Capitalización y descuento simple

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capitalización y descuento simple"

Transcripción

1 Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados Método de los multplcadores fjos Método de los dvsores fjos 2.4. Descuento smple comercal Magntudes dervadas 2.5. Cálculo del descuento smple. Métodos abrevados Método de los multplcadores fjos Método de los dvsores fjos 2.6. Descuento smple raconal o matemátco Tanto de nterés equvalente a uno de descuento Ejerccos propuestos

2 8 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple Se denomna así, a la operacón fnancera que tene por objeto la consttucón de un captal medante la aplcacón de la ley fnancera de captalzacón smple, o ben, a la que nos permte la obtencón de un captal fnanceramente equvalente a otro, con vencmento posteror, aplcando la ctada ley fnancera. La captalzacón smple o nterés smple, es una operacón fnancera generalmente a corto plazo, en la que los ntereses no se acumulan al captal. C 0 tgα = C n I 0 Fgura 2.1: Captalzacón smple n Las varables a consderar, son: C 0 = valor actual o captal ncal, I = ntereses, C n = valor fnal o montante de la operacón, = tasa de nterés, n = número de períodos. En cualquer caso, n e, han de estar referdos a la msma undad de tempo. En la captalzacón smple, el deudor, al vencmento ha de pagar el captal más los ntereses, es decr: C n = C 0 +I (2.1) El valor fnal C n en captalzacón smple, transcurrdos n períodos y al tanto, lo podemos determnar para un captal C 0, como: C 1 = C 0 + C 0 = C 0 (1+) C 2 = C 1 + C 0 = C 0 (1+)+ C 0 = C 0 (1+2 ) C 3 = C 2 + C 0 = C 0 (1+2 )+ C 0 = C 0 (1+3 ). C n = C n 1 + C 0 = C 0ä1+(n 1)ç+ C 0 = C 0 (1+ n) C n = C 0 (1+ n) (2.2) expresón que relacona el montante o captal fnal, transcurrdos n períodos de captalzacón, con el captal ncal prestado. Al térmno (1+ n), se le denomna factor de captalzacón smple, y es un número tal que multplcado por el captal ncal, nos permte obtener el captal fnanceramente equvalente al fnal del período n y que concde con el captal fnal C n. S comparamos (2.1) con (2.2), I = C n C 0 I = C 0 (1+ n) C 0

3 2.1 Captalzacón smple o nterés smple 9 I = C 0 +C 0 n C 0 obtenemos, I = C 0 n (2.3) expresón que nos permte obtener los ntereses devengados o rendmento producdo por un captal C 0 m durante un período n, y de la que se deduce que éstos son proporconales al captal, al nterés untaro y al tempo. S expresamos el tempo en m-ésmos de años (semestres, trmestres, meses, semanas,...) las fórmulas (2.2) y (2.3) se pueden generalzar: C n = C n 0 1+ sendo m la fraccón del año. 1 años 2 semestres 4 trmestres 12 meses 24 quncenas 52 semanas 360 días del año comercal 365 días del año natural o cvl I = C 0 n m Es usual defnr el sstema de captalzacón smple por medo de las propedades señaladas a. Así suele decrse que la funcón de captalzacón smple es aquella que defne un sstema fnancero en que el rédto acumulado es proporconal a la ampltud del período. Ejemplo 2.1 Calcular los ntereses producdos y el mporte total adeudado de un captal de 450e durante 60 días al 7 % de nterés smple. I = C 0 n I = 450 0, = 5,25 C n = C 0 +I C n = 450+5,25 = 455,25 Utlzando la calculadora fnancera, para obtener I y C n, 60 n CHS f INT obtenendo 5, 25 y pulsando + dará como resultado 455, Magntudes dervadas S despejamos C 0 de (2.2) se tene: C 0 = C n (1+ n) (2.4) que nos permte calcular el valor captal ncal o actual s se conoce el montante, el tanto y la duracón. Para calcular n o número de períodos, se aplcará: n = C n C 0 C 0 (2.5)

