6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS"

Transcripción

1 TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo de dar valdez a estas expresones. Para ello es necesaro admtr como número váldo a y a todos los que se obtengan al operar con él como s se tratara de un número más. Undad magnara: Se llama así al nuevo número. Y se desgna por la letra = = - (El nombre vene de magnaro) Números complejos: Son las expresones: a + b, donde a y b son números reales. Componentes: La expresón a + b, se llama forma bnómca de un número complejo porque tene dos componentes: a = Parte real b = Parte magnara. Igualdad: Dos números complejos son guales sólo cuando tenen la msma componente real y la msma componente magnara. El conjunto de todos los números complejos se desgna por C. C = {a + b / a, b R} Los números reales son complejos: R C: Los reales son números complejos cuya parte magnara es cero: a + 0 = a Números magnaros: Son los números complejos cuya componente magnara no es cero. Por tanto, un número complejo o es real o es magnaro. Números magnaros puros: son los magnaros cuya parte real es cero: 0 + b = b Opuesto de un número complejo z = a + b : -z = -a b Conjugado de un número complejo z = a + b : z = a - b REPRESENTACIÓN GRÁFICA Las sucesvas categorías de números (naturales, enteros, raconales,...) se pueden representar sobre la recta. Los reales la llenan por completo, de modo que a cada número real le corresponde un punto en la recta y cada punto, un número real. Por eso hablamos de recta real.

2 Para representar los números complejos tenemos que salr de la recta y llenar el plano, pasando así de la recta real al plano complejo. Los números complejos se representan en unos ejes cartesanos. El eje X se llama eje real y el Y, eje magnaro. El número complejo a + b se representa medante el punto (a,b) que se llama afjo, o medante un vector de orgen (0,0) y extremo (a,b). Los afjos de los números reales se stúan sobre el eje real y los magnaros puros, sobre el eje magnaro. RESOLUCIÓN DE ECUACIONES DE SEGUNDO GRADO Cualquer ecuacón de segundo grado con coefcentes reales que no tenga solucón real tene dos solucones magnaras que son números complejos conjugados.. OPERACIONES CON NÚMEROS COMPLEJOS EN FORMA BINÓMICA Las operacones con los números complejos en forma bnómca se realzan sguendo las reglas de las operacones de los números reales y tenendo en cuenta que = -. SUMA: La suma de dos números complejos es otro número complejo cuya parte real es la suma de las partes reales y cuya parte magnara es la suma de las partes magnaras. z + z = (a + b) + (a + b ) = a + b + a + b = (a + a ) + (b+b ) RESTA: La resta de dos números complejos es otro número complejo cuya parte real es la resta de las partes reales y cuya parte magnara es la resta de las partes magnaras. z - z = (a + b) - (a + b ) = a + b - a - b = (a - a ) + (b-b ) MULTIPLICACIÓN z.z = (a + b).(a + b ) = a.a + a.b + ba + b.b = a.a + a.b + a.b b.b = = (a.a - b.b ) + (a.b + a.b) Nota: S multplcamos un número complejo por su conjugado obtenemos un número real: z.z = (a + b).(a b) = a (b) = a b. = a + b DIVISIÓN: Multplcamos y dvdmos por el conjugado del denomnador. z z' a = a' + + b b' (a + b).(a' b') = (a' + b')(a' b') (a.a' + b.b') + (b.a' a.b') = a' + b' a.a' + b.b' ba' a.b' = + a' + b' a' + b' POTENCIAS DE : 0 = = = - = - =... n se dvde n entre cuatro y nos quedamos con el resto (0,,,) n = r

