cosas es importante. En otras palabras:

Normalmente usamos la palabra combinación descuidadamente, sin pensar en si el orden de las cosas es importante. En otras palabras: ENCUENTRO # 43 TEMA: Permutaciones y Combinatoria Ejercicio Reto Resolver las ecuaciones: a) b) DEFINICION: Permutación y Combinaciones Qué diferencia hay? Normalmente usamos la palabra "combinación" descuidadamente,

Más detalles

E C D AC CA E A E A C A E

E C D AC CA E A E A C A E A BCD E FE A CE E E C D AC CA E A E A C A E A BCA AC A DE B EF FE E A A D FDC BACAEFA E D AE B E EFA F A A AE DA F A EDE A A F D A A F F AEFA BACAEFA E D FC EA D A CA F DC EFA BC BCA AE DE EFACA EFA A

Más detalles

TEMA 2. Fundamentos de la teoría de la probabilidad.

TEMA 2. Fundamentos de la teoría de la probabilidad. TEMA 2. Fundamentos de la teoría de la probabilidad. Objetivo: El alumno comprenderá el concepto de probabilidad, así como los teoremas en los que se basa esta teoría. Experimentos.- Toda acción que se

Más detalles

Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Abril 6, Soluciones Taller 7

Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Abril 6, Soluciones Taller 7 Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Abril 6, 2010 Soluciones Taller 7 1. Pruebe el principio de inclusión-exclusión para tres conjuntos A B C = A + B + C A

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS EAP DE MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cueros cuadráticos Caítulo

Más detalles

1. Teoremas válidos para triángulos rectángulos

1. Teoremas válidos para triángulos rectángulos 1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa

Más detalles

Matemáticas Discretas L. Enrique Sucar INAOE. Permutaciones y Combinaciones

Matemáticas Discretas L. Enrique Sucar INAOE. Permutaciones y Combinaciones Matemáticas Discretas L. Enrique Sucar INAOE Permutaciones y Combinaciones Contenido Introducción Reglas de la suma y el producto Permutaciones Combinaciones Generación de permutaciones Teorema del Binomio

Más detalles

Academia, Librería, Informática Diego E S Q U E M A D E C O M B I N A T O R I A. CUADRO RESUMEN Sí (Variaciones o Permutaciones) m n m=n

Academia, Librería, Informática Diego E S Q U E M A D E C O M B I N A T O R I A. CUADRO RESUMEN Sí (Variaciones o Permutaciones) m n m=n E S Q U E M A D E C O M B I N A T O R I A m = Número de elementos de que se dispone. n = De cuánto en cuánto se cogen. Influye el orden? CUADRO RESUMEN Sí (Variaciones o Permutaciones) m n m=n No (Combinaciones)

Más detalles

Matemáticas - Guía 1 Proposiciones

Matemáticas - Guía 1 Proposiciones LOGROS: 1. Reconoce el conceto e roosición. 2. Clasifica las roosiciones en simles y comuestas. 3. Resuelve roosiciones comuestas utilizando los conectivos lógicos. 4. Halla el valor de verdad de una roosición

Más detalles

Ángulos en la Circunferencia y Teoremas

Ángulos en la Circunferencia y Teoremas Ángulos en la Circunferencia y Teoremas Nombre Alumno o Alumna: Curso: Definiciones Circunferencia: Dado un punto O y una distancia r, se llama circunferencia de centro O y radio r al conjunto de todos

Más detalles

ELEMENTOS PRIMARIOS DEL TRIÁNGULO. también es el suplemento de α, por lo tanto,. α ' =β+γ

ELEMENTOS PRIMARIOS DEL TRIÁNGULO. también es el suplemento de α, por lo tanto,. α ' =β+γ 7.. TRIÁNGULOS 7..1. ELEMENTOS PRIMARIOS DEL TRIÁNGULO VÉRTICES: son los puntos donde se intersectan dos de los Lados del triángulo. Se designan con letras mayúsculas, A, B, C... LADOS: son los trazos

