Profesor Miguel Ángel De Carlo PROBABILIDAD. Tercer año del Profesorado de Matemática

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Profesor Miguel Ángel De Carlo PROBABILIDAD. Tercer año del Profesorado de Matemática"

Transcripción

1 Profesor Miguel Ángel De Carlo PROBABILIDAD Tercer año del Profesorado de Matemática

2 2 Probabilidad 3er año M.A.D.C

3 Cap.I Definiciones de Probabilidad 3 Introducción La probabilidad es uno de los instrumentos fundamentales de la estadística, los orígenes de la probabilidad son los juegos de azar que como implica su nombre tienen como acciones lanzar una moneda al aire, extraer una carta de un mazo, lanzar dados, girar una rueda, en donde el resultado es incierto. Aunque de resultado incierto en algunos casos se puede predecir un resultado en un número de jugadas, siempre las predicciones son a largo plazo, negocio de las casas de juego. Cuando realizamos un experimento, por ejemplo lanzar una moneda, existen dos tipos de fenómenos: Deterministas: realizando el mismo experimento siempre en las mismas condiciones obtenemos el mismo resultado. Aleatorios: realizando el mismo experimento siempre en las mismas condiciones, nunca pedemos predecir el resultado. Probabilidad clásica. Está relacionada con los juegos de azar. Por ejemplo supongamos que queremos hallar la probabilidad del suceso obtener cara al lanzar una moneda ideal. Puesto que existen dos resultados cara o ceca y dado que la moneda en cuestión está bien equilibrada, esperamos obtener cara y seca con la misma frecuencia, así la probabilidad de obtener cara estará dada por el valor ½. Este razonamiento nos lleva a la siguiente definición. Definición clásica de probabilidad: Si un suceso puede ocurrir de n maneras mutuamente excluyentes e igualmente verosímiles y si n A de estas poseen un atributo A, la probabilidad de A es la fracción n A n. Espacio muestral: Es el conjunto formado por los posibles resultados de la experiencia aleatoria (Ej. {cara, ceca}) Suceso: Subconjunto del espacio muestral. (Ej. Para E = {cara, ceca}; suceso salir cara A = {cara}) 1. Suceso elemental: Es el formado por un solo elemento del espacio muestral 2. Suceso compuesto: Formado por varios elementos del espacio muestral. 3. Suceso imposible: Aquel cuyo elementos son el conjunto vacío, (sacar 7 al lanzar un dado) Ejemplos sencillos de la definición clásica. Si se lanza un dado, hay seis resultados posibles: puede caer hacia arriba cualquiera de las caras del dado, estos resultados son mutuamente excluyentes. Supongamos ahora que queremos conocer la probabilidad de que salga un número impar. Tendríamos entonces: E = {1, 2, 3, 4, 5, 6} A = {1, 3, 5} A puede ocurrir de 3 maneras excluyentes na = 3 E puede ocurrir de 6 maneras excluyentes n = 6 La probabilidad es de ½ n A 3 1 n = 6 = 2 Prof. Miguel Ángel De Carlo

4 4 Probabilidad 3er año Supongamos que sacamos una carta al azar de un mazo de 40 cartas. Cual es la probabilidad de sacar una carta de bastos. n A 10 1 n = 40 = 4 Calculemos ahora la probabilidad de sacar un 5 de cualquier palo. n A 4 1 n = 40 = 10 Supongamos ahora que se quiere conocer la probabilidad de obtener dos caras lanzando una moneda dos veces. Podría razonarse. Los resultados posibles en las dos tiradas son: E = {dos caras, dos cecas, una cara y una ceca}. Razonando de esta forma tendríamos como resultado. n A 1 n = 3 Este razonamiento es Falso porque los tres resultados nos son igualmente verosímiles, vemos que el tercer suceso puede ocurrir de dos maneras ya que la cara puede aparecer en la primer tirada y la ceca en la segunda o la cara en la segunda y la ceca en la primera, por lo tanto analizando nuevamente los resultados posibles tenemos: El espacio muestral correcto es entonces E = {CC, CX, XC, XX}. La probabilidad correcta es, por consiguiente, 1 4. Observemos que la probabilidad siempre es un número comprendido entre 0 y 1 la razón n debe ser una fracción propia ya que el total de resultados posibles utilizando la razón sería 1, que además indica que el suceso ocurre con seguridad, y si el suceso no ocurre es 0. n A Ejercicios 1.- Calcular la probabilidad de que al extrae una carta de una mazo de cartas de poker (52 cartas) sea un as de corazón. Estas cartas tienen cuatro palos de 13 cartas cada uno. 2.- Calcular la probabilidad de que al extraer una carta de un mazo de poker sea un as o una carta de corazón. 3.- En un colegio hay 1000 alumnos repartidos así: Se elige un alumno al azar. Cuál es la probabilidad que sea : Chicos Chicas Usan anteojos No usan anteojos a) Chico; b) Chica; c) Use anteojos; d) No use anteojos; e) Sea una chica con anteojos; f) Se elige alguno al azar y es una chica. Cuál es la probabilidad de que use anteojos. M.A.D.C