3 PROPIEDADES La suma de números complejos cumple las propedades asocatva y conmutatva. El 0 es el elemento neutro de la suma. Todos los números complejos tenen un opuesto. La multplcacón de número complejo es, tambén, asocatva y conmutatva. El es el elemento neutro del producto Todos los números complejos, a + b, salvo el 0, tenen un nverso: /(a + b) Además, la multplcacón es dstrbutva respecto de la suma. Con todas estas propedades nos dcen que podemos operar con los complejos de la msma forma que con los reales.. NÚMEROS COMPLEJOS EN FORMA POLAR MÓDULO Y ARGUMENTO DE UN NÚMERO COMPLEJO Módulo de un número complejo z es la longtud del vector medante el que dcho número se representa. Se desgna por r = z Argumento de un número complejo es el ángulo que forma el vector con el eje real postvo. Se desgna: α = arg (z) (0º α 0º) Número complejo en forma polar: z = r α PASO DE FORMA BINÓMICA A FORMA POLAR r = + a + b b arctag z = a + b a α = 90º 70º s a s a s a 0 = 0 = 0 (Tenendo en cuenta el cuadrante) y b > 0 y b < 0 PASO DE FORMA POLAR A FORMA BINÓMICA z = r α a = r cosα z = r cosα + r sen α. b = r sen α

4 . OPERACIONES CON COMPLEJOS EN FORMA POLAR PRODUCTO: Al multplcar dos números complejos en forma polar obtenemos otro número complejo en forma polar de módulo el producto de los módulos y de argumento la suma de los argumentos (reducéndola a un ángulo entre 0º y 0º) r α. r α = (rcosα + rsenα).(r cosα +r senα ) = (rcosα.r cosα - rsenα.r senα ) + (rcosα.r senα + rsenα.r cosα ) = rr (cosα.cosα -senα.senα ) + rr.(cosα.senα + senα.cosα ) = rr cos(α + α ) + rr.sen (α + α ) = rr α + α POTENCIA: La potenca n-ésma de un número complejo en forma polar es otro número complejo en forma polar de módulo la potenca n-ésma del módulo y por argumento el argumento multplcado por n. (r α ) n = r α...r α = (r...r) α α = (r n ) nα COCIENTE: El cocente de dos números complejos en forma polar es otro número complejo de módulo el cocente de los módulos y por argumento la resta de los rα r argumentos: = r' r' α' α α' FÓRMULA DE MOIVRE Aplcando las propedades de la potenca de un número complejo, se obtene la sguente fórmula, llamada fórmula de Movre: (cos α + senα ) n = cos nα + sen nα que es útl en trgonometría, pues permte hallar cos nα y sen nα en funcón de cosα y sen α. RADICALES n ( r ) α 0º 0,,..., n - n r = + = α n Dando los valores de obtenemos la n raíces de dcho número complejo. Para n >, los afjos de estas n raíces son los vértces de un n-ágono regular con centro en el orgen.

5 EJERCICIO : Calcula y representa gráfcamente la solucón que obtengas: a) b) c) 0 d) 9 Solucón: a) b) c) 0 d)

6 PASAR DE BINÓMICA A POLAR Y VICEVERSA. OPUESTO Y CONJUGADO EJERCICIO : Dado el número complejo z : a Represéntalo gráfcamente y exprésalo en forma polar. b Obtén su opuesto y su conjugado. Solucón: a Forma polar: z tg Por tanto: z 0 0 (pues está en el.º cuadrante) b) Opuesto z Conjugado z EJERCICIO a) Expresa en forma bnómca el número complejo z y represéntalo gráfcamente. b Obtén el opuesto y el conjugado de z. Solucón: a) z cos sen b) Opuesto z Conjugado z EJERCICIO : Halla el módulo y el argumento de Solucón: Expresamos y en forma polar: tg (pues está en el º cuadrante) tg er (pues está en el cuadrante) Por tanto: Módulo y Argumento 0.

7 OPERACIONES EN FORMA POLAR EJERCICIO : Una de las raíces octavas de un número complejo, z, es. Halla el valor de z. Solucón: S es una raíz octava de z, entonces: z 8 Expresamos en forma polar: tg 8 (pues está en el.º cuadrante) Por tanto: z EJERCICIO : El producto de dos números complejos es números es z, halla el otro número..sabendo que uno de los 7 Solucón: Llamamos w al número buscado. Entonces, tenemos que: Expresamos z en forma polar: z z w z 7 tg Luego z y,por tanto: (pues está en el prmer cuadrante) cos sen w 0 Es decr: w 0 EJERCICIO 7 : Calcula e nterpreta gráfcamente las solucones: 7 Solucón: Expresamos 7 en forma polar: Así: con 0,, Las tres raíces son: Los afjos de las tres raíces cúbcas ocupan los vértces de un trángulo equlátero. EJERCICIO 8 : Halla e nterpreta gráfcamente las solucones. Solucón: 0,,,, Las cnco races son:

