1.1 Ejercicios Resueltos Tema 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1.1 Ejercicios Resueltos Tema 1"

Transcripción

1 .. EJERCICIOS RESUELTOS TEMA. Ejerccos Resueltos Tema Ejemplo: Probarque n n 3 n (n +) Ã n (n +)! - Para n es certa, tambén lo comprobamos para n, 3,... ( + ) + 3 (+) supuesto certa para n k, que se le llama hpótess de nduccón, lo probamos para n k k +(k +) k (k +) + k + (k +)(k +) k (k +)+(k +) la prmera gualdad es consecuenca de la hpótess de nduccón y en la últma hemos sacado factor común (k +). Probamos ahora la segunda dentdad: Para n es certa, tambén lo comprobamos para n. 3 " # ( + ) " # ( + ) 9 supuesto certa para n k, loprobamosparan k +. " # k (k +) k 3 +(k +) 3 +(k +) 3 k (k +) +4(k +) 3 4 (k +) [k +4(k +)] (k +) [k +4k +4] (k +) (k +) " # (k +)(k +) Ejercco: Probarque n n (n +)(n +) 6

2 Ejercco: Probarque Ejercco: Probarque +3+ +(n ) n n (n +) n Ejercco: Sn + es un número natural, tambén lo es n na +. n a Ejercco: Hallar la ley general que smplfca el producto µ µ µ µ n y demostrarlo por nduccón. Ejemplo: Ejemplo: X +j+k3 x y j z k xyz + x y + x z + xy + y z + X,j +xz + yz + x 3 + y 3 + z 3 x y j x y + x y + x y + x y Ejemplo: Expresar con el smbolo sumatoro, de varas formas X 4X k0 5X n k+ n+ Ejercco: Calcular Sugerenca: k k (k ). Ejercco: Calcular n+r X k k (k ) a k n+r X a +r Ejercco: Razonar la veracdad o falsedad de las gualdades sguentes:

3 .. EJERCICIOS RESUELTOS TEMA 3. ³ ak P n a kn k k n k a à n k n X k! a k n. 0 ( + ) 5n + n 3. j+n j ( ) + Ejemplo: S dspongo en m armaro de 5 camsas, 3 pares de pantalones, 6 pares de calcetnes, y dos pares de zapatos. De cuántas formas dstntas puede vestrme? - Por el prncpo de multplcacón serán: formas dstntas. Ejemplo: Cuántos números dstntos de cuatro cfras se pueden formar con unos y ceros? - Para elegr el prmer número sólo tenemos una posbldad, y es el, para la segunda tenemos dos posbldades, al gual que para la tercera y la cuarta, luego el número es 8. Ejercco: Cuántos números de 5 cfras son pares? Cuántos empezan por 5 y acaban en 8? Ejemplo: DadoelconjuntoA {a, b, c, d} formar todas las varacones ordnaras de esos cuatroelementostomadasdetresentres. Estas son abc, abd, acb, acd, adb, adc bac, bad, bca, bcd, bda, bdc cab, cad, cba, cbd, cda, cdb dab, dac, dba, dbc, dca, dcb la forma más comoda de obtenerlas es medante un dagrama de árbol. Ejemplo: S en la F partcpan 0 coches, y supuesto que todos acaban la carrera, de cuántas formas dstntas puede estar formado el podum? El cajón está formado por tres escalones, y evdentemente no se pueden repetr, luego serían V Ejemplo: De cuántas formas dstntas se pueden sentar cnco personas en un banco?

4 4 Sólo mporta el orden, ya que se sentan todas, luego se trata de una permutacón P 5 5!0 Ejemplo: Cuántas qunelas hay que rellenar para asegurar un pleno? Tenemostreselementos,x,, que se pueden repetr y 5 partdos, por lo que son varacones conrepetcóndetreselementostomadosde5en5. RV Ejercco: Cuántas dagonales tene un exágono? Cuántas dagonales tene un polígono regular de n lados? Ejemplo: Calcular: Ã! n 0 La gualdad es evdente, basta hacer x y, en la fórmula del bnomo para obtener n. Ejercco: Demostrarque 3 5 n+ + 3n+ es múltplo de 7. Ejercco: Demostrar que para todo n, se verfca: s + r + q + + < Ejercco: Calcular: Ejercco: Sumar: Ejercco: Calcular Ejercco: Desarrollar 0 0 Ã! n Ã! n + X +j3 3 j 3 (a + b) 3 (a + b) 4

