CALCULO DEL INDICE DE DEFICIENCIA DE HIDRÓGENOS IDH.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CALCULO DEL INDICE DE DEFICIENCIA DE HIDRÓGENOS IDH."

Transcripción

1 Pag:1 CALCULO DEL INDICE DE DEFICIENCIA DE HIDRÓGENOS IDH. En química orgánica, el índice de deficiencia de hidrógeno (IDH) es utilizado para ayudar a dibujar estructuras químicas. La fórmula permite determinar cuántos anillos, enlaces dobles y enlaces triples están presentes en el compuesto a ser dibujado. No conseguimos saber el número de anillos, doble y triples enlaces por separado sino el conjunto de insaturaciones, después es necesario aplicar algunas técnicas espectroscópicas para poder saber la estructura de la molécula. La fórmula para el grado de insaturación es IDH= (0,5) (2C +2-H-X+N) donde C = número de átomos de carbono, H = número de átomos de hidrógeno, X = número de átomos de halógenos, y N = número de átomos de nitrógeno. El oxígeno y otros átomos divalentes no contribuyen al grado de insaturación. Cada ciclo cuenta como un grado de insaturación. Cada enlace doble cuenta como un grado de insaturación. Cada enlace triple cuenta como dos grados de insaturación. Cada benceno cuenta como cuatro grados de insaturación. Ejemplos: C17 H21 NO4 IDH 8 C27 H46 O IDH 5 C6 H7 N IDH 4 C15 H10 Cl N3 O3 IDH 12 TECNICAS ANALÍTICAS Son procedimientos destinados a la determinación estructural, análisis de la composición de sustancias, y determinación de purezas. Podemos establecer dos categorías de técnicas: Espectrometría de masas. Métodos ópticos espectroscópicos, así se denominan genéricamente a un amplísimo número de métodos instrumentales que utilizan técnicas instrumentales en las que se genera una señal de tipo óptico cuyo fundamento está basado en la interacción de la radiación electromagnética con la materia a analizar llamada el analito.

2 Pag:2 ESPECTROMETRÍA DE MASAS Un flujo de electrones hace que las moléculas gaseosas se ionicen y se fragmenten. La mezcla de iones es acelerada y pasa a través de un campo magnético, donde las trayectorias de los iones más ligeros se desvían más que las trayectorias de los iones más pesados. Variando el campo magnético, el espectrómetro permite registrar la abundancia de iones de cada masa. El radio de curvatura exacto de la trayectoria de un ión depende de la relación masacarga, simbolizada por m/z. En esta expresión, m es la masa del ión (en uma: unidades de masa atómica) y z es su carga. La mayoría de los iones tiene una carga de +1, por lo que su desviación tendrá un radio de curvatura que dependerá sólo de la masa. En el espectro, al pico más alto se le denomina pico base y se le asigna una abundancia del 100%. La abundancia de los demás picos se da como porcentaje con relación al pico base. El ión molecular (M+) corresponde a la masa de la primera molécula. Cuando se evapora una molécula se pueden formar iones M+, que darán el valor de su masa molecular, pero también se pueden fragmentar en iones más pequeños. Viendo la diferencia de masa de los picos de los diferentes fragmentos pueden ser identificados. Por ejemplo, en el caso de C2H5COOH podemos encontrar los siguientes fragmentos:

3 Pag:3 C2H5COOH+, a 74 es M+ C2H5CO+, a 57 es M-OH COOH+ a 45 es M- C2H5 C2H5+ a 29 es M COOH Hay que ser cuidadoso en el análisis porque no todos los fragmentos se forman. Algunos no duran suficientemente para ser analizados porque son muy inestables y otros no esperados se pueden formar. Espectro del 2,4-dimetilpentano. Efecto isotópico del cloro Los espectros de masas del 2-cloropropano. Los elementos más pesados no están formados por un solo isótopo, sino que contienen isótopos más pesados en cantidades variables. Los isótopos más pesados dan lugar a picos pequeños a números de masa superiores a los del pico del ión molecular M+. La altura de los picos M+, M + 1 y M + 2 dependerá de la composición isotópica del elemento en cuestión. El cloro es una mezcla del 35Cl con un 75,5 por ciento y del 37Cl con un 24,5 por ciento. El pico del ión molecular M+ tiene 35Cl siendo tres veces más elevado que el pico M + 2, el cual tiene 37Cl. Efecto isotópico del bromo.

4 Pag:4 Observe que los picos M+ y M + 2 tienen aproximadamente la mima altura. El bromo es una mezcla del 79Br con un 50,5 por ciento y del 81Br con un 49,5 por ciento. El pico del ión molecular M+ tiene 79Br siendo tan alto como el pico M + 2, el cual tiene 81Br. Espectro de masas del 2-metilpentano El pico base corresponde a la pérdida de un radical propilo para dar lugar a un catión isopropilo. La fragmentación de un alcano ramificado se produce frecuentemente en la rama del átomo de carbono que da lugar al catión y al radical más sustituidos PRINCIPIOS DE ESPECTROSCOPÍA Al interaccionar la radiación electromagnética con la muestra que contiene el analito, se pueden originar distintos fenómenos, de entre los cuales la absorción y emisión de radiación, son los más relevantes y dan lugar a los métodos espectrofotométricos de absorción y (o) emisión. El espectrómetro analiza la energía transmitida relativa a la incidente. Como los niveles de energía están cuantizados solo la radiación con una frecuencia correspondiente a la diferencia en los niveles de energía será absorbida. La relación entre energía y frecuencia es dada por: E = h f Siendo h la constante de Planck, 6,626 x Js Cuanto mayor sea la diferencia de energía de los niveles mayor será la frecuencia, y menor la longitud de onda de la luz absorbida, puesto que la longitud de onda y la frecuencia se relacionan por la fórmula c=.f siendo c la velocidad de la luz. La inversa de la longitud de onda se llama número de onda y se mide en cm -1.

5 Pag:5 Algunas de las técnicas espectroscópicas y sus aplicaciones son: Espectroscopía de infrarrojo: determinación de estructura de moléculas orgánicas, información de la fortaleza de enlace, información sobre la estructura secundaria de proteínas, medida del grado de instauración de aceites y grasas y determinación del nivel de alcohol en la respiración. Espectroscopía de resonancia magnética nuclear de hidrógeno: Determinación estructural de moléculas orgánicas, escaneo del cuerpo humano. Cristalografía de Rayos X ESPECTROSCOPÍA DE INFRARROJO Los enlaces covalentes vibran a una frecuencia determinada que depende de la naturaleza del enlace y del tipo de vibración La energía de estas vibraciones corresponden a la región infrarroja del espectro electromagnético. Como primera aproximación, un espectro IR se obtiene al pasar radiación a través de una muestra y determinar que fracción de esta radiación incidente ha sido absorbida. La energía particular a la que aparece cada pico en un espectro guarda relación con la frecuencia de vibración de una parte (enlace) de la molécula. Cuando la frecuencia de la radiación es igual que la de la vibración la molécula lo absorbe. Las vibraciones moleculares dependen de las masas de los átomos. Los átomos pesados vibran lentamente, por lo que tendrán una frecuencia más baja que los átomos más ligeros. La frecuencia de una vibración disminuye al aumentar la masa atómica. La frecuencia también aumenta con la energía de enlace, por lo que un doble enlace C=C tendrá una frecuencia más elevada que un enlace sencillo C-C

6 Pag:6 Para que una molécula covalente absorba radiación infrarroja, tiene que haber un cambio en el momento dipolar de la molécula a la vez que se produce la vibración. De este modo las moléculas gaseosas diatómica formadas por átomos del mismo elemento como H2, O2, Cl2 son no polares y no absorben radiación infrarroja. Para moléculas más complejas solo aquellas vibraciones que provocan un cambio en el momento dipolar serán activas ante la radiación infrarroja. Una molécula no lineal con n átomos tiene 3n - 6 modos de vibración fundamental. El agua tiene 3(3) - 6 = 3 modos. Dos modos son de tensión y uno de flexión. La tensión puede ser simétrica cuando los dos enlaces O-H se alargan al mismo tiempo. En una tensión asimétrica un enlace O-H se alarga, mientras que el otro enlace O-H se comprime. La flexión, también conocida como movimiento en tijereta, se produce cuando el ángulo H-O-H disminuye y aumenta pareciendo unas tijeras. Por ejemplo la tensión simétrica del CO2 será inactivo mientras que la tensión asimétrica y la flexión son ambas activas porque producen cambio en el dipolo.