4 10 Captalzacón y descuento smple Ejemplo 2.2 Calcular el montante de 1 000e al 4 % de nterés anual, al cabo de 90 días. Cuánto tempo será precso que transcurra para que el montante sea un 5 % más? Aplcando (2.2) y (2.5), C n = C 0 (1+ n) C n = , =1010 n = C n C 0 C 0 n = ,04 = 1,25 años 2.2. Intereses antcpados En ocasones se plantean operacones en las que el prestamsta cobra los ntereses por antcpado, es decr, en el msmo momento en el que se concerta la operacón. S el captal prestado es C 0, el tpo de nterés antcpado y la duracón n, los ntereses se obtenen tal como hemos vsto en (2.3) como I = C 0 n, con lo que en el orgen se recbe: C 0 C 0 n = C 0 (1 n) Se debe verfcar, de donde, C 0 (1 n)(1+ n) = C 0 = 1 1 n 1 = n 1 n del msmo modo, = y s n = 1, = 1 1+ n = 1+ (2.6) 2.3. Cálculo de los ntereses smples. Métodos abrevados Los ntereses, tal como se ha vsto en (2.3), tenen por cuantía la expresón I = C n C 0. Normalmente, el tempo n y el tpo de nterés están referdos al año como undad de tempo, pero al aplcarse la ley de nterés smple en operacones a corto plazo (nferores al año), se aplcan métodos abrevados cuya utldad práctca se manfesta cuando hay que calcular los ntereses producdos por varos captales. Los dos más utlzados son: Método de los multplcadores fjos S al producto C 0 n del captal por el tempo se le desgna por N y al cocente 360 ó por M, entonces la fórmula para el cálculo de los ntereses se expresará medante el 365 producto del llamado número comercal N, por el multplcador fjo M, es decr: I = N M (2.7)

5 2.4 Descuento smple comercal Método de los dvsores fjos S pasa a dvdr al denomnador y al cocente 360 representa por D la fórmula del nterés se expresará: ó 365 llamado dvsor fjo, se le I = N D (2.8) Ejemplo 2.3 Calcular los ntereses producdos por un captal de 3 500e en 60 días a un tpo de nterés del 6 % anual, s se utlza el año comercal utlzando para ello los métodos abrevados. N = = M = 0, = 0, D = 360 0,06 = 6000 I = N M = 35 I = N D = Descuento smple comercal La ley fnancera del descuento smple comercal se defne como aquella en la que los descuentos de un perodo cualquera son proporconales a la duracón del perodo y al captal antcpado o descontado. Se trata de una operacón nversa a la de captalzacón smple. Cuando se descuenta un captal de cuantía C 0, por n años, el valor descontado D C n C 0 0 n Fgura 2.2: Descuento smple o actual que se obtene es: C 0 = C n (1 d n) (2.9) C n se conoce con los nombres de captal fnal o captal nomnal y a C 0 se le desgna como valor actual, valor efectvo o valor descontado. Este sstema de descuento tene como lmtacón n = 1 d tal como puede verse en el fgura 2.3 por tanto, será váldo hasta n < 1 d.

6 12 Captalzacón y descuento smple d n Fgura 2.3: Campo de valdez Magntudes dervadas El número de años n y el tanto d se calculan en: n = C n C 0 C n d d = C n C 0 C n n (2.10) (2.11) Ejemplo 2.4 Calcular el valor descontado, en descuento comercal, de un captal de e que vence dentro de 4 años, s el tanto de descuento es el 6 %. Hacendo uso de (2.9), se tene: C 0 = C n (1 d n) = (1 0,06 4) = Cálculo del descuento smple. Métodos abrevados El valor descontado de un captal de cuantía C n que vence dentro de n períodos es según (2.9) C 0 = C n (1 d n) por lo que el descuento efectuado es: D c = C n C 0 = C n d n (2.12) debendo tenerse presente que el tanto d y el tempo n están referdos a la msma undad de tempo (habtualmente el año). Al aplcarse la ley de descuento smple comercal en operacones a corto plazo, cuya duracón suele venr expresada en días (tal como ocurría con la captalzacón smple), n representará una fraccón del año. La expresón (2.12), según se utlce el año comercal o el cvl, quedará del sguente modo: D c = C n d n Método de los multplcadores fjos D c = C n d n 365 Desgnando por N = C n n al número comercal o smplemente número y al cocente d 360 ó d por el multplcador fjo M, el descuento smple comercal, será: 365 D c = N M (2.13)