Más detalles

Combinatoria. En todo problema combinatorio hay varios conceptos claves que debemos distinguir:

Combinatoria. En todo problema combinatorio hay varios conceptos claves que debemos distinguir: Conceptos de combinatoria Combinatoria En todo problema combinatorio hay varios conceptos claves que debemos distinguir: 1. Población Es el conjunto de elementos que estamos estudiando. Denominaremos con

Más detalles

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C 01 1. Un factor de la factorización completa de corresponde a mx y + 9y m x y x 4

Más detalles

PROCESOS DE MARKOV. Definiciones en los Procesos de Markov de Primer Orden:

PROCESOS DE MARKOV. Definiciones en los Procesos de Markov de Primer Orden: ROCESOS DE MARKOV rinciio de Markov: Cuando una robabilidad condicional deende únicamente del suceso inmediatamente anterior, cumle con el rinciio de Markov de rimer Orden, es decir. X ( t ) j X () K,

Más detalles

Areas y perímetros de triángulos.

Areas y perímetros de triángulos. Areas y perímetros de triángulos. Teorema de Pitágoras. Propiedades de las medidas de los lados de todo triángulo. Area de un triángulo rectángulo y cualquiera. Perímetro y semiperímetro de un triángulo

Más detalles

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA PRIMER GRADO 1. Marcos tiene todas las letras del abecedario en tres tamaños: grandes, medianas y pequeñas: A,B,C,D,E,...,Z A,B,C,D,E,...,Z A,B,C,D,E,...,Z Usando

Más detalles

I Eliminatoria Separemos la figura así: Considere la figura: el área sonbreada en esta figura es 7,5. Ahora considere la figura:

I Eliminatoria Separemos la figura así: Considere la figura: el área sonbreada en esta figura es 7,5. Ahora considere la figura: 1. Determine el área sombreada en la figura adjunta 11 (a) 15 (b) 16 (c) 17 (d) 18 Separemos la figura así: Considere la figura: el área sonbreada en esta figura es 7,5. Ahora considere la figura: 6 Su

Más detalles

TRIÁNGULOS: RELACIONES DE DESIGUALDAD ENTRE SEGMENTOS Y ÁNGULOS

TRIÁNGULOS: RELACIONES DE DESIGUALDAD ENTRE SEGMENTOS Y ÁNGULOS TRIÁNGULOS: RELACIONES DE DESIGUALDAD ENTRE SEGMENTOS Y ÁNGULOS Introducción.- Anteriormente, a partir de la congruencia de triángulos, hemos estudiado las condiciones que han de verificarse para que dos

Más detalles

Capitulo I - Lógica Matemática

Capitulo I - Lógica Matemática UNIERSIDAD PRIADA DE MOQUEGUA JOSE CARLOS MARIATEGUI Caitulo I - Lógica Matemática Todos los tóicos relativos a las matemáticas se razonan desde el unto de vista lógico y or lo tanto hay ue tener muy en

Más detalles

Capítulo 6 Combinatoria

Capítulo 6 Combinatoria Capítulo 6 Combinatoria 6.1 Introducción Se trata de contar el número de elementos de un conjunto finito caracterizado por ciertas propiedades. Principios fundamentales 1. Principio de la multiplicación

Más detalles

Ángulos en la Circunferencia Profesora: Alejandra Reyes O. Curso: 2º Año Medio

Ángulos en la Circunferencia Profesora: Alejandra Reyes O. Curso: 2º Año Medio Ángulos en la Circunferencia Profesora: Alejandra Reyes O. Curso: 2º Año Medio 1. Si se sabe que α =35 y β =45 ; cuál es la medida del ángulo x de la figura? 5. Cuáles son los valores de x e y de la figura?