8 Los afjos de las raíces quntas ocupan los vértces de un pentágono regular. EJERCICIO 9 : Halla un número complejo, z, sabendo que una de sus raíces quntas es. Solucón: z Expresamos en forma polar: tg Por tanto: z 8 (pues está en el.º cuadrante) cos sen Es decr: z EJERCICIO 0 : Calcula: 8 Solucón: 8 8 0,,, Las cuatro raíces son: RESOLUCIÓN DE ECUACIONES EN FORMA COMPLEJA EJERCICIO : Resuelve las ecuacones: a) z z 0 b) z 8 0 c) x x 0 d) z 0 Solucón: a) z 0 z 0 z Hay dos solucones: z z b) z 8 0 z 8 z 8 8 0,, 80 c) x 0 x 0 x Hay dos solucones: z z d) z 0 z z z 0,, Las tres raíces son:

9 COMPLEJOS EJERCICIO : Calcula en forma bnómca y representa gráfcamente la solucón: a) 0 7 b) c) 7 d) e) 0 f) 7 EJERCICIO : a Representa gráfcamente el número z y halla su opuesto y su conjugado. b Expresa en forma polar z. EJERCICIO : Consdera el número complejo z. a Represéntalo gráfcamente y escrbe su opuesto y su conjugado. b Expresa z en forma polar. EJERCICIO : a) Expresa en forma bnómca el número complejo z 0 b Escrbe el opuesto y el conjugado de z. y represéntalo gráfcamente. EJERCICIO : Calcula el valor de z, sabendo que z. EJERCICIO : Calcula la cuarta potenca del número complejo z. EJERCICIO 7 : Halla las raíces cuartas de y represéntalas gráfcamente. Qué fgura obtenes s unes los afjos de las raíces obtendas? EJERCICIO 8 : Re presen ta gráfcamente los resultados de hallar. Qué fgura obtenemos al unr los afjos de las raíces obtendas? EJERCICIO 9 : Halla las raíces sextas de e nterpreta gráfcamente los resultados obtendos. EJERCICIO 0 : Resuelve las sguentes ecuacones: a) z 7z 0 b) x 8 0 c) z 0 EJERCICIO : Representa z, su opuesto y su conjugado, y exprésalos en forma polar. EJERCICIO : Calcula z 8, sabendo que z. EJERCICIO : Halla los números complejos, z, que cumplen la sguente gualdad: z 0

10 EJERCICIO : Calcula: 8 EJERCICIO : Halla un número complejo, z, sabendo que una de sus raíces quntas es. EJERCICIO a) Dado el número complejo z los tres números. b) Escrbe z, z y z en forma polar., escrbe su opuesto y su conjugado, y representa EJERCICIO 7 : Escrbe el opuesto y el conjugado de z. Escrbe los tres números en forma polar y represéntalos. EJERCICIO 8 a) Escrbe en forma bnómca z 0 b) Halla su opuesto y su conjugado en forma bnómca c ) Re presen ta z, z y z. y polar. EJERCICIO 9 a) Expresa en forma polar z. b) Escrbe en forma bnómca y en forma polar el opuesto y el conjugado de z. c) Representa z, z y z. EJERCICIO 0 : Calcula: a) b) 8 f) g) 7 7 d) 8 7 c) h) ) e) 0 j) EJERCICIO : Calcular x para que x 9 sea un número magnaro puro. EJERCICIO : El número complejo de módulo y argumento 0º es el producto de dos número complejos, uno de los cuales es el número. D cuál es el otro y exprésalo en forma bnómca. EJERCICIO : El producto de un número complejo de argumento 0º por otro de módulo nos da como resultado el número complejo +. Halla el módulo del prmero y el argumento del segundo. EJERCICIO : Halla dos números complejos conjugados cuyo cocente sea un magnaro puro y su dferenca sea. EJERCICIO : Un cuadrado con centro en el orgen de coordenadas tene uno de sus vértces en el punto A(,). Calcular los demás vértces. EJERCICIO : Calcular dos números complejos cuya suma es un número real, su dferenca tene por parte real y su producto vale +