7 2.6 Descuento smple raconal o matemátco Método de los dvsores fjos El descuento se expresa por el cocente D c = N sendo N el número comercal y D el D dvsor fjo que representa la fraccón 360 d ó 365 d. D c = N D (2.14) Ejemplo 2.5 Calcular los descuentos efectuados a un captal de e que vence dentro de 120 días s se utlza el año comercal y el tpo de descuento es el 6 %. N = = M = 0, = 0, D = 360 0,06 = 6000 y aplcando las fórmulas (2.12) y (2.13), se tene: D c = C n d n 120 = , = 1500 D c = N M = ,0001 6= 1500 D c = N D = = Descuento smple raconal o matemátco El descuento raconal, que desgnaremos por D r, se calcula sobre el valor efectvo. Es gual al nterés del efectvo C 0 durante el tempo que falta para su vencmento. De la expresón de captalzacón smple C n = C 0 (1+ n), resulta que el valor descontado de un captal C n, (dsponble al cabo de n períodos), será: C 0 = C n 1+ n (2.15) El descuento raconal, D r = C n C 0, es: D r = C n n 1+ n (2.16) expresón de la que se deduce que el descuento raconal no es proporconal al período de antcpo. El valor D r ha sdo obtendo tomando como dato el tpo de nterés que no debe ser confunddo con el tanto de descuento. Consderando la expresón (2.3), el D r se puede tambén obtener como: D r = C 0 n (2.17)

8 14 Captalzacón y descuento smple Tanto de nterés equvalente a uno de descuento Estos son dferentes, pero cabe hablar de un tanto de nterés equvalente a uno de descuento y vceversa. D c = C n d n = C n n 1+ n = D r d = 1+ n d = 1 d n Para n = 1, se tene: d = 1+ = d 1 d Puede observarse que el valor de d es el nterés antcpado vsto en 2.6. (2.18) Ejemplo 2.6 Calcular el descuento raconal que se efectuará sobre un título de e nomnales, que vence dentro de 150 días, s el tomador del título desea obtener un tanto de nterés del 8 % Cuál sería la tasa de descuento equvalente? El descuento raconal es, aplcando (2.15): D r = ,08 1+0, = 967,74 El efectvo en consecuenca, es C 0 = ,74 = 29032,26 el cual garantza obtener la rentabldad. El tanto de descuento equvalente al nterés, sería: d = El descuento comercal, sería: que concde con el del raconal. 1+ n = 0,08 1+0, = 0, D c = C n d n = , = 967,74 Ejerccos propuestos Ejercco 2.1 Una persona ha prestado una cantdad al 8,5 %. Después de 8 años y 3 meses la retra, y la vuelve a prestar, con los ntereses que le ha producdo al 10,5 %. Cuál es la cantdad que prestó al 8,5 %, sabendo que al presente recbe un nterés anual de 5 000e? Solucón: C0 = , 62 Ejercco 2.2 Dos captales cuya suma es de e han estado mpuestos a nterés smple durante el msmo tempo y al msmo tanto, producendo unos captales fnales de e y e. Cuáles eran dchos captales? Solucón: C 1 0 = C2 0 = 23000