5 .. EJERCICIOS RESUELTOS DE COMBINATORIA. Ejerccos resueltos de combnatora Ejercco. Para abrr un candado debemos acertar una combnacón de tres números (por ejemplo 7) Cuántos ntentos tenemos que hacer para estar seguros de abrrlo? Qué probabldad tenemos de abrrlo con tres ntentos? Para cada uno de los números tenemos 0 opcones, por lo que la cantdad de posbles números clave será (los números desde el 000 al 999 o las varacones con repetcón de 0 elementos tomados de 3 en 3). Por lo tanto la probabldad de abrrlo con tres ntentos será (s en cada ntento se usa un número dferente). Ejercco. Una casa dspone de cerradura electrónca abréndose úncamente s se acerta el número secreto que consta de cuatro cfras. Cuántos ntentos debemos hacer para estar seguros de abrrla? Desanmados por el gran número de ntentos necesaros nos fjamos en que los dígtos,5,7 y 8 aparecen más desgastados que los demás. Cuántas opcones tendremos s el número secreto está formado por esos dígtos? Y s los números desgastados fuesen sólo,5 y 8? Para cada uno de los dígtos tenemos 0 opcones, por lo que la cantdad de posbles números clave será (los números desde el 0000 al 9999). S conocemos los 4 dígtos del número clave, las opcones se reducen a sus posbles reordenacones (permutacones) P 4 4!4. S sólo está formado por 3 (uno se repte), tenemos tres opcones (se repte el el 5 o el 8) y para cada una de ellas PR 4,, 4!!!! opcones dferentes, por lo que la solucón es 36. Ejercco.3 Usualmente se utlza la notacón decmal (base 0) para representar los números, de forma que 34 sgnfca Susáramos base 6 se tendría Cuántos números podemos codfcar en base 6 con tres cfras? Cuántos de ellos tendrán exactamente tres cfras (es decr no empezan por cero)? En base 6 se forman palabras con 6 símbolos (0...5). S estas tene longtud 3, el número total será VR 6, Otra forma de verlo sería tenendo en cuenta tendríamos los números desde el 0 al (6 números). De ellos tendrán realmente 3 cfras desde el al , lo que hace un total de números. Es decr todos menos los que se pueden formar con cfras, Ejercco.4? Qué es más fácl acertar el gordo de la lotería, 6 en la lotería prmtva o 4 en las qunelas?

6 La lotería semanal consta de números (desde el al 99999) por lo que la probabldad de acertar el gordo es / Enlalotería prmtva se elge un subconjunto de tamaño 6 de un conjunto con 49 elementos, por lo que hay C 49, opcones dferentes y la probabldad de acertar es Para las qunelas la solucón correcta es más dfcl ya que para usar la defncón clásca debemos suponer que todas las posbles opcones son gualmente probables lo cual no parece muy razonable (tendría la msma posbldad la opcón todo unos y la opcón todo doses). S que es sencllo contar el número total de opcones VR 3, (tres sgnos para cada caslla). Ejercco.5 En un supermercado sólo nos dejan utlzar la caja rápda s llevamos 5 o menos de 5 artículos. Sólo estamos nteresados en tres productos dstntos. Suponendo que nos llevamos 5 artículos? Cuántas opcones dferentes tenemos? S a,b,c representan los tres productos debemos elegr conjuntos con 5 artículos. Por ejemplo {a, a, b, b, c} o {a, a, a, a, c}. El número total será CR 3,5 7 5.