7 Pag:7 Puesto que los átomos involucrados en la tensión y flexión determinarán la frecuencia, IR se utiliza en su mayor parte para identificar la presencia de grupos funcionales en una molécula. Un alcano mostrará frecuencias de tensión y flexión solamente para C-H y C-C. La tensión C-H es una banda ancha entre 2800 y 3000 cm-1, una banda presente en prácticamente todos los compuestos orgánicos. En este ejemplo, la importancia recae en lo que no se ve, es decir, la ausencia de bandas indica la presencia de ningún otro grupo funcional.

8 Pag:8 Comparación del espectro de IR de n-hexano y 1-hexeno y cis-2octeno. Las absorciones más importantes del espectro del 1-hexeno son la tensión C=C a 1642 cm-1 y la tensión =C-H a 3080 cm-1. El doble enlace, casi simétricamente sustituido del cis- 2-octeno, da lugar a una absorción C=C débil a 1660 cm-1; sin embargo, la tensión de enlace =C-H a 3023 cm-1 es clara.

9 Pag:9 Los alcanos, alquenos y alquinos también tienen frecuencias de tensión C-H características. Los enlaces carbono-hidrógeno que tienen átomos de carbono con hibridación sp3 generalmente absorben a frecuencias justo por debajo de (a la derecha de) 3000 cm-1, mientras que los que tienen átomos de carbono con hibridación sp2 absorben justo por encima de (a la izquierda de) 3000 cm-1. Un porcentaje mayor del carácter s en los orbitales híbridos hará que el enlace C-C sea más fuerte. Un átomo de carbono con hibridación sp3 tiene un carácter s del 25 por ciento, con hibridación sp2 tiene un carácter s de alrededor del 33 por ciento y un átomo de carbono con hibridación sp tiene un carácter s del 50 por ciento. El enlace C-H de un átomo de carbono con hibridación sp3 será ligeramente más débil que el enlace C-H de un átomo de carbono con hibridación sp2 o sp. El espectro de IR del 1-octino muestra absorciones características a 3313 cm-1 y 2119 cm-1 El espectro de IR del 1-butanol muestra una absorción de tensión O-H ancha e intensa centrada alrededor de 3300 cm-1. La forma ancha se debe a la naturaleza diversa de las interacciones de los enlaces de hidrógeno de las moléculas de alcohol.

10 Pag:10 El alcohol O-H absorbe alrededor de 3300 cm-1 y normalmente tiene una banda ancha y fuerte. Esta banda se debe a los distintos reordenamientos del enlace de hidrógeno que tienen lugar. Existe una banda de tensión C-O centrada próxima a 1050 cm-1. Aunque una banda de tensión alrededor de esta región se puede deber a las mismas tensiones C- O, la ausencia de esta banda alrededor de cm-1 sugiere encarecidamente la ausencia de un enlace C-O. El espectro de IR de la dipropilamina muestra una banda ancha, correspondiente a una absorción de tensión N-H, centrada alrededor de 3300 cm-1. Observe el pico agudo de esta banda ancha de absorción. Los enlaces de hidrógeno que se forman entre el nitrógeno y el hidrógeno son más débiles que aquellos que se forman con el oxígeno y el hidrógeno. Las aminas, como los alcoholes, tendrán una banda ancha centrada alrededor de 3300 cm-1, pero no tan fuerte. Podrían existir picos agudos superpuestos en la zona de absorción de tensión dependiendo del número de hidrógenos que el nitrógeno tenga; una amina secundaria tendrá un pico agudo, mientras que una amina primaria tendrá dos picos agudos. Las aminas terciarias no mostrarán picos agudos porque no hay un enlace N-H. Las vibraciones de tensión C=O de las cetonas, aldehídos y ácidos carboxílicos sencillos se producen a frecuencias de aproximadamente 1710 cm-1. Estas frecuencias son más altas que las de los dobles enlaces C=C, debido a que el doble enlace C=O es más fuerte y más rígido.

11 Pag:11 La tensión C=O es fuerte e inconfundible. Dependiendo de qué más esté unido al carbonilo, existen otras bandas que se pueden buscar para diferenciar entre aldehídos, cetonas y ácidos. (a) 2-heptanona y (b) butanal. Las dos presentan absorciones, debidas al grupo carbonilo, intensas en torno a 1710 cm-1 El espectro de la 2-heptanona muestra una absorción fuerte a 1718 cm-1. El aldehído tiene la tensión C=O a 1720 cm-1, pero también tiene dos bandas de tensión distintas para el enlace C-H del aldehído a 2720 y 2820 cm- Los ácidos carboxílicos presentan una absorción O-H ancha entre 2500 y 3500 cm-1. Esta absorción ancha ocupa por completo la región de tensión C-H, con más amplitud. La tensión del doble enlace C=O será aguda e intensa a 1711 cm-1. Los dos picos tienen que estar presentes para identificar al compuesto como un ácido carboxílico

12 Pag:12 Un espectrofotómetro infrarrojo mide la frecuencia de la luz infrarroja que son absorbidas por un compuesto Aplicaciones de la espectroscopia de infrarrojo. Es muy útil en el análisis de compuestos orgánicos porque los diferentes enlaces en los grupos funcionales absorben a diferentes frecuencias. También el pico de absorción preciso depende de los átomos vecinos. ESPECTROSCOPIA DE RESONANCIA MAGNÉTICA NUCLEAR DE HIDRÓGENO. La Resonancia Magnética Nuclear es una espectroscopia cuyo fundamento es la absorción de energía (radiofrecuencias) por un núcleo magnéticamente activo, que está orientado en el seno de un campo magnético, y que por efecto de esa energía cambia su orientación. Las partes fundamentales de un espectrómetro de RMN son un imán, actualmente una bobina superconductora, que suministra el campo magnético principal, un oscilador de radiofrecuencias que suministra la energía necesaria para cambiar la orientación de los núcleos, una bobina detectora que recibe las señales y un sistema informatizado que gobierna todo el aparato y que incluye un sistema de amplificación y registro. Entre los núcleos más frecuentes en los compuestos orgánicos son magnéticamente activos el protón ( 1 H), carbono ( 13 C), nitrógeno ( 15 N), fósforo ( 31 P) y flúor ( 19 F). Los espectros más comunes son representaciones de la intensidad de absorción frente a la frecuencia de resonancia (generalmente a través del parámetro δ) y presentan señales cuya posición, forma y tamaño están íntimamente relacionadas con la estructura molecular. El análisis detallado de estos espectros proporciona valiosa información estructural y estereoquímica. Espectros bidimensionales permiten relaciones entre distintos núcleos o distintas magnitudes del mismo núcleo. Los protones en distintos entornos químicos están apantallados en distintas cantidades. El protón hidroxilo no está tan apantallado como los protones metilo, por lo que el protón hidroxilo absorbe a un campo más bajo que los protones metilo. Decimos que el protón está algo desapantallado por la presencia de átomos de oxígeno electronegativos.

13 Pag:13 Cuando los protones se encuentran en distintos entornos de la molécula y la molécula está expuesta a una frecuencia constante, los protones absorberán la radiación a distintas intensidades del campo magnético. La RMN variará el campo magnético y representará un gráfico de la absorción de energía como función de la intensidad del campo magnético. Los protones de metilo más apantallados aparecen hacia la derecha del espectro (campo más alto); el protón hidroxilo menos apantallado aparece hacia la izquierda (campo más bajo). En un espectro RMN el campo magnético aumenta desde la izquierda hacia la derecha. Las señales del lado de la derecha están en la parte más alta del espectro y las de la izquierda están en la parte más baja. Los protones apantallados aparecen en la parte alta. Utilización de la escala δ,el desplazamiento del TMS se define como 0. Como muestra de referencia se usa el tetrametilsilano porque sus 12 protones tienen el mismo entorno así que dan un solo pico muy marcado, no es tóxico y es poco reactivo. Absorbe a una longitud de de onda separada y muy característica, además es volátil y puede ser separado de la muestra fácilmente. La escala aumenta de derecha a izquierda (hacia el campo más bajo). Cada unidad δ se diferencia 1 ppm del TMS El desplazamiento químico de los protones se mide en partes por millón (ppm), independientemente del campo y la frecuencia del instrumento utilizado. Cuanto más altas son las frecuencias des espectrómetro, más detallado es el espectro Los protones metilo absorben a δ = 3.4 ppm y los protones hidroxilo absorben a δ = 4.8 ppm.