Problemas sobre números complejos -1-

Problemas sobre números complejos -1- Problemas sobre números complejos --.- Representa gráfcamente los sguentes números complejos y d cuáles son reales, cuáles magnaros y, de estos, cuáles magnaros puros: 5-5 + 4-5 7 0 -- -7 4.- Obtén las

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

Ejercicios Resueltos de NÚMEROS COMPLEJOS

Ejercicios Resueltos de NÚMEROS COMPLEJOS Ejerccos Resueltos de NÚMEROS COMPLEJOS Ejerccos Resueltos de NÚMEROS COMPLEJOS Números Complejos. Formas de epresarlos.- Halla las raíces de los sguentes números: 00 Solucón: ± 00 00 ± 0 ± ±.- Representa

Más detalles

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147 Undad. Números complejos Matemátcas I Resuelve Págna 7 Cómo operar con? Vamos a proceder como los antguos algebrstas: cuando nos encontremos con seguremos adelante operando con ella con naturaldad y tenendo

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro Matemátcas Bachllerato? Soluconaro del Lbro Actvdades Dado el número complejo se pde: qué valor ha de tener x para que x? Calcula el opuesto de su conjugado Calcula el conjugado de su opuesto x x x El

Más detalles

TEMA 3: NÚMEROS COMPLEJOS

TEMA 3: NÚMEROS COMPLEJOS APUNTES DE MATEMÁTICAS TEMA 3: NÚMEROS COMPLEJOS 1º BACHILLERATO _ ÍNDICE Tema 3 Introducción... 3 1. Cómo se maneja 1?... 3. Un nuevo campo numérico C... 4 3. CONJUGADO DE UN NÚMERO COMPLEJO.... 5 4.

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE En el Aula Vrtual se encuentra dsponble: Materal nteractvo con teoría y ejerccos resueltos. Para acceder a ello deberá pulsar sobre los sguentes enlaces una vez dentro

Más detalles

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116 Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.

Más detalles

= x 1º B. 2º- Calcular y simplificar: 3º- Calcular el valor de k para que el cociente

= x 1º B. 2º- Calcular y simplificar: 3º- Calcular el valor de k para que el cociente Departamento de Matemátcas 1º B 7 / OCT / 05 1º- Defnr conjugado, opuesto e nverso de un nº complejo. Escrbr y representar el conjugado, el opuesto, el conjugado del opuesto, el opuesto del conjugado,

Más detalles

62 EJERCICIOS de NÚMEROS COMPLEJOS

62 EJERCICIOS de NÚMEROS COMPLEJOS 6 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos: a x -x+=0 (Soluc: ± b x +=0 (Soluc: ± c x -x+=0 (Soluc: ± d x -x+=0 (Soluc: ± e x -6x +x-6=0 (Soluc:,

Más detalles

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz:

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz: NÚMEROS COMPLEJOS Página 7 REFLEXIONA Y RESUELVE Extraer fuera de la raíz Saca fuera de la raíz: a) b) 00 a) b) 00 0 Potencias de Calcula las sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a)

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos Capítulo 1 NÚMEROS COMPLEJOS Observe que la ecuación x 2 + 1 0 no tiene solución en los números reales porque tendríamos que encontrar un número cuyo cuadrado fuera 1, es decir x 2 1 o, lo que viene a

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Los números complejos

Los números complejos 7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0

Más detalles

NÚMEROS COMPLEJOS. El plano geométrico precisamente es R x R. Que abreviadamente escribimos R 2.

NÚMEROS COMPLEJOS. El plano geométrico precisamente es R x R. Que abreviadamente escribimos R 2. ºBAC CNyS NÚMEROS COMPLEJOS. PRODUCTO CARTESIANO DE DOS CONJUNTOS. CONJUNTO PRODUCTO. NÚMEROS IMAGINARIOS. NÚMEROS COMPLEJOS 4. OPERACIONES 5. OPERACIONES EN FORMA POLAR. PRODUCTO CARTESIANO DE DOS CONJUNTOS.