Técnicas de conteo. Permutaciones y combinaciones. Álvaro José Flórez. Febrero - Junio Facultad de Ingenierías

Técnicas de conteo. Permutaciones y combinaciones. Álvaro José Flórez. Febrero - Junio Facultad de Ingenierías Técnicas de conteo Permutaciones y combinaciones Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Técnicas de conteo En el enfoque clásico,

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

ESTADISTICA 1 CONTEO

ESTADISTICA 1 CONTEO ESTADISTICA 1 CONTEO PRINCIPIO DE ENUMERACION PERMUTACIONES Y COMBINACIONES PRINCIPIO DE ENUMERACION Si un suceso puede ocurrir de m maneras diferentes y, después de que ha sucedido, un segundo suceso

Más detalles

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 7 CAPÍTULO V ESTRUCTURAS ALGEBRAICAS Estructura Algebraca es todo conjunto no vacío en el cual se han defndo una o más leyes de composcón nterna, luego de cumplr certas propedades

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

SISTEMAS COMBINACIONALES

SISTEMAS COMBINACIONALES Tema 2 SISTEMAS COMBINACIONALES En este tema se estudarán algunas de las funcones combnaconales más utlzadas, las cuales se mplementan en chps comercales Como estas funcones son relatvamente complejas,

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

Instrucciones para el alumnado

Instrucciones para el alumnado La escolarzacón en Formacón Profesonal Incal, se lleva a cabo medante un proceso de adjudcacón de vacantes centralzado, donde las plazas ofertadas por la Consejería de Educacón, Cultura y Deporte, a través

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

COLEGIO FRANCISCANO AGUSTIN GEMELLI

COLEGIO FRANCISCANO AGUSTIN GEMELLI COLEGIO FRANCISCANO AGUSTIN GEMELLI AREA MATEMATICAS Las matemátcas son el alfabeto con el cual Dos ha escrto el Unverso. Galleo Galle ESTADISTICA GRADO NOVENO 0 Contendo UNIDAD... 6 PROBABILIDAD I (INTRODUCCION

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Teoría de la decisión

Teoría de la decisión Teoría de la decisión Repaso de Estadística Unidad 1. Conceptos básicos. Teoría de. Espacio muestral. Funciones de distribución. Esperanza matemática. Probabilidad condicional 1 Teoría de la decisión Teoría

Más detalles

Instrucciones para el alumnado

Instrucciones para el alumnado La escolarzacón en formacón profesonal ncal, se lleva a cabo medante un proceso de adjudcacón de vacantes centralzado, donde las plazas ofertadas por la Consejería de Educacón, Cultura y Deporte, a través

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Smoothed Particle Hydrodynamics Animación Avanzada

Smoothed Particle Hydrodynamics Animación Avanzada Smoothed Partcle Hydrodynamcs Anmacón Avanzada Iván Alduán Íñguez 03 de Abrl de 2014 Índce Métodos sn malla Smoothed partcle hydrodynamcs Aplcacón del método en fludos Búsqueda de vecnos Métodos sn malla

Más detalles

Unidad Nº III Unidad Aritmética-Lógica

Unidad Nº III Unidad Aritmética-Lógica Insttuto Unverstaro Poltécnco Santago Marño Undad Nº III Undad Artmétca-Lógca Undad Artmétca-Lógca Es la parte del computador que realza realmente las operacones artmétcas y lógcas con los datos. El resto

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

Profesor: Rafael Caballero Roldán

Profesor: Rafael Caballero Roldán Contendo: 5 Restrccones de ntegrdad 5 Restrccones de los domnos 5 Integrdad referencal 5 Conceptos báscos 5 Integrdad referencal en el modelo E-R 53 Modfcacón de la base de datos 53 Dependencas funconales

Más detalles

Matemática Financiera Sistemas de Amortización de Deudas

Matemática Financiera Sistemas de Amortización de Deudas Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

Leyes de tensión y de corriente

Leyes de tensión y de corriente hay6611x_ch03.qxd 1/4/07 5:07 PM Page 35 CAPÍTULO 3 Leyes de tensón y de corrente CONCEPTOS CLAVE INTRODUCCIÓN En el capítulo 2 se presentaron la resstenca así como varos tpos de fuentes. Después de defnr

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS

ANÁLISIS EXPLORATORIO DE DATOS ANÁLISIS EXPLORATORIO DE DATOS 1. INTRODUCCIÓN HISTÓRICA 2 1.1 La Estadístca como cenca 2 1.2 Algunos problemas que resuelve la Estadístca 2 2. INTRODUCCIÓN A LA ESTADÍSTICA 3 2.1. Concepto y Objetvo de