5 Cap.I Definiciones de Probabilidad Al tirar tres dados podemos obtener suma 9 de seis formas distintas y otra seis de obtener suma 10. Sin embargo, los jugadores experimentados dicen que es más fácil sacar suma 10 que suma 9. Por qué? 5.- Si tiramos dos dados. Cuál es la probabilidad de cada una de las posibles sumas? 6.- Se lanzan simultáneamente cuatro monedas Cuál es la probabilidad de obtener, por lo menos una cara? 7.- Cuál es la probabilidad de que al lanzar dos dados la suma sea par? 8.- Una caja contiene 5 bolas blancas y 7 negras. Se sacan al azar 3 bolas simultáneamente, Cuál es la probabilidad de que todas sean blancas. 9.- De un grupo de 6 mujeres y 8 hombres se elige al azar un comité de 3 personas. Halle la probabilidad de que el comité consista a) de 3 mujeres; b) de tres hombres; c) de 2 mujeres y 1 hombre. Prof. Miguel Ángel De Carlo

6 6 Probabilidad 3er año Probabilidad frecuencial a posteriori Suponemos que una moneda bien equilibrada fue lanzada 100 veces con los resultados de la tabla Tabla 1 Resultados del lanzamiento de una moneda 100 veces Frecuencia relativa Frecuencia relativa Resultado Frecuencia observada esperada Cara 56 0,56 0,50 Ceca 44 0,44 0,50 Total 100 1,00 1,00 Vemos que la frecuencia relativa tiende a estabilizarse en torno a ½. Frecuencia relativa Es el cociente entre la frecuencia absoluta y el número total de observaciones en forma decimal. Frecuencia porcentual Es la frecuencia relativa expresada en tanto por ciento, es decir, es la frecuencia relativa multiplicada por 100. Frecuencia relativa 0,56, frecuencia porcentual 56 % A la Frecuencia Relativa también se le llama probabilidad empírica o a posteriori ya que en resultados confiables solo se obtienen después de realizar el experimento un gran numero de veces. n A medida que ese numero de veces que se repite el experimento aumenta, el cociente A n se aproxima un valor fijo que se conoce como probabilidad del evento A. En otro ejemplo se lanza un único dado fue lanzado 300 veces recogiéndose los resultados en la tabla 2. Tabla 2 Frecuencia de números al lanzar un dado 300 veces Resultado Frecuencia Frecuencia relativa Frecuencia relativa esperada ,170 0,180 0,160 0,170 0,163 0,157 0,1667 0,1667 0,1667 0,1667 0,1667 0,1667 Total 300 1,000 1,000 Observamos que la frecuencia relativa de obtener un 1 se aproxima a 1/6 y análogamente para los demás números. Resultados que no son inesperados. Vemos que la frecuencia relativa puede utilizarse en el caso de la moneda y en el del dado como una aproximación de la probabilidad. Si suponemos que la moneda está desequilibrada de tal forma que después de un examen de que los sucesos cara y ceca no son igualmente verosímiles. Podemos aun en este caso postular la existencia de un número p como probabilidad de obtener una cara o una ceca. Lo que si estamos seguros que para encontrar el número p no podemos utilizar la definición clásica. Deberemos utilizar la forma frecuencial. M.A.D.C

7 Cap.I Definiciones de Probabilidad 7 En las investigaciones científicas se realizan observaciones que tienen un elemento de incertidumbre que no puede predecirse. Si queremos conocer o predecir que el próximo niño que nazca en Tolosa es varón o mujer. Este suceso individual es incierto, pero si observamos con cierta regularidad los registros vemos que en Tolosa nacen 51 niños cada 100 de los nacidos, es razonable que digamos que la posibilidad de que nazca un varón es 0,51 o que hay un 51% de posibilidad de que el nacido sea varón. Esta forma de razonar también se denomina probabilidad estadística. Ejercicios 1.- Se lanza 100 veces un dado y se obtiene: Número Frecuencia absoluta Calcule la frecuencia relativa de los siguientes sucesos. a) salir un 6. b) salir número par c) no salir par 2.- En una caja tenemos 3 bolas blancas, 1 amarilla y 2 rojas. Indique el suceso seguro y el suceso imposible. 3.- Cuál es la probabilidad de que salga 4 con un dado cargado si en 1000 tiradas salió 200 veces? 4.- De una tabla de mortalidad se extrae el dato de que de personas vivas a los 40 años de edad mueren 765 antes de cumplir los 41 años. Qué probabilidad tiene un hombre de 40 años de morir dentro del año siguiente? 5.- En el censo del 2001 sobre un total de mujeres de 14 años o más, se registra el siguiente número de hijos nacidos vivos. Tabla 3 Número de Hijos Ninguno y más Halle la frecuencia relativa de hijos nacidos vivos por mujer y el promedio de hijos por mujer. 6.- Cierto año sobre automóviles registrados fueron objeto de robo. Si una compañía tiene asegurados automóviles. Cuántos robos pueden corresponderles ese año? Prof. Miguel Ángel De Carlo