14 Pag:14 Los tres protones metilo son equivalentes, por lo que producirán sólo una señal. Valores de algunos desplazamientos químicos.

15 Pag:15 Espectro integrado del ter-butil metil éter. Sin embargo el área debajo de cada pico corresponde al número de átomos de hidrógeno de un determinado tipo (con un determinado entorno), y esto puede ser extremadamente útil en la determinación de la estructura de una molécula. El área de cada pico suele venir dada por la altura en la traza de la integral (integration trace). Cuando recorre un pico, el trazo del integrador (azul) se eleva una altura que es proporcional al área del pico. En el ter-butil metil éter hay tres hidrógenos de metilo y nueve hidrógenos del grupo ter-butil. La integración habrá hecho un trazo para los hidrógenos ter-butil que es tres veces mayor que el trazo de los hidrógenos de metilo. El área relativa para los metilos y el ter-butil es 1:3. Espectro de RMN de protón para un compuesto de fórmula C6H12O2.

16 Pag:16 Obtención de imágenes por resonancia magnética. En 2003 dos científicos Paul C Lauterbur ( ) USA y Meter Mansfield (1993-) United Kingdom ganaron el premio Nobel de Medicina por su trabajo en desarrollo del uso del RMN en diagnóstico médico. Los protones en agua, lípidos, carbohidratos etc. Dan diferentes señales dependiendo de su entorno. Se puede obtener una imagen del cuerpo completo construida situando al paciente dentro de una máquina de RMN. Estas imágenes sirven para diagnosticar cáncer, esclerosis múltiple, osteomielitis y hidrocefalia. Como esta técnica utiliza solo ondas de baja energía, ondas radio, es no invasiva y no causa ningún daño al paciente. Además de la resonancia magnética de los núcleos de hidrógeno hay otras resonancias de otros núcleos que también poseen espín como por ejemplo el C-13 o el P-31 y pueden ser utilizados para obtener imágenes por resonancia magnética RMI El alto valor de H-RMN como herramienta analítica se basa en los espectros de alta resolución en los cuales se pueden ver desdoblamientos. Estos desdoblamientos se deben al acoplamiento de los espines. Si hay un protón en un carbono adyacente al grupo metilo, ese protón podrá alinearse a favor del campo magnético o en contra. El efecto será que los protones del grupo metilo estarán sometidos a un campo magnético ligeramente superior o ligeramente inferior de resultando un desdoblamiento del pico, esto se conoce como doblete. Si hay un grupo CH2 adyacente al grupo metilo, entonces hay tres posibles estados energéticos: Los dos protones paralelos al campo magnético Uno a favor y otro en contra Los dos en contra Esto da lugar a un triplete cuyos picos están en la proporción 1:2:1 Es posible predecir el desdoblamiento conociendo el número de protones adyacentes. El número de líneas es siempre uno más que el número de protones adyacentes.

17 Pag:17 Uno de los desdoblamientos típicos es un cuarteto seguido de un triplete por la presencia del grupo etilo. -CH2- tiene tres protones adyacentes y se desdoblan en un cuarteto No tiene protones adyacentes así que no hay desdoblamiento CH3, al lado del CH2 se desdobla en un triplete El espectro RMN del 1,1-dicloroetano presenta dos señales: δ = 5,9 ppm ; integración = 1 corresponde a -CHCl2 δ = 2,1 ppm ; integración = 3 corresponde a -CH3 El desdoblamiento de las señales se produce por el efecto del campo magnético vecino sobre el aplicado externamente, provocando que la frecuencia de resonancia cambie Efecto de grupo -CH- sobre el grupo -CH3

18 Pag:18 El espín del grupo metino -CH puede adoptar dos orientaciones con respecto al campo externo aplicado. Como resultado de ello la señal del grupo -CH3 vecino se desdobla en dos líneas de igual intensidad, un doblete. Efecto del grupo -CH3 sobre el grupo -CH Los espines de los tres protones del grupo metilo pueden adoptar 8 combinaciones, que se pueden agrupar en cuatro opciones diferentes (en dos casos hay tres combinaciones equivalentes). Como resultado de ello la señal del grupo vecino -CH se desdobla en cuatro líneas con intensidades respectivas 1:3:3:1, un cuartete Podemos afirmar que la proximidad de n protones equivalentes en un carbono vecino provoca el desdoblamiento de la señal en n+1 líneas, el número de éstas se conoce como multiplicidad de la señal. Los protones equivalentes no se acoplan entre sí. Nº de protones Nº de picos Relaciones de área adyacentes (multiplicidad) 0 1 (singulete) (doblete) (triplete) (cuadruplete) (quintuplete) (sextuplete) (septuplete) EJEMPLO 1:

19 Pag:19 Número de picos: Entornos diferentes que rodean a los átomos de hidrógeno 3 Área bajo los picos Relación de áreas igual a la relación entre hidrógenos en cada entorno 3:2:3 Desplazamiento químico EJEMPLO 2: Ejercicio: A cuál de las tres sustancias corresponde el RMN?

20 Pag:20 Ácido propanoico EJEMPLO 3: Ejercicio: Qué información puede obtener del siguiente espectro sabiendo que la fórmula molecular del compuesto es C4H8O2? 3 entornos diferentes para los átomos de hidrógeno Los átomos de hidrógeno en estos tres ambientes están en una relación 2:3:3 Como son 8 hidrógenos, hay un grupo CH2 y dos grupos CH3 El grupo CH2 de 4.1 ppm tiene junto a él un grupo CH3 El grupo CH3 de 1.3 ppm tiene junto a él un grupo CH2 El grupo CH3 de 2.0 ppm tiene junto a él un carbono sin hidrógeno

21 Pag:21 EJEMPLO 4: Ejercicio: Interpretación del espectro RMN-H: Están presentes 5 tipos de H en la proporción 5 : 2 : 2 : 2 : 3. Hay un singlete de 5 H, dos tripletes de 2 H cada uno, un cuartete de 2 H y un triplete de 3 H. Cada triplete indica que hay 2H en la posición adyacente, y un cuartete 3H en la misma posición. Por ello los picos a 4,4 y 2,8 ppm deben estar conectados como unidad CH2CH2. Los picos a 2,1 y 0,9 ppm deben formar CH2CH3. Usando la tabla de desplazamiento químico los H pueden ser asignados de la siguiente manera: 7.2ppm (5H) = ArH 4.4ppm (2H) = CH2O 2.8ppm (2H) = Ar-CH2 2.1ppm (2H) = O=CCH2CH3 0.9ppm (3H) = CH2CH3 CRISTALOGRAFÍA DE RAYOS X La cristalografía de rayos X se usa para identificar las longitudes de enlace y los ángulos de enlace de compuestos cristalinos. La cristalografía de rayos X es una técnica consistente en hacer pasar un haz de rayos X a través de un cristal de la sustancia sujeta a estudio. El haz se escinde en varias direcciones debido a la simetría de la agrupación de átomos y, por difracción, da lugar a un patrón de intensidades que puede interpretarse según la ubicación de los átomos en el cristal, aplicando la ley de Bragg.

22 Pag:22 Es una de las técnicas que goza de mayor prestigio entre la comunidad científica para dilucidar estructuras cristalinas, debido a su precisión y a la experiencia acumulada durante décadas, elementos que la hacen muy fiable. Sus mayores limitaciones se deben a la necesidad de trabajar con sistemas cristalinos, por lo que no es aplicable a disoluciones, a sistemas biológicos in vivo, a sistemas amorfos o a gases. Es posible trabajar con monocristales o con polvo microcristalino, consiguiéndose diferentes datos en ambos casos. Para la resolución de los parámetros de la celda unidad puede ser suficiente la difracción de rayos X en polvo, mientras que para una dilucidación precisa de las posiciones atómicas es conveniente la difracción de rayos X en monocristal. La cristalografía de rayos X desempeñó un papel esencial en la descripción de la doble hélice de la molécula de ADN.