Más detalles

Parte II. Teoría a del Consumidor

Parte II. Teoría a del Consumidor Parte II. Teoría a del Consumidor Tema 2: La conducta de los consumidores Tema 3: Teoría de la demanda Tema 4: El modelo de elección intertemoral. Parte I. Teoría a del Consumidor Tema 2: La conducta de

Más detalles

lados y la mediana del tercer lado se dividen mutuamente por la mitad. y la semi-diferencia de los lados que parten del mismo vértice.

lados y la mediana del tercer lado se dividen mutuamente por la mitad. y la semi-diferencia de los lados que parten del mismo vértice. TALLER # 2 DE GEOMETRÍA EUCLIDIANA: MEDIDAS Y DESIGUALDADES EN EL TRIÁNGULO, CUADRILATEROS. PROFESOR: MANUEL JOSÉ SALAZAR JIMENEZ 1. En el ABC, la bisectriz del A intercepta a BC en D. La mediatriz de

Más detalles

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA SEGUNDO GRADO 1. Tenemos tres balanzas equilibradas, como muestran las figuras. Cuántas tazas se necesitan para equilibrar la jarra? Se presentan dos formas de

Más detalles

Solución del 1er. nivel (2da. etapa) 2da. Olimpiada Cientí ca Estudiantil Plurinacional Boliviana Responzable: Mgr. Alvaro H. Carrasco C.

Solución del 1er. nivel (2da. etapa) 2da. Olimpiada Cientí ca Estudiantil Plurinacional Boliviana Responzable: Mgr. Alvaro H. Carrasco C. . Los múltilos son: Solución del er. nivel (da. etaa) da. Olimiada Cientí ca Estudiantil Plurinacional Boliviana Resonzable: Mgr. Alvaro H. Carrasco C. 8 ; 85 ; 86 ; :::; 9 luego hay 9 8 + = 36 múltilos

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 11 Combinatoria Recuerda lo fundamental Curso:... Fecha:... COMBINATORIA VARIACIONES CON REPETICIÓN Son las agrupaciones ordenadas de n elementos que se pueden formar a partir de m elementos distintos.

Más detalles

Numeración. Número Es la idea que tenemos sobre la cantidad de los elementos de la naturaleza.

Numeración. Número Es la idea que tenemos sobre la cantidad de los elementos de la naturaleza. Numeración Denominamos Numeración al capítulo de la Aritmética que estudia la correcta formación, lectura y escritura de los números. Número Es la idea que tenemos sobre la cantidad de los elementos de

Más detalles

B) Solo II C) I y II D) I y III E) I, II y III. A) 8 cm 2 B) 15 cm 2 C) 40 cm 2 D) 60 cm 2 E) 120 cm 2

B) Solo II C) I y II D) I y III E) I, II y III. A) 8 cm 2 B) 15 cm 2 C) 40 cm 2 D) 60 cm 2 E) 120 cm 2 EJERCICIOS DE ÁREAS Y PERÍMETROS DE TRIÁNGULOS 1. En el triángulo ABC es isósceles y rectángulo en C. Si AC = 5 cm y AD = cm, cuál (es) de las siguientes proposiciones es (son) verdadera (s)?: I) Área

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo: 1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.

Más detalles

. M odulo 7 Geometr ıa Gu ıa de Ejercicios

. M odulo 7 Geometr ıa Gu ıa de Ejercicios . Módulo 7 Geometría Guía de Ejercicios Índice Unidad I. Conceptos y elementos de geometría. Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 09 Unidad II. Áreas y perímetros de figuras planas.

Más detalles

MARIO PONCE FACULTAD DE MATEMÁTICAS P. UNIVERSIDAD CATÓLICA DE CHILE. 1. Resumen

MARIO PONCE FACULTAD DE MATEMÁTICAS P. UNIVERSIDAD CATÓLICA DE CHILE. 1. Resumen MSS Y GEOMETRÍ DE TRIÁNGULOS MRIO PONE FULTD DE MTEMÁTIS P. UNIVERSIDD TÓLI DE HILE 1. Resumen artir del rinciio de las alancas, desarollado or rquímides se establece una relación entre masas distribuidas