8 8 Probabilidad 3er año Teoría de conjuntos. Trataremos algunas ideas y conceptos elementales de la teoría de conjuntos que son necesarios en la teoría de la probabilidad moderna. Definiremos también ciertas operaciones sobre el conjunto que forma el espacio muestral formado por elementos con ciertas propiedades específicas. Un conjunto podría ser una colección de automóviles, donde decimos que cada automóvil de la colección pertenece al conjunto, decimos a A. Dados dos conjuntos A y B si cada elemento del conjunto A es también un elemento del conjunto B, llamaremos al conjunto A subconjunto del conjunto B, escribimos A B. Dos conjuntos son iguales si cada uno está contenido en el otro, A = B entonces A B y B A. Definición: En cada aplicación de la teoría, existirá un conjunto universal, el espacio muestral E tal que todos los otros conjuntos que intervengan en el análisis son subconjuntos de E. El complemento de un conjunto S, respecto al espacio muestral E, será el conjunto de elementos que están en E pero no en S, se indicará E S o directamente S. Ejemplo: Sea E el conjunto de los naturales x tales que x = 1, 2, 3, 4, 5, 6, 7. Escribiremos E = {x/x = 1, 2, 3, 4, 5, 6, 7} y si S ={x/x = 1, 3, 4}, S = {x/x = 2, 5, 6, 7} Definición: Si un conjunto no tiene elementos, se denomina conjunto nulo o conjunto vacío y será identificado por. Resumiendo El conjunto E de todos los resultados posibles de un experimento dado se llama el espacio muestral. Un resultado particular, esto es, un elemento de E, se llama punto muestral o muestra. Un evento A es un conjunto de resultados, llamado subconjunto del espacio muestral E. El evento {a} que consta de una muestra simple a Ese llama evento elemental. El conjunto vacío se denomina evento imposible. El espacio muestral E es también un evento llamado evento cierto. Podemos combinar eventos para formar nuevos eventos, utilizando las diferentes operaciones entre conjuntos: A B Es el evento que sucede si y sólo si A o B o ambos suceden A B Es el evento que sucede si y sólo si A y B suceden simultáneamente. A (Complemento de A), es el evento que sucede si y sólo si A no sucede. De las definiciones anteriores se desprenden los resultados siguientes, donde E es el espacio muestral, y A y B sucesos de E. 1. E = 2. Si A y B no tienen puntos comunes son mutuamente excluyentes A B=, no pueden suceder simultáneamente. 3. A E = A 4. A E = E 5. A A= A 6. A A= A 7. E A= A Ejemplos: Experimento: lanzar un dado y observar el número qu aparece en la cara superior. El espacio muestral será el siguiente: M.A.D.C

9 Cap.I Definiciones de Probabilidad 9 E = {1, 2, 3, 4,5, 6 Sean los eventos: A salir un número par, B salir impar, C = {2, 3, 5} } Tendremos que: A C { 2,3, 4,5,6} B C { 3,5} C = { 1, 4, 5} es el evento de que el número no sea primo = es el evento de que el número sea par o primo. = es el evento de que el número sea impar o primo Vemos que los eventos A y B son mutuamente exclusivos A B= ; un número par y un número impar no pueden ocurrir simultáneamente. Definición: Un espacio muestral E se dice que es discreto si contiene un número finito de puntos o un número infinito de puntos que pueden ponerse en correspondencia uno a uno con los número naturales (infinito numerable). Definición: Un espacio muestral E se llama espacio muestral continuo si contiene un continuo de puntos. (cualquier valor real). Ejercicios: 1.- Lance una moneda al aire 3 veces y observe la serie de caras (X) y de cecas (Y) que aparecen. Sean A el evento en que dos o más caras aparecen consecutivamente y B aquel en que todos los resultados son iguales. Qué operación entre A y B define el evento elemental en que aparecen caras solamente [HHH}?. Que tipo de evento es el que aparecen cinco caras? 2.-Sean los eventos A y B. Halle una expresión y represente el diagrama de Venn para el evento en que: a) A ocurre pero B no, (sucede solamente A); b) A o B suceden pero no ambos, (sucede exactamente uno de los dos eventos). 3.- Sean los eventos A, B y C. Hallar una expresión y represente el diagrama de Venn para el evento en que: a) suceden A y B pero no C; b) sucede A solamente. 4.- Lanzamos una moneda y un dado; sea el espacio muestral E que consta de 12 elementos. a) Exprese explícitamente los siguientes eventos A = { aparecen caras y un número par}; B = {aparece un número primo}; C = {aparecen cecas y un número impar}. b) Exprese el evento en que A o B suceden; B y C suceden, Sucede B solamente. c) Cuales de los eventos A, B y C son mutuamente exclusivos. 5.- Supongamos un espacio muestral E que consta de cuatro elementos E { a, b, c, d} =. Qué función define un espacio de probabilidad E? a) P( a) =, P( b) =, P( c) =, P( d) = ; b) P( a) =, P( b) =, P( c) =, P( d) = Sea E { a, b, c, d} =, y sea P una función de probabilidad de E Halle P (a) si: a) P( b) =, P( c) =, P( d) = ; b) P{ } =, P (, ) ({, } =, P bc bd ) ( b) = Prof. Miguel Ángel De Carlo