Espectroscopía de Infrarrojo (IR) y espectrometría de masas (MS)

Espectroscopía de Infrarrojo (IR) y espectrometría de masas (MS) Espectroscopía de Infrarrojo (IR) y espectrometría de masas (MS) Elucidación Estructural de Compuestos Orgánicos Resonancia Magnética Nuclear (RMN) Espectrometría de Masa (MS) Espectroscopía de Infrarojo

Más detalles

TEMA 2: Resonancia Magnética Nuclear RMN-1H y 13C Fundamentos

TEMA 2: Resonancia Magnética Nuclear RMN-1H y 13C Fundamentos Fundamentos La Resonancia Magnética Nuclear (RMN) es la técnica que mayor información estructural proporciona. Ello se debe a que se observan los núcleos de los átomos y se puede conocer la influencia

Más detalles

TEMA 10. ESPECTROSCOPIA DE RESONANCIA MAGNÉTICA NUCLEAR

TEMA 10. ESPECTROSCOPIA DE RESONANCIA MAGNÉTICA NUCLEAR TEMA 10. ESPETROSOPIA DE RESONANIA MAGNÉTIA NULEAR 1. Fundamentos físicos de la espectroscopia de RMN. 2. El espectrómetro de resonancia magnética nuclear. 3. Resonancia magnética nuclear de 1. Apantallamiento

Más detalles

Lección 1: GENERALIDADES

Lección 1: GENERALIDADES Lección 1: GENERALIDADES 1.Concepto de Química Orgánica. Introducción histórica. 2. Estructuras de Lewis. Estructuras resonantes. 3. Geometría de las moléculas. 4. Representaciones de las moléculas orgánicas

Más detalles

Composición química de los seres vivos

Composición química de los seres vivos Composición química de los seres vivos Elementos químicos de la materia viva BIOELEMENTOS Se clasifican por su abundancia En proporcion superior al 96% PRIMARIOS En una proporción aprox. 3,9% SECUNDARIOS

Más detalles

Técnico Profesional QUÍMICA

Técnico Profesional QUÍMICA Programa Técnico Profesional QUÍMICA Geometría molecular Nº Ejercicios PSU 1. La siguiente figura muestra la estructura del gas metano. C Al respecto, qué valor adopta el ángulo de enlace en este compuesto?

Más detalles

TEMA 9. DETERMINACIÓN DE ESTRUCTURAS MEDIANTE MÉTODOS FÍSICOS

TEMA 9. DETERMINACIÓN DE ESTRUCTURAS MEDIANTE MÉTODOS FÍSICOS TEMA 9. DETERMINACIÓN DE ESTRUCTURAS MEDIANTE MÉTODOS FÍSICOS 1. Interacción de la energía radiante y la materia orgánica. 2. Fundamentos de la espectroscopia infrarroja: regiones del IR y modos fundamentales

Más detalles

Los elementos químicos

Los elementos químicos Los elementos químicos Física y Química Las primeras clasificaciones de los elementos Oxford University Press España, S. A. Física y Química 3º ESO 2 Un elemento químico es un tipo de materia constituido

Más detalles

Espectro Electromagnético

Espectro Electromagnético 1 Espectro Electromagnético La luz es radiación electromagnética y está compuesta por una parte eléctrica y otra magnética. Las particulas subatómicas, electrones y fotones, tienen propiedades de partículas

Más detalles

ESPECTROSCOPÍA ESPECTROMETRIA DE MASAS

ESPECTROSCOPÍA ESPECTROMETRIA DE MASAS ESPECTROSCOPÍA ESPECTROMETRIA DE MASAS La espectrometría de masas es una técnica experimental que permite la medición de iones derivados de moléculas. El espectrómetro de masas es un instrumento que permite

Más detalles

Lección 9: HALUROS DE ALQUILO I

Lección 9: HALUROS DE ALQUILO I Lección 9: HALUROS DE ALQUILO I 1.Estructura y propiedades físicas. 2. Polaridad de las moléculas orgánicas: interacciones no enlazantes entre moléculas. 3. Efecto inductivo. 4. Concepto de electrófilo

Más detalles

Solucionario Cuaderno Estrategias y Ejercitación Modelo atómico de la materia II: números cuánticos y configuración electrónica

Solucionario Cuaderno Estrategias y Ejercitación Modelo atómico de la materia II: números cuánticos y configuración electrónica Solucionario Cuaderno Estrategias y Ejercitación Modelo atómico de la materia II: números cuánticos y configuración electrónica Química Técnico Profesional Intensivo SCUACTC002TC83-A16V1 Ítem Alternativa

Más detalles

GUÍA DE EJERCICIOS CONCEPTOS FUNDAMENTALES

GUÍA DE EJERCICIOS CONCEPTOS FUNDAMENTALES GUÍA DE EJERCICIOS CONCEPTOS FUNDAMENTALES Área Resultados de aprendizaje Identifica, conecta y analiza conceptos básicos de química para la resolución de ejercicios, desarrollando pensamiento lógico y

Más detalles

LOS COLORES DE LOS ELEMENTOS

LOS COLORES DE LOS ELEMENTOS LOS COLORES DE LOS ELEMENTOS Expresiones tan comunes y sugestivas como "rojo cadmio", "verde esmeralda", "blanco de titanio" o "azul turquesa" relacionan muy directamente un color con un material. Como

Más detalles

Ejercicios variados resueltos

Ejercicios variados resueltos Ejercicios variados resueltos Programa de Acceso Inclusivo, Equidad y Permanencia 1. Cuál de los siguientes compuestos es isómero del CH 3 CH 2 COOH? a) CH 3 CO CH 2 OH b) CH 3 CH 2 CHO c) CH 2 =CH COOH

Más detalles

TEMA 5 ESPECTROSCOPÍA Y ESTRUCTURA

TEMA 5 ESPECTROSCOPÍA Y ESTRUCTURA Tema 5. Espectroscopía y estructura TEMA 5 ESPECTROSCOPÍA Y ESTRUCTURA 1. Definición de espectroscopía. 2. Espectroscopía de infrarrojo. 3. Resonancia magnética nuclear. 4. Resonancia magnética nuclear

Más detalles

Tema 9. Química Orgánica

Tema 9. Química Orgánica Tema 9. Química Orgánica ÍNDICE 1. Enlace covalente en las moléculas orgánicas 1.1. ibridaciones del carbono 1.2. Resonancia 1.3. Polaridad de enlace 2. Representación de moléculas orgánicas 3. idrocarburos

Más detalles

SOLUCIONARIO Guía Estándar Anual

SOLUCIONARIO Guía Estándar Anual SOLUCIONARIO Guía Estándar Anual Polaridad de las moléculas y fuerzas intermoleculares. SGUICES034CB33-A16V1 Ítem Alternativa Habilidad 1 A ASE 2 E Reconocimiento 3 D ASE 4 B ASE 5 C ASE 6 D Reconocimiento

Más detalles

Colegio San Lorenzo - Copiapó - Región de Atacama Per Laborem ad Lucem

Colegio San Lorenzo - Copiapó - Región de Atacama Per Laborem ad Lucem TEMARIO EXAMENES QUIMICA 2012 7º BASICO Descubrimiento del átomo: Quién lo descubrió y su significado Estructura atómica: Partes del átomo, características del núcleo y la corteza, cálculo del protón,

Más detalles

CAPÍTULO 20 ESPECTROMETRÍA DE MASAS. Rosamil Rey, Ph.D. CHEM 4160

CAPÍTULO 20 ESPECTROMETRÍA DE MASAS. Rosamil Rey, Ph.D. CHEM 4160 CAPÍTULO 20 ESPECTROMETRÍA DE MASAS Rosamil Rey, Ph.D. CHEM 4160 INTRODUCCIÓN La espectrometría de masas no es una espectroscopia de absorción como IR, RMN y UV. Es el registro gráfico que sufre una molécula