Más detalles

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 2. Probabilidad Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 Contenidos 1 Experimentos aleatorios 2 Algebra de sucesos 3 Espacios

Más detalles

Un modelo sencllo, dsponble y seguro Kontratazo publko elektronkoa públca electrónca Lctacones de Prueba: la mejor forma de conocer y domnar el Sstema de Lctacón Electrónca www.euskad.net/contratacon OGASUN

Más detalles

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS. En las msmas condcones, qué tpo de anualdades produce un monto mayor: una vencda o una antcpada? Por qué? Las anualdades antcpadas producen un monto mayor

Más detalles

PROBABILIDAD. Álgebra de sucesos. Inclusión o igualdad de sucesos. Operaciones con sucesos.

PROBABILIDAD. Álgebra de sucesos. Inclusión o igualdad de sucesos. Operaciones con sucesos. ROILIDD Álgebra de sucesos. Un fenómeno o exerenca se dce que es aleatoro cuando al reetrlo en condcones análogas es mosble de redecr el resultado. El conjunto de todos los resultados osbles de un exermento

Más detalles

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

1) De acuerdo con los datos de la figura, tres puntos colineales son

1) De acuerdo con los datos de la figura, tres puntos colineales son www.matematicagauss.com Prof. Orlando Bucknor. Tel 9 9990 Térraba 0 11 1) De acuerdo con los datos de la figura, tres puntos colineales son B, C y E A, C y D A, B y G B, C y G ) Considere las siguientes

Más detalles

2 Dos tipos de parámetros estadísticos

2 Dos tipos de parámetros estadísticos Dos tpos de parámetros estadístcos Págna 198 1. Calcula la meda, la medana y la moda de cada una de estas dstrbucones estadístcas: a) 4, 5, 6, 6, 6, 6, 7, 11, 1, 17 b), 1, 6, 9,, 8, 9,, 14, c), 3, 3, 3,

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,.

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,. º. a Deducr la expresón de la fórmula de dervacón numérca de tpo x,x,x,x,. nterpolatoro que permte aproxmar f (x* con el soporte { } 3 x 4 b Demostrar que en el caso de que el soporte sea de la forma:

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

67.- El triángulo ABC es equilátero; BD y DE son bisectrices. Entonces AED =?

67.- El triángulo ABC es equilátero; BD y DE son bisectrices. Entonces AED =? GUIA 4 MEDIO MATEMATICA UNIDAD 3: GEOMETRIA. CONTENIDOS: Calculo de ángulos NOMBRE: 65.- Fecha:.. 66.- En el triángulo ABC de la figura, AC BC. Entonces α + β =? A) 90º B) 180º C) 240º D) 270º E) 290º

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C RESISTENCIS EN SERIE Y LEY DE LS MLLS V V 2 V 3 C D Fgura R R 2 R 3 Nomenclatura: Suponemos que el potencal en es mayor que el potencal en, por lo tanto la ntensdad de la corrente se mueve haca la derecha.

Más detalles

EL DIABLO DE LOS NÚMEROS

EL DIABLO DE LOS NÚMEROS LA GACETA 1 EL DIABLO DE LOS NÚMEROS Seccón a cargo de Javer Clleruelo Mateo Cartomaga matemátca y cartoteoremas mágcos por Venanco Álvarez, Pablo Fernández y M. Auxladora Márquez 1. INTRODUCCIÓN Una reunón

Más detalles

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad,

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad, 17 Análss matemátco para Ingenería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Los números complejos La varable compleja permte resolver problemas muy dferentes dentro de áreas tan varadas

Más detalles

La planificación financiera

La planificación financiera Tema 5 La planfcacón fnancera 5.1 El paso de prevsones económcas a prevsones fnanceras Entre el plan fnancero de una empresa y su plan económco hay dferencas de la msma naturaleza que las estentes conceptualmente

Más detalles

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70 Análss del caso promedo Técncas Avanzadas de Programacón - Javer Campos 70 Análss del caso promedo El plan: Probabldad Análss probablsta Árboles bnaros de búsqueda construdos aleatoramente Tres, árboles

Más detalles

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos:

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos: UNIDAD 2: Gráfcos estadístcos Los gráfcos muestran vsualmente y de forma rápda la dstrbucón de los datos y sus prncpales característcas, consttuyen un mportante complemento en la presentacón de la nformacón.