Más detalles

Tema 4. Números Complejos

Tema 4. Números Complejos Tema. Números Complejos. Números complejos...... Defncón de números complejo..... Conjugado y opuesto de números complejos..... Representacón gráfca de los complejos.... Operacones con complejos..... Suma

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS Para una mirada sobre el origen y desarrollo histórico de los números complejos leer el siguiente documento páginas 8-13 CANTIDADES IMAGINARIAS Definición: Las cantidades imaginarias

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

I. E. S. Fray Luis de León Jesús Escudero Martín Pág. 1

I. E. S. Fray Luis de León Jesús Escudero Martín Pág. 1 I E S Fray Luis de León Jesús Escudero Martín Pág 1 II2 NÚMEROS COMPLEJOS 1 Introducción 2 Definición 3 Representación gráfica de los números complejos 4 Igualdad de números complejos 5 Operaciones con

Más detalles

Números imaginarios. Unidad imaginaria. Números imaginarios. Un número imaginario se denota por bi, donde: besunnúmeroreal i es la unidad imaginaria

Números imaginarios. Unidad imaginaria. Números imaginarios. Un número imaginario se denota por bi, donde: besunnúmeroreal i es la unidad imaginaria Números Complejos Números imaginarios Unidad imaginaria Launidadimaginariaeselnúmero ysedesignaporlaletrai. Números imaginarios Un número imaginario se denota por bi, donde: besunnúmeroreal i es la unidad

Más detalles

CAPÍTULO 9: CONJUNTO DE LOS NÚMEROS COMPLEJOS

CAPÍTULO 9: CONJUNTO DE LOS NÚMEROS COMPLEJOS Conjunto de los números complejos CAPÍTULO 9: CONJUNTO DE LOS NÚMEROS COMPLEJOS SUMARIO: INTRODUCCIÓN OBJETIVOS DEL CAPÍTULO PARTE TEÓRICA DEL TEMA: 9.1.- Defncón. 9..- Suma y producto. 9..- Partes real

Más detalles

Los números complejos

Los números complejos Los números complejos 1. Necesidad de los números complejos Resolución de la ecuación x -6x+1=0 Cuando resolvemos esta ecuación queda:.x = 6± 6 5 = 6± 16 = 6± 16 1 = 6±4 1 = ± 1. Es evidente que no hay

Más detalles

Ejercicios de recopilación de complejos

Ejercicios de recopilación de complejos Ejercicios de recopilación de complejos Conjugado, opuesto, representaciones gráficas. Tipos de complejos 1. Clasificar los siguientes números complejos en reales e imaginarios. Para cada uno, cuál es

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

Números Complejos Matemáticas Básicas 2004

Números Complejos Matemáticas Básicas 2004 Números Complejos Matemáticas Básicas 2004 21 de Octubre de 2004 Los números complejos de la forma (a, 0) Si hacemos corresponder a cada número real a, el número complejo (a, 0), tenemos una relación biunívoca.

Más detalles

Números Complejos. Prof. Johnny Rengifo

Números Complejos. Prof. Johnny Rengifo Números Complejos Prof. Johnny Rengifo 22 de octubre de 2010 Capítulo 1 Números Complejos Existen muchas ecuaciones cuadráticas que no tienen solución en los números reales (R). Por ejemplo x 2 + 1 = 0

Más detalles

UNIDAD 1 NUMEROS COMPLEJOS

UNIDAD 1 NUMEROS COMPLEJOS UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre.

1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 2. Si el senx=0,6 y ð/2

Más detalles

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1.

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1. Contenido Apunte de Números complejos o imaginarios: Suma y producto de números complejos. División. Raíz cuadrada. Conjugado. Módulo y argumento. Fórmula De Moivre. Raíces. Primera parte NUMEROS COMPLEJOS

Más detalles

1. Conjuntos de números

1. Conjuntos de números 1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad,

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad, 17 Análss matemátco para Ingenería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Los números complejos La varable compleja permte resolver problemas muy dferentes dentro de áreas tan varadas

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reles y Complejos C.. Los números reles Suponemos conocdo el conjunto de los números reles. Vmos defnr y estudr en lgunos conceptos como relcones de orden, ntervlos, cots y vlor bsoluto.