Más detalles

Los enlaces C F son polares pero la geometría tetraédrica

Los enlaces C F son polares pero la geometría tetraédrica 1 PAU Química. Modelo 2010 PRIMERA PARTE Cuestión 1. Dadas las siguientes sustancias: CO 2, CF 4, H 2 CO y HF: a) Escriba las estructuras de Lewis de sus moléculas. b) Explique sus geometrías por la teoría

Más detalles

Tema 11. CONCEPTOS FUNDAMENTALES EN QUÍMICA ORGÁNICA

Tema 11. CONCEPTOS FUNDAMENTALES EN QUÍMICA ORGÁNICA Tema 11. EPTS FUDAMETALES E QUÍMIA RGÁIA o metales con electronegatividad similar (,,, ). Uniones covalentes debilmente polares o apolares Reactividad: interacciones entre áreas o zonas de las moléculas

Más detalles

Enlace Químico. Colegio San Esteban Diácono Departamento de Ciencias Química Iº Medio Prof. Juan Pastrián / Sofía Ponce de León

Enlace Químico. Colegio San Esteban Diácono Departamento de Ciencias Química Iº Medio Prof. Juan Pastrián / Sofía Ponce de León Enlace Químico Colegio San Esteban Diácono Departamento de Ciencias Química Iº Medio Prof. Juan Pastrián / Sofía Ponce de León Objetivos u u u u u Comprender la interacción entre átomos a partir de su

Más detalles

PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA.

PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA. PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA. 1.- Ciencia que estudia las características y la composición de los materiales,

Más detalles

TALLER: TEMAS IMPORTANTES DE QUIMICA http://cap7-teoriacuantica.blogspot.com/p/s-isoelectronicos.html Refuerzo, ver video: http://www.quimitube.com/videos/comparacion-radio-ionicoiones-isoelectronico/

Más detalles

Enlace químico II: geometría molecular e hibridación de orbitales atómicos

Enlace químico II: geometría molecular e hibridación de orbitales atómicos Enlace químico II: geometría molecular e hibridación de orbitales atómicos Capítulo 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Teorías de cómo ocurren

Más detalles

Resonancia Magnética Nuclear

Resonancia Magnética Nuclear Resonancia Magnética Nuclear Por qué algunas señales aparecen como señales múltiples (multipletes)? Dos átomos que se encuentren contiguos interaccionan modificándose mutuamente. La forma de la señal depende

Más detalles

LA MATERIA. Características de los átomos

LA MATERIA. Características de los átomos LA MATERIA Características de los átomos Años más tarde del modelo atómico de Rutherford (1911) se descubrió una nueva partícula en el núcleo, el neutrón. Esta fue descubierta por Chadwick en 1932, y se

Más detalles

QUÍMICA. 2º Bachilerrato orgánica Estereoisomería:

QUÍMICA. 2º Bachilerrato orgánica Estereoisomería: TEMA 10: QUÍMICA ORÁNICA. 1.- Isomerías. En química orgánica es usual encontrar compuestos químicos diferentes que poseen igual fórmula molecular. Estos compuestos se denominan isómeros. 1.1. Isómeros

Más detalles

Enlace químico II: geometría molecular e hibridación de orbitales atómicos

Enlace químico II: geometría molecular e hibridación de orbitales atómicos Enlace químico II: geometría e hibridación de orbitales atómicos Capítulo 10 Modelo de la repulsión de los pares de electrones de la capa de valencia (): Predice la geometría de la molécula a partir de

Más detalles

S.E.P. S.E.I.T DIRECCION GENERAL DE INSTITUTOS TECNOLOGICOS

S.E.P. S.E.I.T DIRECCION GENERAL DE INSTITUTOS TECNOLOGICOS S.E.P. S.E.I.T DIRECCION GENERAL DE INSTITUTOS TECNOLOGICOS NOMBRE DE LA ASIGNATURA: QUIMICA ANALITICA II (4-2-10) NIVEL: LICENCIATURA. CARRERA: INGENIERIA BIOQUIMICA INGENIERIA QUIMICA CLAVE: ACC-9331

Más detalles

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON.

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON. EL ÁTOMO CONTENIDOS. 1.- Antecedentes históricos.( ) 2.- Partículas subatómicas. ( ) 3.- Modelo atómico de Thomsom. 4.- Los rayos X. 5.- La radiactividad. 6.- Modelo atómico de Rutherford. 7.- Radiación

Más detalles

2.- Enuncie los principios o reglas que controlan el llenado de los niveles de energía atómicos permitidos.

2.- Enuncie los principios o reglas que controlan el llenado de los niveles de energía atómicos permitidos. BLOQUE PRIMERO 1.- Un compuesto contiene 85,7% de carbono y 14,3% de hidrógeno y la masa de la molécula del mismo es 42. Calcule la fórmula del compuesto sabiendo que la masa atómica del carbono. 2.- Enuncie

Más detalles

LEYES FUNDAMENTALES DE LA QUÍMICA

LEYES FUNDAMENTALES DE LA QUÍMICA LEYES FUNDAMENTALES DE LA QUÍMICA CONTENIDOS 1.- Sustancias homogéneas y heterogéneas. Elementos y compuestos..- Leyes fundamentales de la Química..1. Ley de conservación de la masa... Ley de las proporciones

Más detalles

Espectrometría de Masas

Espectrometría de Masas Espectrometría de Masas Fernando de J. Amézquita L. Diana Mendoza O. Universidad de Guanajuato La espectrometría de masas, es uno de los medios analíticos de aplicación más generalizada, aporta información

Más detalles

- Leyes ponderales: Las leyes ponderales relacionan las masas de las sustancias que intervienen en una reacción química.

- Leyes ponderales: Las leyes ponderales relacionan las masas de las sustancias que intervienen en una reacción química. FÍSICA Y QUÍMICA 4ºESO COLEGIO GIBRALJAIRE CÁLCULOS QUÍMICOS 1.- LA REACCIÓN QUÍMICA. LEYES PONDERALES Una reacción química es el proceso en el que, mediante una reorganización de enlaces y átomos, una

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 3: ENLACES QUÍMICOS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 3: ENLACES QUÍMICOS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 QUÍMICA TEMA : ENLACES QUÍMICOS Junio, Ejercicio, Opción A Reserva 1, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción B Septiembre,

Más detalles

Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1

Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1 Radiación Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler L. Infante 1 Cuerpo Negro: Experimento A medida que el objeto se calienta, se hace más brillante ya que emite más radiación

Más detalles

ENLACES QUÍMICOS. Los enlaces químicos, son las fuerzas que mantienen unidos a los átomos.

ENLACES QUÍMICOS. Los enlaces químicos, son las fuerzas que mantienen unidos a los átomos. 1. Generalidades de los enlaces químicos ENLACES QUÍMICOS Los enlaces químicos, son las fuerzas que mantienen unidos a los átomos. Cuando los átomos se enlazan entre sí, ceden, aceptan o comparten electrones.

Más detalles

Apellidos... Nombre. 1. Indique el número de señales y la multiplicidad que presentarán los compuestos siguientes en 1 H-RMN. Justificar.

Apellidos... Nombre. 1. Indique el número de señales y la multiplicidad que presentarán los compuestos siguientes en 1 H-RMN. Justificar. DETERMINACIN ESTRUCTURAL (5 de julio de 2005) Grupo A. TIP A Apellidos.... Nombre 1. Indique el número de señales y la multiplicidad que presentarán los compuestos siguientes en 1 H-RMN. Justificar. CH3

Más detalles

TUTORIAL PARA LA INTERPRETACIÓN DE ESPECTROS DE RESONANCIA MAGNÉTICA NUCLEAR DE PROTÓN.