Más detalles

TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS.

TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS. GESTIÓN FINANCIERA. TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS. 1.- Funconamento de las cuentas bancaras. FUNCIONAMIENTO DE LAS CUENTAS BANCARIAS. Las cuentas bancaras se dvden en tres partes:

Más detalles

Análisis de Sistemas Multiniveles de Inventario con demanda determinística

Análisis de Sistemas Multiniveles de Inventario con demanda determinística 7 Congreso Naconal de Estadístca e Investgacón Operatva Lleda, 8- de abrl de 00 Análss de Sstemas Multnveles de Inventaro con demanda determnístca B. Abdul-Jalbar, J. Gutérrez, J. Scla Departamento de

Más detalles

Diseño y Análisis de Experimentos en el SPSS 1

Diseño y Análisis de Experimentos en el SPSS 1 Dseño y Análss de Expermentos en el SPSS EJEMPLO. Los sguentes datos muestran las meddas de hemoglobna (gramos por 00 ml) en la sangre de 40 ejemplares de una espece de truchas marrones. Las truchas se

Más detalles

Combinatoria: factorial y números combinatorios.

Combinatoria: factorial y números combinatorios. Combinatoria: factorial y números combinatorios. 1. Realiza las siguientes actividades en tu cuaderno 2. Una vez resueltas, utiliza las escenas de la página para comprobar los resultados. 3. Para el manejo

Más detalles

Capítulo 10 Combinaciones y permutaciones

Capítulo 10 Combinaciones y permutaciones Capítulo 10 Combinaciones y permutaciones Los juegos de azar y las combinaciones Has jugado alguna vez póquer? Por si aún no lo has hecho, aquí hay una pequeña explicación de cómo hacerlo: El póquer se

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO F UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO ACULTAD DE CONTADURÍA Y CIENCIAS ADMINISTRATIVAS MATERIAL DIDÁCTICO: EJERCICIOS RESUELTOS PARA MATEMÁTICAS FINANCIERAS presenta: DR. FERNANDO AVILA CARREÓN

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición-

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición- Fscoquímca CIBX Guía de Trabajos Práctcos 2010 Trabajo Práctco N 7 - Medda de la Fuerza lectromotrz por el Método de Oposcón- Objetvo: Medr la fuerza electromotrz (FM) de la pla medante el método de oposcón

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES OBJETIVOS ESPECÍFICOS 1) Identfcar y manejar el materal básco de laboratoro. ) Preparar

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

Rentas financieras. Unidad 5

Rentas financieras. Unidad 5 Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Ángulos en la Circunferencia y Teoremas

Ángulos en la Circunferencia y Teoremas Ángulos en la Circunferencia y Teoremas Nombre Alumno o Alumna: Curso: Definiciones Circunferencia: Dado un punto O y una distancia r, se llama circunferencia de centro O y radio r al conjunto de todos

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA. 2.1.- Experencas de Joule. Las experencas de Joule, conssteron en colocar una determnada cantdad de agua en un calorímetro y realzar un trabajo, medante paletas

Más detalles

PROBLEMAS RESUELTOS DE MATEMÁTICA FINANCIERA 1. PROBLEMAS DE INTERÉS SIMPLE 2.

PROBLEMAS RESUELTOS DE MATEMÁTICA FINANCIERA 1. PROBLEMAS DE INTERÉS SIMPLE 2. Indce 1. Problemas de Interés Smple 2. Problemas de Descuento 3. Transformacón de Tasas 4. Problemas de Interés Compuesto 5. Problemas de Anualdades Vencdas 6. Problemas de Anualdades Antcpadas 7. Problemas

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

SGUICES028MT22-A16V1. SOLUCIONARIO Semejanza de triángulos

SGUICES028MT22-A16V1. SOLUCIONARIO Semejanza de triángulos SGUICES08MT-A16V1 SOLUCIONARIO Semejanza de triángulos 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA SEMEJANZA DE TRIANGULOS Ítem Alternativa 1 C Comprensión D 3 D 4 B 5 E 6 B 7 A 8 A 9 E 10 B 11 E 1 C 13 E Comprensión