Más detalles

Números complejos. Números complejos 28/02/2016 CURSO

Números complejos. Números complejos 28/02/2016 CURSO Números complejos CURSO 2015-2016 Números complejos 1) Definición números complejos 2) Representación gráfica de un número complejo ( Afijo, módulo, argumento). Conjugado 3) Operaciones con números complejos.

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

. De R (Reales) a C (Complejos)

. De R (Reales) a C (Complejos) INTRODUCCIÓN Los números complejos se introducen para dar sentido a la raíz cuadrada de números negativos. Así se abre la puerta a un curioso y sorprendente mundo en el que todas las operaciones (salvo

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja Matemática D y D MATEMÁTICA D y D Módulo I: Análisis de Variable Compleja Unidad 0 Números Complejos Mag. María Inés Baragatti Números complejos. Generalidades Un número complejo es un par ordenado de

Más detalles

NOTACIÓN Y REPRESENTACIÓN

NOTACIÓN Y REPRESENTACIÓN TEORÍA NÚMEROS COMPLEJOS DEFINICIÓN: Los números complejos son el conjunto de todos los números reales e imaginarios. Surgen de la necesidad de expresar la raíz par de un número negativo. APLICACIÓN: Los

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO Página 1 de 12 Entregar el día del examen de recuperación de matemáticas. Será condición indispensable para aprobar la asignatura. 1. Calcula: NUMEROS ENTEROS. FRACCIONES.

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

Números complejos en la forma polar (lista de problemas para examen)

Números complejos en la forma polar (lista de problemas para examen) Números complejos en la forma polar lista de problemas para examen) En esta lista de problemas trabajamos con números complejos en la forma polar llamada también la forma trigonométrica) El sentido geométrico

Más detalles

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver

Más detalles

Familiarizar al alumno con las distintas maneras de expresar números complejos.

Familiarizar al alumno con las distintas maneras de expresar números complejos. Capítulo 2 Aritmética compleja Objetivos Familiarizar al alumno con las distintas maneras de expresar números complejos. Manejar con soltura las operaciones aritméticas con números complejos. 2.1. Representaciones

Más detalles

Actividades. de verano º Bachillerato Matemáticas Ciencias. Nombre y apellidos:

Actividades. de verano º Bachillerato Matemáticas Ciencias. Nombre y apellidos: Actividades de verano 017 Nombre y apellidos: Curso: Grupo: 1º Bachillerato Matemáticas Ciencias 1.- Representa los siguientes conjuntos: TRABAJO DE VERANO.- Suma y simplifica: 3.- Racionaliza denominadores

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

CURSO: 1º bachillerato GRUPO: A Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos:

CURSO: 1º bachillerato GRUPO: A Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos: CURSO: 1º bachillerato GRUPO: A Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos: a) {x/ -5

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

Números complejos. Sesión teórica 2 (págs ) 21 de septiembre de Potencias de complejos

Números complejos. Sesión teórica 2 (págs ) 21 de septiembre de Potencias de complejos Números complejos Sesión teórica 2 (págs. 10-15) 21 de septiembre de 2010 Llamaremos números complejos a los elementos del conjunto: C = {a + bi a, b R}. La expresión a + bi se denomina forma binómica

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE ARECIBO

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE ARECIBO UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE ARECIBO Departamento de Cencas y Tecnología AÑO 004-00 EGMA 100 - Fundamentos de Álgebra Documento de Trabajo para el PRIMER EXAMEN PARCIAL ì Contendo:

Más detalles

01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.