TUTORIAL PARA LA INTERPRETACIÓN DE ESPECTROS DE RESONANCIA MAGNÉTICA NUCLEAR DE PROTÓN. 9 8 7 6 5 4 3 1 0 TUTRIAL PARA LA INTERPRETACIÓN DE ESPECTRS DE RESNANCIA MAGNÉTICA NUCLEAR DE PRTÓN. Juan A. Palop Tutorial para la interpretación de espectros de Resonancia Magnética Nuclear de protón

Más detalles

La Química Orgánica es el estudio de los compuestos de carbono. El carbono puede formar más compuestos

La Química Orgánica es el estudio de los compuestos de carbono. El carbono puede formar más compuestos QUÍMICA ORGÁNICA La Química Orgánica es el estudio de los compuestos de carbono. El carbono puede formar más compuestos que ningún otro elemento, por tener la capacidad de unirse entre sí formando cadenas

Más detalles

ACADEMIA DE QUÍMICA TURNO VESPERTINO

ACADEMIA DE QUÍMICA TURNO VESPERTINO INSTITUTO POLITÉCNICO NACIONAL CENTRO DE ESTUDIOS CIENTÍFICOS Y TECNOLÓGICOS No. 3 ESTANISLAO RAMÍREZ RUIZ ACADEMIA DE QUÍMICA TURNO VESPERTINO GUIA PARA EL SEGUNDO EXAMEN DEPARTAMENTALDE QUÍMICA I UNIDAD

Más detalles

Efecto inductivo Desplazamiento parcial del par electrónico en enlace sencillo hacia el átomo más electronegativo provocando fracciones de carga.

Efecto inductivo Desplazamiento parcial del par electrónico en enlace sencillo hacia el átomo más electronegativo provocando fracciones de carga. www.youtube.com Efecto inductivo Desplazamiento parcial del par electrónico en enlace sencillo hacia el átomo más electronegativo provocando fracciones de carga. Efecto mesómero o resonancia Desplazamiento

Más detalles

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: FECHA:

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE:   FECHA: ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: ACÚSTICA Resuelva cada uno de los siguientes problemas haciendo el proceso completo. 1. Un estudiante golpea

Más detalles

Curso de Electricidad, Electrónica e Instrumentación Biomédica con Seguridad - CEEIBS -

Curso de Electricidad, Electrónica e Instrumentación Biomédica con Seguridad - CEEIBS - Curso de Electricidad, Electrónica e Instrumentación Biomédica con Seguridad - CEEIBS - 1/23 Imagenología - Imagen médica: Es el conjunto de técnicas y procesos usados para crear imágenes del cuerpo humano,

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Biología. Glúcidos o hidratos de carbono.

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Biología. Glúcidos o hidratos de carbono. Glúcidos o hidratos de carbono. Son también denominados carbohidratos, hidratos de carbono, glúcido o azúcares. Los componentes químicos estructurales de los glúcidos son los azúcares simples o monosacáridos.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO Junio, Ejercicio 2, Opción A Reserva 1, Ejercicio 2, Opción A Reserva 2, Ejercicio 3, Opción B Reserva 3, Ejercicio

Más detalles

Material elaborado por F. Agius, O. Borsani, P.Díaz, S. Gonnet, P. Irisarri, F. Milnitsky y J. Monza. Bioquímica. Facultad de Agronomía.

Material elaborado por F. Agius, O. Borsani, P.Díaz, S. Gonnet, P. Irisarri, F. Milnitsky y J. Monza. Bioquímica. Facultad de Agronomía. AMINOACIDOS Las proteínas de bacterias, hongos, plantas y animales están constituidas a partir de las mismas 20 unidades o monómeros: los á-aminoácidos. Los aminoácidos tienen un grupo amino y un grupo

Más detalles

ESTRUCTURA DE LA MATERIA QCA 01 ANDALUCÍA. 1.- Defina: a) Energía de ionización. b) Afinidad electrónica. c) Electronegatividad.

ESTRUCTURA DE LA MATERIA QCA 01 ANDALUCÍA. 1.- Defina: a) Energía de ionización. b) Afinidad electrónica. c) Electronegatividad. 1.- Defina: a) Energía de ionización. b) Afinidad electrónica. c) Electronegatividad. 2.- Razone si son verdaderas o falsas las siguientes afirmaciones: a) El punto de ebullición del butano es menor que

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE QUIMICA FARMACEUTICA CURSO DE FARMACOGNOSIA Y FITOQUIMICA PROFESOR ALEJANDRO MARTINEZ M.

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE QUIMICA FARMACEUTICA CURSO DE FARMACOGNOSIA Y FITOQUIMICA PROFESOR ALEJANDRO MARTINEZ M. 1. CONVENCIONES Y TERMINOS UNIVERSIDAD DE ANTIOQUIA FACULTAD DE QUIMICA FARMACEUTICA CURSO DE FARMACOGNOSIA Y FITOQUIMICA PROFESOR ALEJANDRO MARTINEZ M. Terminación inglesa ó término Terminación en español

Más detalles

Física y Química 3º ESO

Física y Química 3º ESO 1. Física y Química. Ciencias de la medida forman parte de las necesitan Ciencias de la naturaleza medir las propiedades de los cuerpos que se dividen en para lo cual se emplean lo que siempre conlleva

Más detalles

ESTRUCTURA ATÓMICA Y PROPIEDADES PERIÓDICAS

ESTRUCTURA ATÓMICA Y PROPIEDADES PERIÓDICAS ESTRUCTURA ATÓMICA Y PROPIEDADES PERIÓDICAS 1.- Escriba la configuración electrónica de los siguientes iones o elementos: 8 O -2, 9 F - y 10 Ne, e indique el período y grupo de los elementos correspondientes.

Más detalles

Tema 5. Espectroscopias: Infrarroja, Ultravioleta-Visible, Absorción y Emisión Atómica

Tema 5. Espectroscopias: Infrarroja, Ultravioleta-Visible, Absorción y Emisión Atómica Tema 5. Espectroscopias: Infrarroja, Ultravioleta-Visible, Absorción y Emisión Atómica 5.1 Introducción 5.2 Espectroscopía del Infrarrojo (IR). 5.2.1 Fundamentos 5.2.2 Descripción de la técnica 5.2.3 Interpretación

Más detalles

Química orgánica. Cuarto Medio 25/06

Química orgánica. Cuarto Medio 25/06 Química orgánica Cuarto Medio 25/06 CARBONO Es el elemento principal de las moléculas orgánicas. Debido a que este átomo, presenta una gran estabilidad. Dado que, tiene una baja tendencia a donar y quitar

Más detalles

El Espectro Electromagnético Radiación Ionizante y NO Ionizante

El Espectro Electromagnético Radiación Ionizante y NO Ionizante 27-03-2015 El Espectro Electromagnético Radiación Ionizante y NO Ionizante 01-04-2015 El Espectro Electromagnético Radiación Ionizante y NO Ionizante Las radiaciones, atendiendo a su energía, se clasifican

Más detalles

QUÍMICA. La MATERIA REPRESENTACIÓN. Observación Datos Ley Hipótesis Teoría DEFINICIONES BÁSICAS. Propiedades

QUÍMICA. La MATERIA REPRESENTACIÓN. Observación Datos Ley Hipótesis Teoría DEFINICIONES BÁSICAS. Propiedades QUÍMICA La MATERIA Relación constante TEORÍA EXPERIMENTACIÓN Ciencia básica - Estructura - Composición - Propiedades - Transformaciones REPRESENTACIÓN OBSERVACIÓN mundo macroscópico Técnica sistemática

Más detalles

MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s

MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s MODELOS ATOMICOS 1. Calcular el valor del radio de la órbita que recorre el electrón del hidrogeno en su estado normal. Datos. h = 6 63 10 27 erg s, m(e ) = 9 1 10 28 gr, q(e ) = 4 8 10-10 u.e.e. Solución.