9 Ejerccos propuestos 15 Ejercco 2.3 He comprado mercancías por valor de e con un crédto de 15 meses; pero s pago antes de este tempo, me conceden un descuento del 5 %. En qué época tengo que pagar, s no quero desembolsar más que ,60e? Solucón: n = 11 meses y 12 días Ejercco 2.4 Qué cantdad es necesaro prestar al 5,50 % para obtener 200e de ntereses en 132 días? Solucón: C0 = 9917,36 Ejercco 2.5 Calcular el montante de un captal de e al 6 % de nterés anual colocado durante 1 año y 4 semanas en régmen de captalzacón smple. Solucón: Cn = , 31 Ejercco 2.6 Un captal se ha dvddo en tres partes, y se ha mpuesto la prmera al 4 %; la segunda al 5 %, y la tercera, al 6 %, dando en total una gananca anual de 9 244e. S la prmera y tercera parte del captal se huberan mpuesto al 5,5 %, los ntereses correspondentes a estas dos partes serían de e anualmente. Calcular las tres partes del captal, sabendo además que la tercera es los 2/9 de la prmera. Solucón: C 1 0 = C2 0 = C3 0 = Ejercco 2.7 Un captal de cuantía C se ha colocado la cuarta parte al 5 % de nterés durante 30 días, la mtad del resto se ha colocado al 4 % durante 60 días y la otra mtad al 8 % durante 40 días. Determnar la cuantía de C s los ntereses totales son de 2 750e y se utlza el año comercal. Solucón: C = Ejercco 2.8 Un captal colocado durante 10 meses se ha convertdo, junto con los ntereses, en e. El msmo captal, menos sus ntereses durante 17 meses, ha quedado reducdo a e. Determnar el captal y el tanto por cento a que ha estado mpuesto. Solucón: C = = 4% Ejercco 2.9 Hallar por el método de los dvsores fjos los ntereses totales de los captales, colocados en los tempos que se ndcan y dados a contnuacón: e en 45 días; e en 60 días; e en 120 días; e en 80 días; e en 90 días y e en 75 días. El tpo de nterés aplcable es del 6 %. Solucón: I = 8962,50 Ejercco 2.10 Determnar el tempo necesaro para que un captal de cuantía C, colocado al tpo de nterés en régmen de captalzacón smple, genere un montante gual a 3 veces el captal ncal. Solucón: n = 2 Ejercco 2.11 Qué captal fue el que hzo que sus ntereses fueran la mtad del msmo, sabendo que el montante generado ascendó a 1 237,40e? Solucón: C = 824, 93 Ejercco 2.12 Cuánto tempo será necesaro para que un captal se transforme en otro cnco veces mayor a un 8 % de nterés smple anual? Solucón: n = 50 años

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Rentas financieras. Unidad 5

Rentas financieras. Unidad 5 Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemátcas Fnanceras Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Profundzar en los fundamentos del cálculo fnancero, necesaros

Más detalles

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO CUESTIONARIO Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO 1. Cuánto vale una Letra del Tesoro, en tanto por cento de nomnal, s calculamos su valor al 3% de nterés y faltan 5 días para su vencmento? A) 97,2

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I CURSO 0/04 PRIMERA SEMANA Día 7/0/04 a las 6 horas MATERIAL AUXILIAR: Calculadora fnancera DURACIÓN: horas. a) Captal fnancero aleatoro: Concepto. Equvalente

Más detalles

TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS.

TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS. GESTIÓN FINANCIERA. TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS. 1.- Funconamento de las cuentas bancaras. FUNCIONAMIENTO DE LAS CUENTAS BANCARIAS. Las cuentas bancaras se dvden en tres partes:

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

Matemática Financiera Sistemas de Amortización de Deudas

Matemática Financiera Sistemas de Amortización de Deudas Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

PROBLEMAS RESUELTOS DE MATEMÁTICA FINANCIERA 1. PROBLEMAS DE INTERÉS SIMPLE 2.

PROBLEMAS RESUELTOS DE MATEMÁTICA FINANCIERA 1. PROBLEMAS DE INTERÉS SIMPLE 2. Indce 1. Problemas de Interés Smple 2. Problemas de Descuento 3. Transformacón de Tasas 4. Problemas de Interés Compuesto 5. Problemas de Anualdades Vencdas 6. Problemas de Anualdades Antcpadas 7. Problemas

Más detalles

I = 2.500 * 8 * 0.08 =$133,33 Respuesta 12 b. $60.000 durante 63 días al 9%. I =$60.000 t =63 días i =0,09

I = 2.500 * 8 * 0.08 =$133,33 Respuesta 12 b. $60.000 durante 63 días al 9%. I =$60.000 t =63 días i =0,09 Problemas resueltos de matemátcas fnancera Indce 1. Problemas de Interés Smple 2. Problemas de Descuento 3. Transformacón de Tasas 4. Problemas de Interés Compuesto 5. Problemas de Anualdades Vencdas 6.

Más detalles

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta.