10 10 Probabilidad 3er año Desarrollo axiomático de la probabilidad. Hemos desarrollado los conceptos de probabilidad clásica y frecuencial, para ayudar a la solución de los problemas que se plantean desarrollaremos una teoría matemática de la probabilidad. En primer lugar enunciaremos los axiomas propios de la teoría. Dado un espacio muestral E, y un suceso A de E; es decir A es subconjunto de E. Diremos que P es una función de probabilidad en el espacio muestral E si se satisfacen los siguientes axiomas. Axioma 1.- P(A) es un número real tal que P(A) 0 para todo suceso A de E. De otra forma la probabilidad de un suceso es siempre mayor o igual a cero. Axioma 2.- La probabilidad de un suceso seguro es siempre la unidad P(E) = 1 Axioma 3.- Sean A 1, A 2, A 3,.., A n sucesos mutuamente excluyentes de E, es decir, Ai Aj = para i j PA ( A... A) = PA ( ) + PA ( ) PA ( ) 1 2 n 1 2 Estos axiomas están motivados por las definiciones de probabilidad clásica y frecuencial. Teorema: La probabilidad que no ocurra el suceso A, ( A ) es PA ( ) = 1 PA ( ). Demostración. Tenemos que: PA ( A) =1 por axioma 3, PA ( A) = 1= PA ( ) + PA ( ) PA ( ) = 1 PA ( ) n Teorema: La función de probabilidad P, es 0 P(A) 1 para cualquier suceso A de E. Demostración. Por axioma 1, P(A) 0 y el axioma 2, nos indica que el mayor valor, (suceso seguro) es 1 por lo tanto la probabilidad es un valor entre cero y uno. Teorema: Dado el espacio muestral E la probabilidad de su complemento es nula P( E ) = 0. Demostración. Como la probabilidad máxima es 1 y es justamente la del espacio muestral, la probabilidad de algo que no está en el espacio muestra es nula. Teorema si existe un conjunto vacío entonces la probabilidad P( ) = 0 Demostración. Sabemos que si A es un conjunto entonces: A = A debido a esto nos que la siguientes función, Restando P(A) en la igualdad. Nos queda. PA ( ) = PA ( ) = PA ( ) + P( ) PA ( ) PA ( ) = PA ( ) + P( ) PA ( ) P( ) = 0 M.A.D.C

11 Cap.I Definiciones de Probabilidad 11 Principio 1 Si un suceso A puede ocurrir de m maneras y un suceso diferente B puede ocurrir de n maneras, el suceso A o B puede ocurrir de m + n maneras, siempre que A y B no puedan ocurrir simultáneamente. Principio 2 Si un suceso A puede ocurrir de m maneras y un suceso diferente B puede ocurrir de n maneras, el suceso A y B puede ocurrir de m.n maneras. Ejemplo: Hacemos corresponder A a la extracción de un cuatro de la baraja, y B a la extracción de un siete. Cada uno de estos sucesos puede realizarse de 4 formas, el número de maneras que puede sacarse un cuatro o un siete es: = 8 Para el segundo principio un cuatro y un siete dos cartas extraídas de la baraja de modo que una sea un cuatro y la otra un siete, si hacemos un diagrama de árbol de la situación tendríamos: Vemos que con el cuatro de oros podemos poner cualquiera de los 4 sietes, con e l4 de bastos también y así sucesivamente para los demás cuatros por lo tanto el número de maneras posibles es 4.4 = 16 maneras. Teniendo en cuenta mas de dos sucesos por ejemplo el suceso A o B o C puede ocurrir de m + n + p maneras, y el suceso A y B y C puede ocurrir de A.B.C maneras. Recordemos también que cuando tenemos un conjunto de objetos y queremos calcular el número de disposiciones posibles empleamos la combinatoria. Si ahora queremos calcular la probabilidad que al extraer dos cartas del mazo una sea un cuatro y la otra un siete? Sabemos que el número de casos posibles es 16, para calcular el espacio muestral E utilizamos 40 40! combinaciones dado que no se plantea un orden en la extracción = = !.2! 16 4 PA= ( ) = Prof. Miguel Ángel De Carlo

12 12 Probabilidad 3er año Probabilidad condicional. Sucesos dependientes y sucesos independientes. Un suceso B se dice que es independiente de otro suceso A si la ocurrencia de A no modifica en modo alguno la probabilidad de la ocurrencia de B. Por el contrario si la probabilidad de B es afectada por la ocurrencia previa de A, entonces se dice que el suceso B depende del A. También se dice que la probabilidad de B es una probabilidad condicional. Si la probabilidad de B esta condicionada a la probabilidad de A se escribe P(B/A), probabilidad de que ocurra B dado A, siempre que P(A) > 0. Ejemplo: Imaginemos que en la experiencia de tirar un dado regular supiéramos de antemano que se ha obtenido un número par. Es decir, que se ha verificado el suceso: A = número par. Pregunta: Cuál es ahora la probabilidad de que se verifique el suceso mayor o igual a cuatro? La probabilidad del suceso B = mayor o igual a cuatro se ha modificado, depende de la ocurrencia del A = número par. E = {1, 2, 3, 4, 5, 6} A = {2, 4, 6} B = {4, 5, 6} Observemos, que al ocurrir A, el espacio muestral se reduce. En general, dado un experimento y su espacio muestral asociado, queremos determinar cómo afecta a la probabilidad de B el hecho de saber que ha ocurrido otro evento A. Si se a verificado el suceso A tendremos tres números 2, 4, 6 y para que se verifique el suceso B los números son 4 y 6, ya que sería par y mayor que cuatro. Lógicamente, el resultado sería: 2/3. Evidentemente, ha pasado de ser 1/2 (cuando no tenemos ninguna información previa) a ser 2/3 (cuando sabemos que se ha verificado el suceso A). Anotaremos P (B/A), que se lee como probabilidad de B condicionada al suceso A. Así, en este ejemplo, P (B/A) = A B 2 = A 3. Si lo analizamos con un diagrama de Venn Vemos que la posibilidad de la ocurrencia depende de la relación entre la intersección de los conjuntos y el primer conjunto considerado. A B PB ( / A) =. A Si queremos establecer una función de probabilidad para verificar que cumple con la axiomática establecida tenemos: M.A.D.C