Más detalles

11. FUERZAS INTERMOLECULARES

11. FUERZAS INTERMOLECULARES Las fuerzas intermoleculares son las responsables de las uniones entre las diferentes moléculas. Química 2º bachillerato Enlace químico 1 Las fuerzas de Van der Waals son interacciones entre átomos y moléculas

Más detalles

Formulación orgánica

Formulación orgánica Formulación orgánica Orgánico significa que procede de órganos, relacionado con la vida. Lo contrario, inorgánico, se asigna a todo lo que carece de vida. A los compuestos orgánicos se les denominó así

Más detalles

5/31/2013 UNIVERSIDAD DE PUERTO RICO EN AGUADILLA ÁREA DE QUÍMICA. Laboratorio de Química Orgánica

5/31/2013 UNIVERSIDAD DE PUERTO RICO EN AGUADILLA ÁREA DE QUÍMICA. Laboratorio de Química Orgánica UNIVERSIDAD DE PUERTO RICO EN AGUADILLA ÁREA DE QUÍMICA Laboratorio de Química Orgánica Prof. Rafael A. Estremera Andújar, MS Dr. Carlos R. Ruiz Martínez, PhD. Dr. Carlos A. Nieves Marrero, PhD. JUNIO

Más detalles

BIOQUÍMICA Y BIOLOGÍA MOLECULAR I CURSO 2003/04 ENLACE QUÍMICO

BIOQUÍMICA Y BIOLOGÍA MOLECULAR I CURSO 2003/04 ENLACE QUÍMICO BIQUÍMIA Y BILGÍA MLEULAR I URS 2003/04 Problemas 1º de Medicina UIVERSIDAD DE AVARRA DEPARTAMET DE BIQUÍMIA ELAE QUÍMI 1. rdenar por su estabilidad relativa (menor energía de ionización) los siguientes

Más detalles

A su vez, una molécula está compuesta por átomos. Cada uno de ellos posee unas propiedades diferentes en el interior de la molécula que constituyen.

A su vez, una molécula está compuesta por átomos. Cada uno de ellos posee unas propiedades diferentes en el interior de la molécula que constituyen. Constitución de la materia. Supongamos que cualquier sustancia de la naturaleza la dividimos en partes cada vez más pequeñas, conservando cada una de ellas las propiedades de la sustancia inicial. Si seguimos

Más detalles

Universidad de Puerto Rico-Humacao Departamento de Química QUIM 3032 (www.uprh.edu/~quimorg)

Universidad de Puerto Rico-Humacao Departamento de Química QUIM 3032 (www.uprh.edu/~quimorg) 1 Universidad de Puerto ico-umacao Departamento de Química QUIM 3032 (www.uprh.edu/~quimorg) Espectrometría de Masas Preparado por Prof. Jorge astillo evisión enero 2008 JS La espectrometría de masas es

Más detalles

TEMA 6 INTRODUCCIÓN A LA ESPECTROMETRÍA DE MASAS Y SUS APLICACIONES EN ANÁLISIS AMBIENTAL

TEMA 6 INTRODUCCIÓN A LA ESPECTROMETRÍA DE MASAS Y SUS APLICACIONES EN ANÁLISIS AMBIENTAL TEMA 6 INTRODUCCIÓN A LA ESPECTROMETRÍA DE MASAS Y SUS APLICACIONES EN ANÁLISIS AMBIENTAL 1. INTRODUCCIÓN: ESPECTROS DE MASAS. Los espectros de masas se obtienen convirtiendo los componentes de una muestra

Más detalles

Contenidos mínimos Física y Química 3º ESO

Contenidos mínimos Física y Química 3º ESO Contenidos mínimos Física y Química 3º ESO EL TRABAJO CIENTÍFICO Etapas del método científico. Magnitudes y unidades. Cambio de unidades. Sistema Internacional de Unidades (SI). Representación de gráficas

Más detalles

Estudio del átomo: 1. Átomos e isótopos 2. Modelos Atómicos 3. Teoría cuántica. Ing. Sol de María Jiménez González

Estudio del átomo: 1. Átomos e isótopos 2. Modelos Atómicos 3. Teoría cuántica. Ing. Sol de María Jiménez González Estudio del átomo: 1. Átomos e isótopos 2. Modelos Atómicos 3. Teoría cuántica 1 Núcleo: protones y neutrones Los electrones se mueven alrededor. Característica Partículas Protón Neutrón Electrón Símbolo

Más detalles

Fuerzas Intermoleculares. Materia Condensada.

Fuerzas Intermoleculares. Materia Condensada. Fuerzas Intermoleculares. Materia Condensada. Contenidos Introducción. Tipos de fuerzas intermoleculares. Fuerzas ion-dipolo Fuerzas ion-dipolo inducido Fuerzas de van der Waals Enlace de hidrógeno Tipos

Más detalles

Actividad introductoria: Aplicación en la industria de las fuerzas intermoleculares.

Actividad introductoria: Aplicación en la industria de las fuerzas intermoleculares. Grado 10 Ciencias - Unidad 3 Cómo se relacionan los componentes del mundo? Tema Cómo afectan las fuerzas intermoleculares las propiedades de los compuestos? Curso: Nombre: Actividad introductoria: Aplicación

Más detalles

Corteza atómica: Estructura electrónica

Corteza atómica: Estructura electrónica Corteza atómica: Estructura electrónica Aunque los conocimientos actuales sobre la estructura electrónica de los átomos son bastante complejos, las ideas básicas son las siguientes: 1. Existen 7 niveles

Más detalles

Tema 4. Fuerzas intermoleculares

Tema 4. Fuerzas intermoleculares Tema 4: Fuerzas intermoleculares Química para biólogos Slide 1 of 35 Contenidos 4-1 Electronegatividad 4-2 Polaridad de enlace y molécula: momento dipolar 4-3 Fuerzas intermoleclares 4-4 Puentes de hidrógeno

Más detalles

Hibridación y Momento Dipolar

Hibridación y Momento Dipolar Hibridación y Momento Dipolar Conceptos Previos El orbital o capa de valencia es el orbital asociado al más alto nivel cuántico que contiene electrones. La forma de como se ordenan los electrones de valencia

Más detalles

Configuración Electrónica

Configuración Electrónica Configuración Electrónica La configuración electrónica de un átomo indica la forma como están distribuidos los electrones entre los distintos orbitales atómicos. Según el Principio de Exclusión de Pauli,

Más detalles

QUÍMICA FÍSICA II Grupo A. Tercer control, 10 de mayo de Escoged 2 de las 3 preguntas que os propongo, cada una de las preguntas vale 5 puntos.

QUÍMICA FÍSICA II Grupo A. Tercer control, 10 de mayo de Escoged 2 de las 3 preguntas que os propongo, cada una de las preguntas vale 5 puntos. QUÍMICA FÍSICA II Grupo A. Tercer control, 10 de mayo de 2011 Escoged 2 de las 3 preguntas que os propongo, cada una de las preguntas vale 5 puntos. 1. Qué significado tienen los parámetros termodinámicos

Más detalles

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas.

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. Química 1º bachillerato La materia 1 1. TEORÍA ATÓMICA DE DALTON

Más detalles

Unidad I: Propiedades Periódicas: Masa y Enlace

Unidad I: Propiedades Periódicas: Masa y Enlace Unidad I: Propiedades Periódicas: Masa y Enlace 1. Nociones de teoría atómica moderna 2. Propiedades periódicas de los elementos 3. Enlace iónico y covalente 4. Masas atómicas y moleculares 1. Nociones

Más detalles

5ª UNIDAD ELEMENTOS Y COMPUESTOS

5ª UNIDAD ELEMENTOS Y COMPUESTOS 5ª UNIDAD ELEMENTOS Y COMPUESTOS 3º E.S.O. Grupo Apellidos: Nombre: INTRODUCCIÓN Comenzamos recordando los conceptos más importantes del tema anterior: Cómo son los átomos? Cómo están distribuidos los

Más detalles

Interacciones químicas de no enlace. Fuerzas de van der Waals

Interacciones químicas de no enlace. Fuerzas de van der Waals Interacciones químicas de no enlace IES La Magdalena. Avilés. Asturias En el mundo material, además de los enlaces entre átomos existen otras interacciones, más débiles, pero lo suficientemente intensas

Más detalles

CONTENIDO T1 EL ÁTOMO Y EL SISTEMA PERIÓDICO...3 T2 EL ENLACE QUÍMICO...7 T3 FORMULACIÓN Y NOMENCLATURA INORGÁNICA...13

CONTENIDO T1 EL ÁTOMO Y EL SISTEMA PERIÓDICO...3 T2 EL ENLACE QUÍMICO...7 T3 FORMULACIÓN Y NOMENCLATURA INORGÁNICA...13 CONTENIDO T1 EL ÁTOMO Y EL SISTEMA PERIÓDICO...3 T2 EL ENLACE QUÍMICO...7 T3 FORMULACIÓN Y NOMENCLATURA INORGÁNICA...13 T4 REACCIONES QUÍMICAS: Cálculos, Energías y Velocidades...19 T5 ESTUDIO DEL MOVIMIENTO...25

Más detalles

Capacidad de combinación. Capacidad de combinación La última capa de electrones de un átomo, se le conoce como capa de electrones de valencia

Capacidad de combinación. Capacidad de combinación La última capa de electrones de un átomo, se le conoce como capa de electrones de valencia Capacidad de combinación Para los elementos representativos, se define que el número de electrones de valencia de un elemento es igual al de la familia a la que pertenece Y está relacionado a la manera

Más detalles

La tabla periódica es la estrella orientadora para la exploración en el capo de la química, la física, la mineralogía y la técnica.