01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 2.6 Criterios específicos de evaluación. 01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 03. Conoce la definición

Más detalles

MATEMÁTICAS I Pendientes 1ª Parte

MATEMÁTICAS I Pendientes 1ª Parte MATEMÁTCAS Pendientes ª Parte Calcula: ) ( ) ( ) ) d a bi a b ab d i ) a b ab RADCALES -6 ) ab a b a b ) ( ) a a a 6) b c 6 a a b b c 6 8 7) a bc 9 a bc 8) 7 8 8 9) 80 80 0 0) 8 0 6 ) 7 7 ) 7 8 0 6 ) 7

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA3002 Los números complejos, simbolizados por C, son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n 1 + + c 1 z + c

Más detalles

Contenidos mínimos del área de matemáticas 1º ESO

Contenidos mínimos del área de matemáticas 1º ESO 1º ESO Unidad didáctica nº1: Los números naturales. Divisibilidad. Operaciones con números naturales: suma, resta, multiplicación y Calcular múltiplos y divisores de un número. Descomposición factorial

Más detalles

******* Enunciados de Problemas *******

******* Enunciados de Problemas ******* ******* Enunciados de Problemas ******* CÁLCULO ESCUELA SUPERIOR DE LA MARINA CIVIL DIPLOMADO EN MÁQUINAS NAVALES DIPLOMADO EN NAVEGACIÓN MARÍTIMA ISIDORO PONTE ESMC EL NÚMERO REAL Sea o un número racional

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: CONOCIMIENTOS PREVIOS. Vectores.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Trigonometría. Resolución de ecuaciones de primer grado. Sería

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

ÁLGEBRA VECTORIAL MAGNITUDES ESCALARES Y VECTORIALES:

ÁLGEBRA VECTORIAL MAGNITUDES ESCALARES Y VECTORIALES: MAGNITUDES ESCALARES Y VECTORIALES: Una magnitud es escalar cuando el conjunto de sus valores se puede poner en correspondencia biunívoca y continua con el conjunto de los números reales o una parte del

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS C. NÚMEROS COMPLEJOS. C.1 Noción de número complejo.

Más detalles

PENDIENTES DE 1º BACH MATEMÁTICAS I EJERCICIOS BLOQUE II

PENDIENTES DE 1º BACH MATEMÁTICAS I EJERCICIOS BLOQUE II PENDIENTES DE 1º BACH MATEMÁTICAS I EJERCICIOS BLOQUE II 5. Geometría analítica 1.- Calcula el módulo y el argumento del vector v ( 3, 4) v = 5, a = 33 7 48.- Dados los puntos A( 5, 3) y B(, 7), calcula

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

Números Complejos. Contenido. Definición

Números Complejos. Contenido. Definición U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Números Complejos William La Cruz Números Complejos...3

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

NÚMEROS COMPLEJOS MATEMÁTICAS I 1º Bachillerato Alfonso González IES Fernando de Mena Dpto. de Matemáticas

NÚMEROS COMPLEJOS MATEMÁTICAS I 1º Bachillerato Alfonso González IES Fernando de Mena Dpto. de Matemáticas NÚMEROS COMPLEJOS MATEMÁTICAS I º Bachllerato Alfonso González IES Fernando de Mena Dpto. de Matemátcas I) NECESIDAD DE LOS NÚMEROS COMPLEJOS (págs. 46 a 48 lbro de texto) Ejemplo : Los números complejos,

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 5. Números complejos

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 5. Números complejos Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 3 Dado el número complejo z3i, su conjugado, z, su opuesto, z, y su inverso,, son: z a) z 3, z 3, z 3 3 3 b) z 3, z 3, z 3 c) z 3, z 3, z 3

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

CURSO: 1º bachillerato GRUPO: A Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos:

CURSO: 1º bachillerato GRUPO: A Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos: CURSO: 1º bachillerato GRUPO: A Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos: a) {x/ -5

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,.

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,. º. a Deducr la expresón de la fórmula de dervacón numérca de tpo x,x,x,x,. nterpolatoro que permte aproxmar f (x* con el soporte { } 3 x 4 b Demostrar que en el caso de que el soporte sea de la forma:

Más detalles

NÚMEROS COMPLEJOS. Página 146 PARA EMPEZAR, REFLEXIONA Y RESUELVE. Página 147. El paso de Z a Q