13 Cap.I Definiciones de Probabilidad 13 P (B/A) depende de la probabilidad e ocurrencia de la probabilidad de P(A B) = 2 6 y la probabilidad de A P(A) = PA ( B) PB ( / A) = 6 PA ( ) = = Por lo tanto podemos decir entonces que la probabilidad condicionada de B con la ocurrencia de A es. ( A B) PB ( / A) = ó A PB ( / A) = PA ( B) PA ( ) Ejemplo: En una empresa con 200 empleados 100 hombres y 100 mujeres se debe seleccionar entre el personal para formar una comisión para supervisar las decisiones de la directora, como esta tiene cierto temor a que el comité tenga mayoría de hombres, propone que los miembros del comité sean no fumadores. Teniendo en cuenta que los empleados se distribuyen según la tabla adjunta, que expectativas tiene la directora de formar un comité con mayoría de mujeres. Hombres Mujeres Total Fuman No fuman Total Probabilidad de seleccionar un no fumador y sea hombre Probabilidad de seleccionar un no fumador y sea mujer 30 PH ( / nof ) = = PM ( / nof ) = = Crecen las posibilidades de formar una comisión con mayoría de mujeres. En el siguiente ejemplo la tabla nos muestra probabilidades Una población en la que cada individuo es clasificado según dos criterios: es o no portador de HIV y pertenece o no a cierto grupo de riesgo que denominaremos R. La correspondiente tabla de probabilidades es: Portador (A) No portador ( A ) Pertenece a R (B) 0,3 % 1,7 % 2,0 % No pertenece a R ( B ) 0,3 % 97,7 % 98,0 % 0,6 % 99,4 % 100 % Estas probabilidades se pueden trabajar directamente ya que la fórmula lo permite En esta población, la probabilidad de que un individuo sea portador es P(A)=0,6 %y la probabilidad de que sea portador y pertenezca al grupo de riesgo R es P(A B)=0,3 %. Prof. Miguel Ángel De Carlo

14 14 Probabilidad 3er año Dado que una persona seleccionada al azar pertenece al grupo de riesgo R, cuál es la probabilidad de que sea portador? PA ( B) PB ( / A) = = 0,3 PA ( ) 2 = 0,15 Es decir que 150 de cada 1000 individuos del grupo de riesgo R, son probablemente portadores de HIV. Calculemos ahora la probabilidad de que una persona sea portadora de HIV, dado que no pertenece al grupo de riesgo R. PA ( B) PB ( / A) = = 0,3 PA ( ) 98 = 0,00306 Es decir que sólo 3 de cada 1000 individuos no pertenecientes al grupo de riesgo R, son posibles portadores de HIV. Propiedades de la Probabilidad condicional: Dado un suceso A fijo tal que P(A) > 0, P(Β A) es una probabilidad, en el sentido que satisface los axiomas de probabilidad y por lo tanto todas las propiedades que se deducen a partir de ellos. Por ejemplo: Propiedad 1. P (B/A) 0 para todo suceso B. Satisface el axioma ya que ambos valores son 0 Propiedad 2. P (E A) = 1. E A A Demostración PE ( / A) = = = 1 Satisface el axioma 2 A A Propiedad 3. P((A1 A2) A) = P(A1 A) + P(A2 A) P((A1 A2) A) El axioma 3 dice que PA ( 1 A2... An) = PA ( 1) + PA ( 2) PA ( n) Sabemos que: la suma de los cardinales de dos conjuntos A y B es igual al cardinal de la unión si y sólo sí los conjuntos son disjuntos la probabilidad de que ocurra un suceso A o el suceso B o ambos, es igual a la probabilidad de que ocurra el suceso A, más la probabilidad de que ocurra el suceso B, menos la probabilidad de que ocurra A y B simultáneamente. Podemos escribir A B = A ( A B). {2,4,5,6} = {2,4,6} {5} En la figura A = {2,4,6} ; B = {4,5,6} ; A = {1,3,5} ; A B = {5} Vemos que A y A B son disjuntos por axioma 3 tenemos: A su vez B = (A B) ( A B) P(A B) = P[A ( A B)] = P(A) + P( A B) como los dos conjuntos(a B) y ( A B) son disjuntos P(B) = P((A B) ( A B)) = P(A B) + P( A B) despejando P( A B) = P(B) P(A B) Sustituyendo P(A B) = P(A) + P( A B) = P(A) + P(B) P(A B) M.A.D.C

15 Cap.I Definiciones de Probabilidad 15 Ejercicios: 1.- Lanzamos dos dados y la suma de los mismos es 6, halle la probabilidad de que uno de los dados sea Si lanzamos dos dados y aparece un cinco en el primer dado, halle la probabilidad de que la suma de los dados sea 10 o mayor que halle la probabilidad de que la suma de dos dados sea 10 o mayor que 10 si al lanzarlos aparece por lo menos un 5 en uno de los dados. 4.- Se lanzan tres monedas corrientes. Halle la probabilidad de que sean todas caras si, a) la primera de las monedas es cara, b) una de las monedas es cara. 5.- Se tiran un par de dados. Si los dos números que aparecen son diferentes, halle la probabilidad de que, a) la suma sea seis, b) aparezca un as, c) la suma sea menor o igual a cuatro. 6.- En la ciudad hay tres clubes: Student, Gymnastic, Deportivo. Se efectúa un referéndum para decidir el cierre de uno los clubes de fútbol. En la tabla se reflejan los resultados en función del club al que votó cada ciudadano. Student Gymnastic Deportivo Total SI 15 % 25 % 12 % NO Total 25% 5 % 8 % a) Cual es el porcentaje de votantes por club. b) Que probabilidad hay de que una persona tomada al azar haya votado SI. c) Calcule la probabilidad de que si una persona voto SI sea de Gymnastic d) Que club tiene mayor probabilidad de cierre. 7.- Se escogen al azar los dígitos del 1 hasta 9. Si la suma es par, halle la probabilidad p de que ambos números sean impares. 8.- En un colegio 25 % de los estudiantes adeudan matemáticas, 15 % adeudan química y 10 % adeudan las dos. Si se selecciona un estudiante al azar. a) Si adeuda química, cuál es la probabilidad de que también adeude Matemática? b) Si debe matemática, cuál es la probabilidad que también adeude química? c) Cuál es la probabilidad de que adeude matemática o química? 9.-Sean los eventos A y B con P(A) = 1 2, P(B) = 1 3 y P(A B) = 1 4. Halle: a) P(A/B); b) P(B/A); c) P(A B) 10.- Calcule P(A/B) y P(B/A) con los datos del ejercicio anterior. Prof. Miguel Ángel De Carlo