Más detalles

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS Nombre: Grado: 9 5 1. Costrucciones 2. las rectas y puntos notables de un triángulo Sabemos que los polígonos son figuras cerradas planas, de lados rectos,

Más detalles

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1 SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT-A16V1 1 TABLA DE CORRECCIÓN Ítem Alternativa 1 B E Comprensión 3 B 4 B 5 D 6 C 7 E 8 A 9 A 10 B 11 C 1 C 13 B 14 E 15 A 16 D 17 B 18 D Comprensión

Más detalles

( ) = = ( ) ( ) 1 = La probabilidad de que no ocurra ninguno de los dos es la probabilidad de la intersección de los complementarios ó contrarios.

( ) = = ( ) ( ) 1 = La probabilidad de que no ocurra ninguno de los dos es la probabilidad de la intersección de los complementarios ó contrarios. CUESTONES. Sean y B dos sucesos con (0,5, (B0, y ( B0,. Calcular las siguientes robabilidades (, (, ( B, (. B B B B ( ( B 0' B B 0' ( B ( B ( B ( B ( B B ( B B ( B B 0' 0'5 + 0' 0' 7 B B B ( ( B ( B (

Más detalles

PRÁCTICA 3. , se pide:

PRÁCTICA 3. , se pide: 3 3.- Dada la función de utilidad U, se ide: a) Calcular la función de la familia de curvas de indiferencia corresondientes a dicha función de utilidad Para calcular la familia de curvas de indiferencia

Más detalles

TEMA 17: PROBABILIDAD

TEMA 17: PROBABILIDAD TEMA 17: PROBABILIDAD Probabilidad de un suceso aleatorio es un numero entre 0 y 1 (más cerca del 0, mas difícil que ocurra. Más cerca del 1 más fácil que ocurra). Suceso seguro: Su probabilidad es 1.

Más detalles

Socioestadística I Análisis estadístico en Sociología

Socioestadística I Análisis estadístico en Sociología Análisis estadístico en Sociología Capítulo 4 TEORÍA DE LA PROBABILIDAD Y SUS PRINCIPIOS. ESTADÍSTICA INFERENCIAL 1. INTRODUCCIÓN A LA ESTADÍSTICA INFERENCIAL En los capítulos anteriores, hemos utilizado

Más detalles

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )

Más detalles

Polígonos Polígonos especiales: Cuadriláteros y triángulos

Polígonos Polígonos especiales: Cuadriláteros y triángulos Polígonos Polígonos especiales: Cuadriláteros y triángulos 1) a) Busca información sobre polígonos equiláteros, equiángulares y regulares. Lista semejanzas y diferencias. b) Haz una lista de los polígonos

Más detalles

CUARTO AÑO DE SECUNDARIA

CUARTO AÑO DE SECUNDARIA CUARTO AÑO DE SECUNDARIA Noviembre 011 Alumno(a): Colegio: En esta prueba se evalúan tres Capacidades y cinco destrezas. Para evaluar cada destreza utilizamos ejercicios que se puntúan según lo indicado.

Más detalles

Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado.

Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado. Universidad Rey Juan Carlos Curso 2010 2011 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 10 Gramaticas Independientes del Contexto Nivel del

Más detalles

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRIRIO DE NYQUIST. TRAZADO DE DIAGRAMA POLAR. La función de transferencia P, tendrá el formato dado or la siguiente exresión generalizada: P ± m m P A P + A P

Más detalles

Seminario de problemas. Curso Hoja 5

Seminario de problemas. Curso Hoja 5 Seminario de problemas. Curso 2014-15. Hoja 5 29. Encuentra los números naturales N que cumplen las siguientes condiciones: sus únicos divisores primos son 2 y 3, y el número de divisores de N 2 es el

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #28

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #28 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #8 Identidades Trigonométricas Una identidad es una ecuación que es válida ara todos los valores de las variables ara los cuales