NÚMEROS COMPLEJOS. Página 146 PARA EMPEZAR, REFLEXIONA Y RESUELVE. Página 147. El paso de Z a Q NÚMEROS COMPLEJOS Página PARA EMPEZAR, REFLEXIONA Y RESUELVE El paso de Z a Q Imaginemos que solo se conocieran los números enteros, Z. Sin utilizar otro tipo de números, intenta resolver las siguientes

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE 2012 7 UNIDDES

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón

Más detalles

pero por otra parte la suma de sus lados debe ser 12

pero por otra parte la suma de sus lados debe ser 12 UNIDAD 1: NUMEROS COMPLEJOS. 1.1 Origen de los números Complejos y definiciones. 1.1.1 Un poco de historia. El gran matemático Diofanto (275 d.c) construyó un triángulo con una cuerda en la que había realizado

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS PARA EMPEZAR, REFLEXIONA Y RESUELVE 1. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora: a) Cuántos

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

ANEXO B SISTEMAS NUMÉRICOS

ANEXO B SISTEMAS NUMÉRICOS ANEXO B SISTEMAS NUMÉRICOS Sstema Decmal El sstema ecmal emplea ez ferentes ígtos (,,,, 4, 5, 6, 7, 8 y 9). Por esto se ce que la base el sstema ecmal es ez. Para representar números mayores a 9, se combnan

Más detalles

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011 Departamento de Señales, Sstemas y Radcomuncacones Comuncacones Dgtales, juno 011 Responder los problemas en hojas ndependentes. No se permte el uso de calculadora. Problema 1 6 p.) En este ejercco se

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO N FEH DURION 3 11 3 JULIO 26 DE 2013 9

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA3002 Los números complejos simbolizados por C son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n 1 + + c 1 z + c 0

Más detalles

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así:

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: 1ª EVALUACIÓN Tema 1 Tema 2 Tema 3 Ecuaciones y sistemas. Trigonometría I Trigonometría

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5 ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 5 DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Números Complejos Se define el conjunto de los

Más detalles

El número real y complejo

El número real y complejo El número real y complejo Dpto. Matemática Aplicada Universidad de Málaga Sistema de números reales Números naturales N = {0,1,2,3,...} Números enteros Z = {..., 3, 2, 1,0,1,2,3,...} { } p Números racionales

Más detalles

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i.

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i. NÚMEROS COMPLEJOS PATRICIA KISBYE 1. DEFINICIÓN En los números reales es posible resolver cualquier ecuación lineal en una variable: ax = b, siempre que a sea distinto de 0. Pero las ecuaciones cuadráticas,

Más detalles

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción.

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción. Raíces Raíces Ma3002 Raíces Raíces Las potencias y las enteras números complejos son muy fáciles calcular cuando el número complejo está en la forma polar. Primeramente, veremos la forma polar un número

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN La ecuación x + 1 0 no tiene solución en el cuerpo de los números reales R ya que no existe un número real x tal que x 1. Necesitamos un conjunto que contenga a R, que

Más detalles

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o 4 LNZ DE OHR: Contraccón de mezcla alcohol/h2o CONTENIDOS Defncones. Contraccón de una ezcla. olumen específco deal y real. Uso de la balanza de ohr. erfcacón de Jnetllos. Propagacón de Errores. OJETIOS

Más detalles

Números complejos L I T E R A T U R A Y M A T E M Á T I C A S. Las tribulaciones del estudiante Törless

Números complejos L I T E R A T U R A Y M A T E M Á T I C A S. Las tribulaciones del estudiante Törless Números complejos SOLUCIONARIO Números complejos L I T E R A T U R A Y M A T E M Á T I C A S Las tribulaciones del estudiante Törless Dime, entendiste bien todo esto? Qué? Ese asunto de los números imaginarios.

Más detalles

EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO

EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO NOTA IMPORTANTE: Estos ejercicios se entregarán en el mes de septiembre el mismo día del examen de recuperación de matemáticas. La entrega de los mismos será condición

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z Problemas de VC para EDVC elaborados por C. Mora, Tema 1 Ejercicio 1 Escribir en forma binómica los siguientes números complejos: i n, n Z; ( 1 + i ) n, n N; ( ) ( ) 4 5 1 + i 3 i ; (1+i 3) 0 ; e 1/z 1

Más detalles