16 16 Probabilidad 3er año Ley multiplicativa de las probabilidades. Dados dos sucesos A y B ambos distintos de cero. La probabilidad de los sucesos Ay B es igual a la probabilidad condicional de B, en el supuesto de que ha ocurrido A, multiplicada por la probabilidad de A. En Símbolos despejando de la ecuación de probabilidad condicional queda: P(A B) =P(A).P(B/A) P(A B) =P(B).P(A/B) En la figura tenemos un espacio muestral finito donde cada punto tiene la probabilidad 1/n, siendo n el número de puntos de la figura, m 1 es el número de puntos del conjunto A (incluyendo los que son comunes a B), m 2 el número de puntos de B y m 3 el número de los puntos comunes a A y B. Suponiendo que m 1 y m 2 son mayores que cero. P(A B) = m 3 n ; P(A) = m1 n ; P(B) = m2 n De donde se deduce: PA ( / B) PA ( B) PB ( ) m 3 = = ; m P(A B) =P(A).P(B/A) = P(A B) =P(B).P(A/B) = 2 PA ( B) m PB ( / A) = = PA ( ) m m 1 3 n m = 3. m 1 m n m 2 3 n m = 3 Ejemplo: De una urna que contiene 2 bolas negras, 3 blancas y 4 rojas. Cuál es la probabilidad de que la primera bola extraída sea roja y la segunda blanca. (La primera no se devuelve a la urna).. m 2 m n 3 1 P(A) es la probabilidad de extraer una bola roja en una sola extracción = 4 9 P(B/A) es la probabilidad de extraer una bola blanca cuando ya se ha sacado una roja = 3 8 P(A B) = = 1 6 Ejercicios: 1.- Una clase tiene 12 niños y 4 niñas. Si se toman tres estudiantes al azar. Cuál es la probabilidad de que sean todos niños. 2.- Un lote de 12 artículos tiene 4 defectuosos. Se toman al azar tres artículos del lote uno tras otro. Halle la probabilidad de que sean todos buenos. 3.- A un jugador le reparten 5 cartas una tras otra de una baraja corriente de 52 cartas. Cuál es la probabilidad de que todas sean diamantes. 4.- Calcule la probabilidad de obtener tres ases al extraer tres cartas de una baraja de 40 naipes? (sacamos las cartas una a una sin reposición) M.A.D.C

17 Cap.I Definiciones de Probabilidad 17 Independencia Si P(A/B) no depende del suceso B, diremos que los sucesos A y B son independientes. Esto se expresa por la siguiente definición: Definición.- Sean A y B dos sucesos de un espacio muestral E. Se dice que estos dos sucesos son independientes si se satisface cualquiera de las siguientes igualdades: a) P(A/B) = P(A) b) P(B/A) = P(B) c) P(A B) = P(A).P(B) Ejemplos: Suponemos que se lanza un dado dos veces y que deseamos hallar la probabilidad de que los resultados sean dos y tres en ese orden. P(B/A) = P(B) = 1/6 al lanzar el segundo dado no hay influencia del primero. Se lanza una moneda tres veces y consideramos los eventos: A = {Primeros lanzamientos son caras} B = {Segundos lanzamientos son caras} C = {Exactamente se lanzan dos caras seguidas} Cuáles son eventos independientes entre sí. A simple vista vemos que A y B son independientes, porque el hecho de que la primer moneda sea cara o no influye en la ocurrencia de B segundo lanzamiento sea cara. Lo mismo ocurre al comparar A con C, ya que si el primer lanzamiento es cara la segunda moneda puede ser cara o no. En cambio si el segundo lanzamiento no es cara la consigna de C no se cumple, deben ser dos caras seguidas y para lograrlo la segunda debe ser necesariamente cara. Ubicaremos los conjuntos y analizaremos las posibilidades: E = {CCC, CCX, CXC, XCC, CXX, XCX, XXC, XXX} 4 1 PA= ( ) = ; PB ( ) = = ; 8 2 P(A) = {CCC, CCX, CXC, CXX}. P(B) = {CCC, CCX, XCC, XCX}. P(C) = {CCX,XCC} 2 1 PC ( ) = = 8 4 P(A B) = = 4 P(A).P(B) = 1. 1 = 1 Son independientes P(A C) = 1 8 P(B C) = 1 4 P(A).P(C) = 1. 1 = 1 Son independientes P(B).P(C) = 1. 1 = 1 Existe dependencia Prof. Miguel Ángel De Carlo