Más detalles

Olimpiada Mexicana de Matemáticas Guanajuato

Olimpiada Mexicana de Matemáticas Guanajuato Olimpiada Mexicana de Matemáticas Guanajuato 22 de Mayo de 2010 1.- Sobre una mesa se tienen 1999 fichas que son rojas de un lado y negras del otro (no se especifica cuántas con el lado rojo hacia arriba

Más detalles

CONGRUENCIA DE TRIÁNGULOS

CONGRUENCIA DE TRIÁNGULOS Congruencia de triángulos. 1 CONGRUENCIA DE TRIÁNGULOS Dos figuras geométricas son congruentes si tienen el mismo tamaño y la misma forma. DEFINICIÓN: Dos triángulos son congruentes si tienen sus lados

Más detalles

Ejercicios Resueltos: Geometría Plana y del Espacio

Ejercicios Resueltos: Geometría Plana y del Espacio Ejercicios Resueltos: Geometría Plana y del Espacio 1. Determine el valor del ángulo en el triángulo de la figura: Ejercicios extraídos de pruebas parciales. Roberto Vásquez B. x x 4x x x 180º 1x 180º

Más detalles

Unidad 3 Combinaciones

Unidad 3 Combinaciones Unidad 3 Combinaciones Combinaciones Contar una selección no ordenada de objetos. Ejemplo Cuántos comités diferentes de tres estudiantes se pueden formar desde un grupo de cuatro estudiantes? R= 4 {1,2,3},

Más detalles

APÉNDICE A Cálculo combinatorio

APÉNDICE A Cálculo combinatorio El siguiente material se encuentra en etapa de corrección y no deberá ser considerado una versión final. Para hacer comentarios y sugerencias, o reportar errores, enviar mail a Alejandro D. Zylberberg

Más detalles

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL XXVIII OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICITT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL (8 9 ) 06 Estimado estudiante: La Comisión de las Olimpiadas Costarricenses de

Más detalles

Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes:

Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes: Identificación de las propiedades de los cuadriláteros Cuadrilátero. Es un polígono de cuatro lados. Se le representa con sus cuatro vértices. Características Dado este cuadrilátero ABCD, se tiene: Clasificación.

Más detalles

Valeri Makarov: Estadística Aplicada y Cálculo Numérico (Grado en Química)

Valeri Makarov: Estadística Aplicada y Cálculo Numérico (Grado en Química) Estadística Aplicada y Cálculo Numérico (Grado en Química) Valeri Makarov 10/02/2015 29/05/2015 F.CC. Matemáticas, Desp. 420 http://www.mat.ucm.es/ vmakarov e-mail: vmakarov@mat.ucm.es Capítulo 3 Elementos

Más detalles

Seminario de problemas. Curso Hoja 10

Seminario de problemas. Curso Hoja 10 Seminario de problemas. Curso 015-16. Hoja 10 55. A un fabricante de tres productos cuyos precios por unidad son de 50, 70 y 65 euros, le pide un detallista 100 unidades, remitiéndole en pago de las mismas

Más detalles

2.2 Rectas en el plano

2.2 Rectas en el plano 2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto

Más detalles

GUIA No.3 TERCER PERIODO ESTADISTICA GRADO ONCE

GUIA No.3 TERCER PERIODO ESTADISTICA GRADO ONCE GUIA No.3 TERCER PERIODO ESTADISTICA GRADO ONCE PERMUTACIONES Para considerar la técnica de la permutación es necesario definir la operación factorial, el operador factorial se define sobre los números

Más detalles

1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º.

1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. MATEMÁTICAS NM TRIGONOMETRÍA 1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. a) Calcule AB. b) Halle el área del triángulo. 2. (D) La siguiente figura muestra una

Más detalles

Cualquier lenguaje de contexto libre, L, puede ser generado por medio de una GCL, G, que cumpla las siguientes condiciones:

Cualquier lenguaje de contexto libre, L, puede ser generado por medio de una GCL, G, que cumpla las siguientes condiciones: Teoría de Autómatas y Lenguajes Formales Boletín de Autoevaluación 5: Cómo se simplifica una Gramática de Contexto Libre?. 1. Objetivos. El objetivo de este boletín es ilustrar cómo proceder para simplificar

Más detalles

FUNDAMENTOS DE LA TEORIA DE LA PROBABILIDAD ES TODA ACCION QUE SE REALIZA CON EL FIN DE OBSERVAR EL RESULTADO.