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta. Rentas Fnanceras. Renta fracconada 6. RETA FRACCIOADA Una renta fracconada se caracterza porque su frecuenca no concde con la frecuenca de varacón del térmno de dcha renta. Las característcas de la renta

Más detalles

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO INTRODUCCIÓN La ley 2.555 publcada el día 5 de dcembre de 211 y que entró en vgenca el día 4 de marzo de 212, que modca la ley 19.496 Sobre Proteccón de los Derechos de los Consumdores (LPC, regula desde

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología

Más detalles

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS. En las msmas condcones, qué tpo de anualdades produce un monto mayor: una vencda o una antcpada? Por qué? Las anualdades antcpadas producen un monto mayor

Más detalles

Matemática Financiera - Rentas constantes

Matemática Financiera - Rentas constantes Matemátca Fnancera - Rentas constantes Marek Šulsta Jhočeská unverzta v Českých Budějovcích Ekonomcká fakulta Katedra aplkované matematky a nformatky Unversdad de Bohema Sur Faculdad de Economía Departmento

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO F UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO ACULTAD DE CONTADURÍA Y CIENCIAS ADMINISTRATIVAS MATERIAL DIDÁCTICO: EJERCICIOS RESUELTOS PARA MATEMÁTICAS FINANCIERAS presenta: DR. FERNANDO AVILA CARREÓN

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

TEMA 7 RENTAS FRACCIONADAS

TEMA 7 RENTAS FRACCIONADAS TEMA 7 RENTAS FRACCIONADAS. INTRODUCCIÓN En la actvdad normal de las entdades fnanceras es muy frecuente ue la perodcdad con ue se hacen efectvos los sucesvos térmnos no sean anuales, como hasta ahora

Más detalles

Rentas o Anualidades

Rentas o Anualidades Rentas o Anualdades Patrca Ksbye Profesorado en Matemátca Facultad de Matemátca, Astronomía y Físca 10 de setembre de 2013 Patrca Ksbye (FaMAF) 10 de setembre de 2013 1 / 31 Introduccón Rentas o Anualdades

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

TEMA 6. La producción, el tipo de interés y el tipo de cambio: el modelo Mundell-Fleming

TEMA 6. La producción, el tipo de interés y el tipo de cambio: el modelo Mundell-Fleming TEMA 6. La produccón, el tpo de nterés y el tpo de cambo: el modelo Mundell-Flemng Anhoa Herrarte Sánchez Dpto. de Análss Económco: Teoría Económca e Hstora Económca Curso 2010-2011 Bblografía 1. Blanchard,

Más detalles

EJERCICIOS REPASO I. Profesor: Juan Antonio González Díaz. Departamento Métodos Cuantitativos Universidad Pablo de Olavide

EJERCICIOS REPASO I. Profesor: Juan Antonio González Díaz. Departamento Métodos Cuantitativos Universidad Pablo de Olavide EJERCICIOS REPASO I Profesor: Juan Antono González Díaz Departamento Métodos Cuanttatvos Unversdad Pablo de Olavde 1 EJERCICIO 1: Un nversor se plantea realzar varas operacones de las que desea obtener

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

C I R C U L A R N 2.133

C I R C U L A R N 2.133 Montevdeo, 17 de Enero de 2013 C I R C U L A R N 2.133 Ref: Insttucones de Intermedacón Fnancera - Responsabldad patrmonal neta mínma - Susttucón de la Dsposcón Transtora del art. 154 y de los arts. 158,

Más detalles

OFICINA DE CAPACITACIÓN, PRODUCCIÓN DE TECNOLOGÍA Y COOPERACIÓN TÉCNICA BIENVENIDOS(AS) FUNDAMENTOS DE MATEMÁTICAS FINANCIERAS

OFICINA DE CAPACITACIÓN, PRODUCCIÓN DE TECNOLOGÍA Y COOPERACIÓN TÉCNICA BIENVENIDOS(AS) FUNDAMENTOS DE MATEMÁTICAS FINANCIERAS OFICIN DE CPCITCIÓN, PRODUCCIÓN DE TECNOLOGÍ Y COOPERCIÓN TÉCNIC CURSO FUNDMENTOS DE MTEMÁTICS FINNCIERS IH: 30 HORS DURCIÓN: 5 SEMNS MODLIDD: PRESENCIL INICIO Grupo 01: INICIO Grupo 02: martes 4 de novembre

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE 2012 7 UNIDDES

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 CÁLCULO DE LOS FLUJOS NETOS DE CAJA Y TOMA DE DECISIONES DE INVERSIÓN PRODUCTIVA Peculardades

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

Gestión Financiera. 2 > Capitalización y descuento simple

Gestión Financiera. 2 > Capitalización y descuento simple . 2 > Capitalización y descuento simple Juan Carlos Mira Navarro Juan Carlos Mira Navarro 1 / 25. 2 > Capitalización y descuento simple 1 2 Definición Ley financiera de capitalización simple Factor de

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

La planificación financiera

La planificación financiera Tema 5 La planfcacón fnancera 5.1 El paso de prevsones económcas a prevsones fnanceras Entre el plan fnancero de una empresa y su plan económco hay dferencas de la msma naturaleza que las estentes conceptualmente

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

Calorimetría - Soluciones. 1.- Cuántas calorías ceden 5 kg de cobre (c = 0,094 cal/g C) al enfriarse desde 36 o C hasta -4 C?