18 18 Probabilidad 3er año Regla de Bayes (Teorema de Bayes) En el Teorema de la probabilidad total: a partir de las probabilidades del suceso A (probabilidad de que llueva o de que haga buen tiempo) deducimos la probabilidad del suceso B (que ocurra un accidente). En el Teorema de Bayes: a partir de que ha ocurrido el suceso B (ha ocurrido un accidente) deducimos las probabilidades del suceso A ( estaba lloviendo o hacía buen tiempo?). Desarrollaremos la fórmula a través del siguiente ejemplo. Ejemplo: Dadas tres cajas A, B y C que contienen bolitas de colores, en A hay 3 rojas y 5 negras, en B 2 rojas y 1 negra y en C 2 rojas y 3 negras. Si tomamos una de las bolitas al azar de cualquiera de las cajas, si la bolita es roja cual es la probabilidad de que provenga de la caja A. Un diagrama de árbol ayuda a ver la composición de la probabilidad. La probabilidad total de obtener rojo, se obtiene de ponderar globalmente las probabilidades de elegir una caja y luego de sacar una bolita roja. Tendríamos entonces viene de la caja A y es roja o viene de la caja B y es roja o viene de la caja C y es roja en símbolos tenemos: P(R) = P(A) P( R A) + P(B) P( R B) + P(C) P( R C) PR ( ) =. + + = 0, Pero como queremos calcular que si la bolita es roja proviene de la caja A, aplicando la regla del producto será: P(A R) = P(A).P(R A) 13 PA ( R) = = 0, Finalmente la probabilidad de que la bolita roja provenga de A será el cociente entre P(A R) y la probabilidad total. PAPR ( ). ( A) PA ( R) = PA ( ). PR ( A) + PB ( ). PR ( B) + PC ( ). PB ( R) = 0,125 0, 48 = 0,26 Deducimos entonces que si la bolita es roja existen un 26% de posibilidades de que sea de la caja A. Ejercicios 1) Tres máquinas A,B,C producen el 45%, 30% y 25 % respectivamente del total de las piezas de una fábrica, los porcentajes de producción defectuosa de estas máquinas son el 3%, 4% y 5%. a) Seleccionamos una pieza al azar, calcular la probabilidad de que sea defectuosa. b) Tomamos al azar una pieza y resulta defectuosa calcule la probabilidad de que provenga de la máquina B. c) Que máquina tiene la mayor probabilidad de producir una pieza defectuosa. 2) En el Instituto el 4% de los hombres y el 1% de las mujeres tienen más de 1,75 m de altura. Además 60% de los estudiantes son mujeres. Si seleccionamos un alumno al azar y más alto de de 1,75 m Cuál es la probabilidad de que sea mujer? M.A.D.C

19 Cap.I Definiciones de Probabilidad 19 3) El parte meteorológico ha anunciado tres posibilidades para el fin de semana: a) Que llueva: probabilidad del 50%. b) Que nieve: probabilidad del 30% c) Que haya niebla: probabilidad del 20%. Según estos posibles estados meteorológicos, la posibilidad de que ocurra un accidente es la siguiente: a) Si llueve: probabilidad de accidente del 20%. b) Si nieva: probabilidad de accidente del 10% c) Si hay niebla: probabilidad de accidente del 5%. Efectivamente el fin de semana ocurre un accidente, cuál es la probabilidad de que estuviera nevando en el momento del accidente? 4) La caja A contiene nueve cartas numeradas del 1 al 9 y la caja b cinco cartas numeradas de 1 a 5. Se escoge una caja al azar y se saca una carta. Si el número es para, que probabilidad hay de que la carta sea de la caja A. Variables aleatorias A menudo es ventajoso asociar un conjunto de números Reales con el resultado de un experimento aleatorio. Si representamos con E el espacio muestral y en el definimos una función de probabilidad. Sea x una función de valores reales definida en E (la función transforma puntos de E en puntos del eje x). Se dice que x es una variable aleatoria unidimensional. Si es e un punto del espacio E y x una variable aleatoria x(s) es el valor de la variable aleatoria en e. Ejemplo: Tirar dos veces una moneda. El espacio muestral esta formado por cuatro puntos. e 1 = (c,c), e 2 = (c,x), e 3 = (x,c), e 4 = (x,x) Sea x una variable aleatoria, podemos definir x i como el número de tiradas caras en e i. Puntos de E e 1 e 2 e 3 e 4 x(e) Podemos escribir: P(x=0) para designar P(e / x(e) = 0) = P(e 4 ) = ¼ P(x=1) para designar P(e / x(e) = 1) = P(e 2 e 3 ) = ½ P(x=2) para designar P(e / x(e) = 2) = P(e 1 ) = ¼ P(xi) = ¼ + ½ + ¼ = 1 Una variable aleatoria se dice discreta si toma solamente un número finito o una cantidad numerable de valores. La variable es continua si toma un continuo de valores. Prof. Miguel Ángel De Carlo