FUNDAMENTOS DE LA TEORIA DE LA PROBABILIDAD ES TODA ACCION QUE SE REALIZA CON EL FIN DE OBSERVAR EL RESULTADO. CAPITULO II FUNDAMENTOS DE LA TEORIA DE LA PROBABILIDAD EXPERIMENTO ES TODA ACCION QUE SE REALIZA CON EL FIN DE OBSERVAR EL RESULTADO. EXPERIMETO DETERMINISTICO ES UN EXPERIMENTO CUYO RESULTADO SE PUEDE

Más detalles

Cap. 3: relaciones en un triángulo

Cap. 3: relaciones en un triángulo PROBLEMAS DE TRIGONOMETRÍA (Traducido del libro de Israel M. Gelfand & Mark Saul, Trigonometry ) Cap. 3: relaciones en un triángulo Notas: 1. Los ejercicios marcados con * están resueltos en el libro.

Más detalles

Procesamiento Digital de Imágenes

Procesamiento Digital de Imágenes Visión or Comutadora Unidad III Procesamiento Digital de Imágenes Rogelio Ferreira Escutia Contenido 1) Oeraciones Individuales a) Transformaciones Punto a Punto b) Transformaciones de 2 Imágenes Punto

Más detalles

Descomposición en forma canónica de Jordan (Segunda versión)

Descomposición en forma canónica de Jordan (Segunda versión) Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin

Más detalles

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 8 Combinatoria La combinatoria es la técnica de saber cuántos elementos

Más detalles

INSTITUTO DE PROFESORES ARTIGAS

INSTITUTO DE PROFESORES ARTIGAS INSTITUTO DE PROFESORES ARTIGAS ESPECIALIDAD MATEMÁTICA GEOMETRÍA UNIDAD 3 FICHA 2: PARALELISMO 1 Posiciones relativas de rectas. 2 Axioma de Euclides. 3 Paralelismo de recta y plano. 4 Paralelismo de

Más detalles

Reporte de Actividades 15

Reporte de Actividades 15 Reporte de Actividades 15 Profesores: Arturo Ramírez, Alejandro Díaz. Tutores: Paulina Salcedo, Filomeno Alcántara. 1. Sesión del 8 de junio de 2011. 1.1 Resumen de la clase con Alejandro Díaz Barriga.

Más detalles

UNIDAD 14 CONJUNTOS. Objetivo 1. Recordarás la definición de un conjunto y sus elementos.

UNIDAD 14 CONJUNTOS. Objetivo 1. Recordarás la definición de un conjunto y sus elementos. UNIDAD 14 CONJUNTOS Objetivo 1. Recordarás la definición de un conjunto y sus elementos. Ejercicios resueltos: 1. {2, 4, 6} es un conjunto. Los elementos que forman este conjunto son: 2, 4, 6 2. Cuántos

Más detalles

Multiplicación División

Multiplicación División Aritmética CAPÍTULO V Multiplicación División 01. Calcule m + n + p + r, si mnpr 27 tiene como suma de sus productos parciales 3946. A) 13 B) 15 C) 16 D) 12 E) 11 02. En una multiplicación al multiplicando

Más detalles

EJERCICIOS DE VARIACIONES

EJERCICIOS DE VARIACIONES EJERCICIOS DE VARIACIONES 1. Cuántos resultados distintos pueden producirse al lanzar una moneda cuatro veces al aire.. Cuántos números de cuatro cifras distintos pueden formarse con los elementos del

Más detalles

E SAYO º 1 Geometría

E SAYO º 1 Geometría ᒬ 01) En el triángulo ABC de la figura AD = BD;

Más detalles

Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010.

Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010. Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010. Instrucciones: En la hoja de las respuestas marca la respuesta que creas correcta. Si marcas más de una respuesta en alguna pregunta

Más detalles

Ejercicios de Combinatoria

Ejercicios de Combinatoria Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Combinatoria Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes: Respeto,

Más detalles

1.1 Ejercicios Resueltos Tema 1

1.1 Ejercicios Resueltos Tema 1 .. EJERCICIOS RESUELTOS TEMA. Ejerccos Resueltos Tema Ejemplo: Probarque ++3+ + n 3 + 3 +3 3 + + n 3 n (n +) Ã n (n +)! - Para n es certa, tambén lo comprobamos para n, 3,... ( + ) + 3 (+) supuesto certa

Más detalles

PREPARACION OLIMPIADA MATEMATICA CURSO

PREPARACION OLIMPIADA MATEMATICA CURSO Comenzaremos recordando algunos conocimientos matemáticos que nos son necesarios. Para ello veamos el concepto de factorial de un número natural. Es decir, es un producto decreciente desde el número que

Más detalles

Límite de una función

Límite de una función CAPÍTULO Límite de una función Álgebra de ites Es bastante claro intuitivamente lo siguiente: Si eisten f / y g/ entonces: Œf / C g/ f / C g/ Œf / g/ f / g/ Œf / g/ f / g/ Œf /=g/ f /= g/ si g/ 0 Esto

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

Geometría Euclidiana en la formación de profesores. 4. Triángulos

Geometría Euclidiana en la formación de profesores. 4. Triángulos 4. Triángulos 4. Triángulos 4. Triángulos Wagensberg, J. (2007). El gozo intelectual. Teoría y práctica sobre la inteligibilidad y la belleza (pp. 252-258). Barcelona: Tusquets. CÓMO PODEMOS CLASIFICAR

Más detalles

Lógica y Conteo. Elaborado por: Jeff Maynard Guillén. Eliminatoria III

Lógica y Conteo. Elaborado por: Jeff Maynard Guillén. Eliminatoria III Lógica y Conteo Elaborado por: Jeff Maynard Guillén Eliminatoria III Mayo, 2011 Lógica-Conteo Principio de Conteo: Si tenemos n opciones, y cada una de estas tiene a su vez m opciones, entonces la cantidad

Más detalles

Actividades y ejercicios Mat II 6 I- Prof. Freire 2016

Actividades y ejercicios Mat II 6 I- Prof. Freire 2016 Selección de actividades y ejercicios Matemática II- Prof. Elena Freire Para los ejercicios propuestos se diseñará una carpeta con imágenes geogebra y con el nombre del alumno impreso dentro de cada imagen.

Más detalles

Segundo Examen eliminatorio estatal 28va OMM Durango

Segundo Examen eliminatorio estatal 28va OMM Durango Segundo Examen eliminatorio estatal 28va OMM Durango 1. En la división de 999 entre n donde n es un entero de dos cifras, el residuo es 3. Cuál es el residuo de la división de 2001 entre n? (a)3 (b)5 (c)6

Más detalles

Tema 1: La geometría euclídea

Tema 1: La geometría euclídea Tema 1: La geometría euclídea Geometrías no euclídeas Curso 2009-2010 1. Axiomas de Euclides 1. Euclides de Alejandría vivió hacia el año 300 A.C. 2. Definiciones intuitivas de punto, recta, plano, ángulo,

Más detalles

Operaciones con monomios y polinomios

Operaciones con monomios y polinomios Operaciones con monomios y polinomios Para las operaciones algebraicas se debe de tener en cuenta que existen dos formas para representar cantidades las cuales son números o letras. Al representar una

Más detalles

Puntos y rectas en el triángulo

Puntos y rectas en el triángulo Puntos y rectas en el triángulo En los triángulos hay un conjunto de rectas y puntos importantes. Las rectas son las bisectrices, las mediatrices, las alturas, las medianas y las bisectrices exteriores.