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

ANALISIS COMBINATORIO

ANALISIS COMBINATORIO Universidad de San Carlos de Guatemala Centro Universitario de Occidente División Ciencias de la Salud Carrera de Médico y Cirujano, Primer Año, 2015 Teléfonos: 78730000, EXT. 2227-2221-2345-2244 CUNOC-USAC

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

CONGRUENCIA DE TRIÁNGULOS

CONGRUENCIA DE TRIÁNGULOS Congruencia de triángulos. 1 CONGRUENCIA DE TRIÁNGULOS Dos figuras geométricas son congruentes si tienen el mismo tamaño y la misma forma. DEFINICIÓN: Dos triángulos son congruentes si tienen sus lados

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

POLINOMIOS OPERACIONES CON MONOMIOS

POLINOMIOS OPERACIONES CON MONOMIOS POLINOMIOS Una expresión algebraica es una combinación de letras y números, ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas

Más detalles

VP = 1 VF. Anualidad: conjunto de pagos iguales realizados a intervalos iguales de tiempo.

VP = 1 VF. Anualidad: conjunto de pagos iguales realizados a intervalos iguales de tiempo. Ingenería Económca Tema 2.1. Factores de equvalenca y seres de gradentes UNIDAD II. FACTORES USADOS EN LA INGENIERÍA ECONÓMICA Tema 2.1. Factores de equvalenca y seres de gradentes Saber: Descrbr los factores

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 -

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 - Unversdad Euskal Herrko del País Vasco Unbertstatea NORMATIVA PARA SOCRATES/ERASMUS Y DEMÁS PROGRAMAS DE MOVILIDAD AL EXTRANJERO DE ALUMNOS (Aprobada en Junta de Facultad del día 12 de marzo de 2002) La

Más detalles

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 CÁLCULO DE LOS FLUJOS NETOS DE CAJA Y TOMA DE DECISIONES DE INVERSIÓN PRODUCTIVA Peculardades

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:

Más detalles

Trabajo Especial 2: Cadenas de Markov y modelo PageRank

Trabajo Especial 2: Cadenas de Markov y modelo PageRank Trabajo Especal 2: Cadenas de Markov y modelo PageRank FaMAF, UNC Mayo 2015 1. Conceptos prelmnares Sea G = (V, E, A) un grafo drgdo, con V = {1, 2,..., n} un conjunto (contable) de vértces o nodos y E

Más detalles

Consideraciones empíricas del consumo de los hogares: el caso del gasto en electricidad y alimentos

Consideraciones empíricas del consumo de los hogares: el caso del gasto en electricidad y alimentos Consderacones empírcas del consumo de los hogares: el caso del gasto en electrcdad y almentos Emprcal Consderatons of the Famles Consumpton: the Case uf the Expense n Electrcty and Food Maro Andrés Ramón

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c.

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c. Estadístca robablístca 6. Tablas de contngenca y dagramas de árbol. En los problemas de probabldad y en especal en los de probabldad condconada, resulta nteresante y práctco organzar la nformacón en una

Más detalles

Introducción al riesgo de crédito

Introducción al riesgo de crédito Introduccón al resgo de crédto Estrella Perott Investgador Senor Bolsa de Comerco de Rosaro eperott@bcr.com.ar. Introduccón El resgo credtco es el resgo de una pérdda económca como consecuenca de la falta

Más detalles

COMBINACIONES página 29 COMBINACIONES

COMBINACIONES página 29 COMBINACIONES página 29 DEFINICIÓN: Dados n elementos, el número de conjuntos que se pueden formar con ellos, tomados der en r, se llaman combinaciones. Por ejemplo, sean cuatro elementos formar con esos cuatro elementos

Más detalles

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática 1. Un número telefónico consta de siete cifras enteras. Supongamos que la primera cifra debe ser un número entre 2 y 9, ambos inclusive. La segunda y la tercera cifra deben ser números entre 1 y 9, ambos

Más detalles