Calorimetría - Soluciones. 1.- Cuántas calorías ceden 5 kg de cobre (c = 0,094 cal/g C) al enfriarse desde 36 o C hasta -4 C? Calormetría - Solucones 1.- Cuántas calorías ceden 5 kg de cobre () al enfrarse desde 3 o C hasta -4 C? m = 5 kg = 5.000 g T = 3 C T f = - 4 C = - T = - (T f T ) = - 5.000 g 0,094 cal/g C (-4 C 3 C) =

Más detalles

El costo de oportunidad social de la divisa ÍNDICE

El costo de oportunidad social de la divisa ÍNDICE El Costo de Oportundad Socal de la Dvsa El costo de oportundad socal de la dvsa ÍNDICE. INTRODUCCIÓN. EL MARCO TEÓRICO 3. CÁLCULO DEL COSTO DE OPORTUNIDAD SOCIAL DE LA DIVISA 3. Nvel agregado 3. Nvel desagregado

Más detalles

SEGURO DE VIDA INDIVIDUAL CON PLAN DE AHORRO PREVISIONAL VOLUNTARIO VINCULADO A ACTIVOS DE INVERSION

SEGURO DE VIDA INDIVIDUAL CON PLAN DE AHORRO PREVISIONAL VOLUNTARIO VINCULADO A ACTIVOS DE INVERSION SEGURO DE VIDA INDIVIDUAL CON PLAN DE AHORRO PREVISIONAL VOLUNTARIO VINCULADO A ACTIVOS DE INVERSION Incorporada al Depósto de Pólzas bajo el códgo POL 2 13 021 ARTICULO 1: NORMATIVA APLICABLE. El presente

Más detalles

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR El Superntendente de Pensones, en el ejercco de las facultades legales contempladas en el artículo 13, lteral b) de la Ley Orgánca de la Superntendenca de Pensones, EMITE el : INSTRUCTIVO No. SP 04 / 2002

Más detalles

Ejercicios Resueltos de NÚMEROS COMPLEJOS

Ejercicios Resueltos de NÚMEROS COMPLEJOS Ejerccos Resueltos de NÚMEROS COMPLEJOS Ejerccos Resueltos de NÚMEROS COMPLEJOS Números Complejos. Formas de epresarlos.- Halla las raíces de los sguentes números: 00 Solucón: ± 00 00 ± 0 ± ±.- Representa

Más detalles

TEMA 4 Amplificadores realimentados

TEMA 4 Amplificadores realimentados TEM 4 mplfcadores realmentados 4.1.- Introduccón La realmentacón (feedback en nglés) negata es amplamente utlzada en el dseño de amplfcadores ya que presenta múltples e mportantes benefcos. Uno de estos

Más detalles

Valoración de Instrumentos del Vector de Precios

Valoración de Instrumentos del Vector de Precios Valoracón de Instrumentos del Vector de Precos VERSIÓN DICIEMBRE VERSIÓN DICIEMBRE CONTENIDO INTRODUCCIÓN.... INSTRUMENTOS FINANCIEROS.... Títulos de Deuda de Emsores Públcos... A) Bonos de Establzacón

Más detalles

Análisis de Sistemas Multiniveles de Inventario con demanda determinística

Análisis de Sistemas Multiniveles de Inventario con demanda determinística 7 Congreso Naconal de Estadístca e Investgacón Operatva Lleda, 8- de abrl de 00 Análss de Sstemas Multnveles de Inventaro con demanda determnístca B. Abdul-Jalbar, J. Gutérrez, J. Scla Departamento de

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C RESISTENCIS EN SERIE Y LEY DE LS MLLS V V 2 V 3 C D Fgura R R 2 R 3 Nomenclatura: Suponemos que el potencal en es mayor que el potencal en, por lo tanto la ntensdad de la corrente se mueve haca la derecha.