La tabla periódica es la estrella orientadora para la exploración en el capo de la química, la física, la mineralogía y la técnica. SISTEMA PERIÓDICO DE LOS ELEMENTOS La tabla periódica es la estrella orientadora para la exploración en el capo de la química, la física, la mineralogía y la técnica. Niels Bohr Principio de exclusión

Más detalles

Ponte en forma 1.- Realiza las actividades que se te solicitan a continuación: a) Completa el siguiente cuadro:

Ponte en forma 1.- Realiza las actividades que se te solicitan a continuación: a) Completa el siguiente cuadro: RESPUESTAS BLOQUE III Ponte en forma 1.- Realiza las actividades que se te solicitan a continuación: a) Completa el siguiente cuadro: Tipo de raciación Partículas Carga eléctrica Masa(uma) Alfa α +2 4

Más detalles

IES Atenea (S.S. de los Reyes) Departamento de Física y Química. PAU Química. Junio 2008 PRIMERA PARTE

IES Atenea (S.S. de los Reyes) Departamento de Física y Química. PAU Química. Junio 2008 PRIMERA PARTE 1 PAU Química. Junio 2008 PRIMERA PARTE Cuestión 1. Dados los elementos Na, C, Si y Ne: a) Escriba sus configuraciones electrónicas. Cuántos electrones desapareados presenta cada uno en su estado fundamental?

Más detalles

Actividad: Cómo son las configuraciones electrónicas?

Actividad: Cómo son las configuraciones electrónicas? Cómo son las configuraciones electrónicas de los elementos que forman una familia? Nivel: 2º Medio Subsector: Ciencias químicas Unidad temática: Actividad: Cómo son las configuraciones electrónicas? En

Más detalles

Teoría atómica: Leyes de la combinación química

Teoría atómica: Leyes de la combinación química Teoría atómica: Leyes de la combinación química La materia y la química. Disoluciones vs sustancias. Sustancias puras (elementos y compuestos) I. La materia y la química Uno de los primeros objetivos que

Más detalles

LA TABLA PERIÓDICA. Cuestiones generales. Propiedades periódicas

LA TABLA PERIÓDICA. Cuestiones generales. Propiedades periódicas Cuestiones generales. LA TABLA PERIÓDICA. 1.- Indica el nombre, símbolo, nombre del grupo a que pertenece y periodo de los elementos de números atómicos 3, 9, 16, 19, 38 y 51. 2.- a) Indica el nombre,

Más detalles

Facultad de Farmacia. Departamento de Química Física. Universidad de Granada. OBTENCIÓN N DEL ESPECTRO IR del Ácido acetilsalicílico.

Facultad de Farmacia. Departamento de Química Física. Universidad de Granada. OBTENCIÓN N DEL ESPECTRO IR del Ácido acetilsalicílico. Facultad de Farmacia Universidad de Granada PRÁCTICA Nº N 4 Departamento de Química Física OBTENCIÓN N DEL ESPECTRO IR del Ácido acetilsalicílico lico OBJETIVO: Obtener el espectro IR del ácido acetilsalicílico

Más detalles

Figura 1: Esquema de polímero

Figura 1: Esquema de polímero Eje temático: Química: Fenómenos nucleares Polímeros Procesos químicos industriales Contenido: Tipos de polímeros y polimerización Nivel: Cuarto medio Polímeros. Polímeros sintéticos y naturales Polímeros

Más detalles

Espectroscopia ultravioleta-visible (temas complementarios)

Espectroscopia ultravioleta-visible (temas complementarios) 1 Espectroscopia ultravioleta-visible (temas complementarios) Ley de Lambert y Beer Cuando se hace incidir radiación electromagnética en un medio, la energía dependerá de la longitud de onda de la radiación

Más detalles

Guía Temática de Química

Guía Temática de Química Guía Temática de Química Introducción a la Química Definición de química y de ciencias afines a ella Diferenciación de las ciencias afines a la química 1 Conceptos básicos de química y el método científico

Más detalles

Un modelo atómico, por lo tanto consiste en representar de manera grafica, la dimensión atómica de la materia. El objetivo de estos modelos es que el

Un modelo atómico, por lo tanto consiste en representar de manera grafica, la dimensión atómica de la materia. El objetivo de estos modelos es que el Modelos atómicos Debido a que no se podían ver los átomos los científicos crearon modelos para describirlos, éstos fueron evolucionando a lo largo de la historia a medida que se descubrieron nuevas cosas.

Más detalles

PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA (TIPO 1)

PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA (TIPO 1) PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA (TIPO 1) Un gas es sometido a tres procesos identificados con las letras X, Y y Z. Estos procesos son esquematizados en los gráficos que se presentan

Más detalles

Estructura de la materia y Sistema Periódico

Estructura de la materia y Sistema Periódico Estructura de la materia y Sistema Periódico 1 - Respecto el número cuántico «n» que aparece en el modelo atómico de Bohr indicar de manera razonada cuáles de las siguientes frases son correctas y cuáles

Más detalles

REACCIONES DE POLIMERIZACIÓN DE CARBOHIDRATOS Y AMINOÁCIDOS.

REACCIONES DE POLIMERIZACIÓN DE CARBOHIDRATOS Y AMINOÁCIDOS. REACCIONES DE POLIMERIZACIÓN DE CARBOHIDRATOS Y AMINOÁCIDOS. PRESENTACIÓN Los animales incluyendo al hombre, recibimos pocas moléculas sencillas y una gran cantidad de macromoléculas, como almidones, proteínas

Más detalles

Introducción a la Resonancia Magnética Nuclear. Química Orgánica III Primer Semestre 2014

Introducción a la Resonancia Magnética Nuclear. Química Orgánica III Primer Semestre 2014 Introducción a la Resonancia Magnética Nuclear Química Orgánica III Primer Semestre 2014 Referencias empleadas en esta presentación: McMurry, John. Química Orgánica. 8ª. Edición. CENGAGE. Wade, L.J. Química

Más detalles

Puntos de ebullición.

Puntos de ebullición. 1.-Indica el tipo de enlace de los siguientes hidruros. Ayundándote de la siguiente tabla comenta la polaridad de los enlaces. Hidruro % carácter iónico HF 43 HCl 17 HBr 11 HI 6 Representa gráficamente

Más detalles

Estructura del grupo carbonilo

Estructura del grupo carbonilo TEMA 19.- Compuestos carbonílicos. Clasificación y propiedades generales. Reacciones de adición. Características generales y factores con influencia en la velocidad de la adición. Adiciones de Michael.

Más detalles

1817: Döbreiner. Triadas de elementos con propiedades semejantes. 1865: Newlands. Ley de las octavas. Ordenó 55 elementos.

1817: Döbreiner. Triadas de elementos con propiedades semejantes. 1865: Newlands. Ley de las octavas. Ordenó 55 elementos. Evolución histórica de la Tabla Periódica 1817: Döbreiner. Triadas de elementos con propiedades semejantes. 1865: Newlands. Ley de las octavas. Ordenó 55 elementos. 1869: Mendeleev y Meyer: las propiedades

Más detalles

Protocolo de Análisis por Espectrometría de Masas de Alta Resolución. Código LEM-PR-01 Fecha 15/Octubre/2015 Versión 1

Protocolo de Análisis por Espectrometría de Masas de Alta Resolución. Código LEM-PR-01 Fecha 15/Octubre/2015 Versión 1 OBJETIVO. Establecer los mecanismos y requisitos necesarios para realizar análisis de muestras tanto externas como internas en el laboratorio de espectrometría de masas. ALCANCE. Aplica al Laboratorio

Más detalles