Más detalles

ÁREA: BÁSICA CLAVE DE LA ASIGNATURA: LA 102

ÁREA: BÁSICA CLAVE DE LA ASIGNATURA: LA 102 MATEMÁTICAS ÁREA: BÁSICA CLAVE DE LA ASIGNATURA: LA 102 OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA: Al término del curso, el alumno analizará los principios de las matemáticas; aplicará los mismos como herramientas

Más detalles

MATEMÁTICA-PRIMER AÑO REVISIÓN INTEGRADORA. A) Reproduce la siguiente figura, luego trace las bisectrices de los ángulos ACD y BCD.

MATEMÁTICA-PRIMER AÑO REVISIÓN INTEGRADORA. A) Reproduce la siguiente figura, luego trace las bisectrices de los ángulos ACD y BCD. Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA-PRIMER AÑO REVISIÓN INTEGRADORA Construcciones con regla no graduada y compás A) Reproduce la siguiente figura, luego trace las

Más detalles

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números II Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación 2 2. Temario 2 3. Divisibilidad 2 4. Algoritmo de

Más detalles

1 CÁLCULO CON RADICALES. Nota: Para m = 2, es l raíz cuadrada y el 2 no se escribe.

1 CÁLCULO CON RADICALES. Nota: Para m = 2, es l raíz cuadrada y el 2 no se escribe. DEFINICIÓN : 1 CÁLCULO CON RADICALES ( m 2, 3, 4,.. ) Ejemplo: Nota: Para m 2, es l raíz cuadrada y el 2 no se escribe. SIMPLIFICACIÓN DE RADICALES: Se escribe el radical en forma de potencia, se simplifica

Más detalles

Geometría. Olimpiada de Matemáticas en Tamaulipas. Cuando dos lineas rectas se cortan forman cuatro ángulos entre ellas:

Geometría. Olimpiada de Matemáticas en Tamaulipas. Cuando dos lineas rectas se cortan forman cuatro ángulos entre ellas: Geometría Ángulos Olimpiada de Matemáticas en Tamaulipas 1. Introducción Cuando dos lineas rectas se cortan forman cuatro ángulos entre ellas: Estos cuatro ángulos tienen además la característica de ser

Más detalles

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 3 de marzo de 2011

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 3 de marzo de 2011 UPR Deartamento de Ciencias Matemáticas RUM MATE 7 Primer Examen Parcial de marzo de 0 Nombre: # Estudiante: Profesor: Sección: Instrucciones: Lea cada regunta minuciosamente. No se ermite el uso de libros,

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Divisibilidad Olimpiada de Matemáticas en Tamaulipas 1. Introducción Divisibilidad es una herramienta de la aritmética que nos permite conocer un poco más la naturaleza de un número,

Más detalles

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría P.A.U. de. (Oviedo). (junio 994) Dados los puntos A (,0, ), B (,, ), C (,6, a), se pide: i) hallar para qué valores del parámetro a están alineados, ii) hallar si existen valores de a para los cuales A,

Más detalles

ANÁLISIS COMBINATORIO

ANÁLISIS COMBINATORIO ANÁLISIS COMBINATORIO 1. Es la rama de la matemática que estudia los diversos arreglos o selecciones que podemos formar con los elementos de un conjunto dado. 2. De acuerdo al principio fundamental del

Más detalles

Solución del I Examen de Matemáticas Discreta

Solución del I Examen de Matemáticas Discreta Solución del I Examen de Matemáticas Discreta 1. En un grupo hay 10 hombres y 15 mujeres: (a De cuantas maneras se puede elegir una comisión de 5 personas si hay al menos un hombre y dos mujeres? (b De

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

Bienvenidos al mundo de las variaciones, arreglos,permutaciones.!

Bienvenidos al mundo de las variaciones, arreglos,permutaciones.! Bienvenidos al mundo de las variaciones, arreglos,permutaciones.! Conceptos previos. PRINCIPIO SUMATIVO: Si un evento se da de n formas diferentes y otro evento se da de m formas diferentes.la elección

Más detalles