Más detalles

Procedimiento al que deberán sujetarse las instituciones de crédito y casas de bolsa que actúen como Formadores de Mercado

Procedimiento al que deberán sujetarse las instituciones de crédito y casas de bolsa que actúen como Formadores de Mercado Procedmento al que deberán suetarse las nsttucones de crédto y casas de bolsa que actúen como Formadores de Mercado (Dado a conocer medante Crcular 5/011, que adunta el ofco 305.-027/2011, publcada en

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

VP = 1 VF. Anualidad: conjunto de pagos iguales realizados a intervalos iguales de tiempo.

VP = 1 VF. Anualidad: conjunto de pagos iguales realizados a intervalos iguales de tiempo. Ingenería Económca Tema 2.1. Factores de equvalenca y seres de gradentes UNIDAD II. FACTORES USADOS EN LA INGENIERÍA ECONÓMICA Tema 2.1. Factores de equvalenca y seres de gradentes Saber: Descrbr los factores

Más detalles

Ejercicios y Problemas Resueltos. Paquete didáctico para el curso de Macroeconomía I*

Ejercicios y Problemas Resueltos. Paquete didáctico para el curso de Macroeconomía I* Ejerccos y Problemas Resueltos Paquete ddáctco para el curso de Macroeconomía I* AZCAPOTZALCO Departamento de Economía Ma. Beatrz García Castro** Mayo de 2003 *Agradezco a la ayudante de nvestgacón Paola

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

Clase 25. Macroeconomía, Sexta Parte

Clase 25. Macroeconomía, Sexta Parte Introduccón a la Facultad de Cs. Físcas y Matemátcas - Unversdad de Chle Clase 25. Macroeconomía, Sexta Parte 12 de Juno, 2008 Garca Se recomenda complementar la clase con una lectura cudadosa de los capítulos

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

LECCIÓN Nº 11 y 12 ANUALIDADES VENCIDAS

LECCIÓN Nº 11 y 12 ANUALIDADES VENCIDAS UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 11 y 12 ANUALIDADES VENCIDAS OBJETIVO: El objetvo de este captulo es reconocer, defnr y clasfcar los dferentes de tpos de anualdades y en espacal las anualdades

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad,

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad, 17 Análss matemátco para Ingenería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Los números complejos La varable compleja permte resolver problemas muy dferentes dentro de áreas tan varadas

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

SEGURO DE VIDA INDIVIDUAL CON PLAN DE AHORRO. PREVISIONAL VOLUNTARIO VINCULADO A ACTIVOS DE INVERSION. Autorizada por

SEGURO DE VIDA INDIVIDUAL CON PLAN DE AHORRO. PREVISIONAL VOLUNTARIO VINCULADO A ACTIVOS DE INVERSION. Autorizada por SEGURO DE VIDA INDIVIDUAL CON PLAN DE AHORRO PREVISIONAL VOLUNTARIO VINCULADO A ACTIVOS DE INVERSION. Autorzada por Resolucón N 092 de 01/04/2014 como plan APV. Incorporada al Depósto de Pólzas bajo el

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Capítulo 5 Anualidades.

Capítulo 5 Anualidades. Capítulo 5 Anualdades. Hasta ahora solo hemos estudado operacones fnanceras que se componen de un captal únco (captal ncal o monto), por ejemplo, podemos saber el valor presente de una suma de dnero en

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

ANÁLISIS DEL CRITERIO COSTE AMORTIZADO. APLICACIÓN A UN PRÉSTAMO CONCERTADO POR EL SISTEMA DE AMORTIZACIÓN FRANCÉS CON TIPO DE INTERÉS INDICIADO

ANÁLISIS DEL CRITERIO COSTE AMORTIZADO. APLICACIÓN A UN PRÉSTAMO CONCERTADO POR EL SISTEMA DE AMORTIZACIÓN FRANCÉS CON TIPO DE INTERÉS INDICIADO 87a ANÁLISIS DEL RITERIO OSTE AMORTIZADO. APLIAIÓN A UN PRÉSTAMO ONERTADO POR EL SISTEMA DE AMORTIZAIÓN FRANÉS ON TIPO DE INTERÉS INDIIADO Mª armen Vall Martínez Alca Ramírez Orellana Profeora Ttulare

Más detalles

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS SIARGAF 4.0 FEBRERO 008 CONTENIDO..... Valor en Resgo aramétrco... A) Meddas de Sensbldad... B) Meddas Estadístcas... 6 C) Volatldad... 7 D) Valor

Más detalles

CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A.

CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A. CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A. PERÍODO 201-2020 Introduccón Las Bases Técnco Económcas Prelmnares, en

Más detalles

SISTEMAS COMBINACIONALES

SISTEMAS COMBINACIONALES Tema 2 SISTEMAS COMBINACIONALES En este tema se estudarán algunas de las funcones combnaconales más utlzadas, las cuales se mplementan en chps comercales Como estas funcones son relatvamente complejas,

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Introducción al riesgo de crédito

Introducción al riesgo de crédito Introduccón al resgo de crédto Estrella Perott Investgador Senor Bolsa de Comerco de Rosaro eperott@bcr.com.ar. Introduccón El resgo credtco es el resgo de una pérdda económca como consecuenca de la falta

Más detalles

Ingeniería Económica y Análisis Financiero Finanzas y Negocios Internacionales Parcial 3 Diciembre 10 de Nombre Código.

Ingeniería Económica y Análisis Financiero Finanzas y Negocios Internacionales Parcial 3 Diciembre 10 de Nombre Código. Ingenería Económca y Análss Fnancero Fnanzas y Negocos Internaconales Parcal 3 Dcembre 0 de 20 Nombre Códgo Profesor: Escrba el nombre de sus compañeros Al frente Izquerda Atrás Derecha Se puede consultar

Más detalles

Prof. Antonio Santillana del Barrio y Ainhoa Herrarte Sánchez Universidad Autónoma de Madrid Curso 2012-2013

Prof. Antonio Santillana del Barrio y Ainhoa Herrarte Sánchez Universidad Autónoma de Madrid Curso 2012-2013 Tema 6 El modelo IS-LM Prof. Antono Santllana del Barro y Anhoa Herrarte Sánchez Unversdad Autónoma de Madrd Curso 2012-2013 Bblografía oblgatora Capítulo 5, Macroeconomía, (Blanchard et al) Apuntes de

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147 Undad. Números complejos Matemátcas I Resuelve Págna 7 Cómo operar con? Vamos a proceder como los antguos algebrstas: cuando nos encontremos con seguremos adelante operando con ella con naturaldad y tenendo

Más detalles

Leyes de tensión y de corriente

Leyes de tensión y de corriente hay6611x_ch03.qxd 1/4/07 5:07 PM Page 35 CAPÍTULO 3 Leyes de tensón y de corrente CONCEPTOS CLAVE INTRODUCCIÓN En el capítulo 2 se presentaron la resstenca así como varos tpos de fuentes. Después de defnr

Más detalles

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116 Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Análisis Matemático en la Economía: Optimización y Programación. Augusto Rufasto

Análisis Matemático en la Economía: Optimización y Programación. Augusto Rufasto Análss Matemátco en la Economía: Optmzacón y Programacón arufast@yahoo.com-rufasto@lycos.com www.geoctes.com/arufast-http://rufasto.trpod.com La optmzacón y la programacón están en el corazón del problema

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

Modelado de Contratos en Modalidad de Take Or Pay

Modelado de Contratos en Modalidad de Take Or Pay Modelado de Contratos en Modaldad de Tae Or ay Enrque Brgla, UTE Elías Carnell, UTE Fernando Ron, UTE Resumen-- El objetvo del trabajo es modelar en el software de smulacón de sstemas eléctrcos SIMSEE,

Más detalles

El análisis de desviaciones sobre el resultado previsto

El análisis de desviaciones sobre el resultado previsto Tema 6 El análss de desvacones sobre el resultado prevsto Trabajar con presupuestos supone, como fase fnal lógca, el comparar las cfras prevstas con las reales, y proceder a un «análss de desvacones».

Más detalles

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire 4 Undad II: Análss de la combustón completa e ncompleta. 1. Are El are que se usa en las reaccones de combustón es el are atmosférco. Ya se djo en la Undad I que, debdo a que n el N n los gases nertes

Más detalles

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 7 CAPÍTULO V ESTRUCTURAS ALGEBRAICAS Estructura Algebraca es todo conjunto no vacío en el cual se han defndo una o más leyes de composcón nterna, luego de cumplr certas propedades

Más detalles