20 20 Probabilidad 3er año A veces una variable aleatoria unidimensional no resulta adecuada para nuestros propósitos y debemos seleccionar variables de más dimensiones. Definición: Dado el espacio muestral E, sean x e y dos funciones de valores reales en E. El par (x,y) recibe el nombre de variable aleatoria bidimensional. Transforma puntos de E en puntos del plano (x, y). Una definición similar es válida para la distribución conjunta de n variable s aleatorias, siendo n cualquier número natural. Tomaremos el conjunto de tiradas del ejemplo anterior considerando el número de caras en la primer tirada y el número de caras en la segunda tirada, en dos tablas Definimos por: x: número de caras en la primer tirada Puntos de E (c, c) (c, x) (x, c) (x, x) x(s) x: número de caras en la segunda tirada Puntos de E (c, c) (c, x) (x, c) (x, x) x(s) La variable aleatoria bidimensional (x, y ) está definida por: Puntos de E (c, c) (c, x) (x, c) (x, x) Valores (x, y) (1, 1) (1, 0) (0, 1) (0, 0) P (1, 1) = ¼ P (1, 0) = ¼ Vemos que P (xi, yi) 0 P (0, 1) = ¼ P (1, 1) + P (1, 0) + P (0, 1) + P(0, 0) = 1 P(0, 0) = ¼ Ejemplo: Se lanza un par de dados, dado el espacio finito equiprobable E (espacio muestral con un número finito de valores con igual probabilidad) que consta de pares ordenados de números entre 1 y 6. E = {(1, 1), (1, 2),.., (6, 6)} X(e) una variable aleatoria con imagen x(e) = {1, 2, 3, 4, 5, 6}. Calcule la distribución de f(xi) si x hace corresponder a cada punto de E el máximo de sus números. P(x = 1) es P(1, 1) = 1/ P(x = 2) es P{(1, 2), (2, 1), (2, 2)} =3/ xi P(xi) M.A.D.C

21 Cap.I Definiciones de Probabilidad 21 Si en cambio hacemos corresponder a cada punto de E la suma de los dos dados: tendremos un nuevo espacio muestral que será: x(a, b) = a + b X (E) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} xi P(xi) Distribución y esperanza de una variable aleatoria finita Si x es una variable aleatoria de E con el conjunto imagen finito. x(e) = {x 1, x 2,, x n } la probabilidad de xi es P(x = xi) que podemos escribir f(xi) definida como f(xi) = P(x = xi) se llama función de distribución o probabilidad de x. que satisface f(xi) 0 y que la esperanza o valor esperado de x VE(x) será: n i= 1 f( xi) = 1, de acuerdo a esto decimos VE(x) = x 1.f(x 1 ) +x 2.f(x 2 ) + +x n.f(x n ) = n i= 1 x. f( x ) i i Ejemplo. Un jugador tira un dado. Si sale un número primo gana su valor en dólares, pero si no sale primo pierde su valor en dólares. Le conviene el juego al jugador? Si el jugador gana los valores del dado serán : A= {2, 3, 5} Si el jugador pierde los valores del dado serán: B={1, 4, 6} Para todos los casos la probabilidad es 1/6. Acomodando los valores y poniendo en negativo a aquellos por los cuales pierde la tabla será: El valor esperado: xi f(xi) VE(xi) = ( ) + ( ) = 1 6 [(2+3+5) + (-1-4-6)] = No le conviene el juego al jugador ya que tiene una esperanza negativa del 17% Prof. Miguel Ángel De Carlo

22 22 Probabilidad 3er año Ejercicios. 1.- Sean A, B, C sucesos (subconjuntos) de un espacio muestral E, definido por M.A.D.C

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS 1 SUCESOS Experimento aleatorio. Es aquel que al repetirlo en análogas condiciones, da resultados diferentes, es decir, no se puede predecir el resultado que se va a obtener. Ejemplos: - Lanzar una moneda

Más detalles

TEORIA DE LA PROBABILIDAD

TEORIA DE LA PROBABILIDAD TEORIA DE LA PROBABILIDAD 2.1. Un poco de historia de la teoría de la probabilidad. Parece evidente que la idea de probabilidad debe ser tan antigua como el hombre. La idea es muy probable que llueva mañana

Más detalles

Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS

Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 TEMA 11 CÁLCULO DE PROBABILIDADES 11.0 INTRODUCCIÓN 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS Un suceso aleatorio

Más detalles

Tema 3 Probabilidades

Tema 3 Probabilidades Probabilidades 1 Introducción Tal vez estemos acostumbrados con algunas ideas de probabilidad, ya que esta forma parte de la cultura cotidiana. Con frecuencia escuchamos a personas que hacen afirmaciones

Más detalles

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en 1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en las sucesivas tiradas, se repite el experimento en condiciones similares

Más detalles

Conceptos Básicos de Probabilidad

Conceptos Básicos de Probabilidad Conceptos Básicos de Probabilidad Debido a que el proceso de obtener toda la información relevante a una población particular es difícil y en muchos casos imposible de obtener, se utiliza una muestra para

Más detalles

Experimentos aleatorios. Espacio muestral

Experimentos aleatorios. Espacio muestral Experimentos aleatorios. Espacio muestral Def.- Un fenómeno o experimento decimos que es determinista si podemos conocer su resultado antes de ser realizado. Si dejamos caer un objeto desde cierta altura

Más detalles

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 2. Probabilidad Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 Contenidos 1 Experimentos aleatorios 2 Algebra de sucesos 3 Espacios

Más detalles

Unidad 14 Probabilidad

Unidad 14 Probabilidad Unidad 4 robabilidad ÁGINA 50 SOLUCIONES Calcular variaciones.! 5! 4 a) V, 6 b) 5, 60 c),4 6 ( )! V (5 )! VR Calcular permutaciones. a)! 6 b) 5 5! 0 c) 0 0! 68 800! 9 96 800 palabras diferentes. Números

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 008 _ 0-048.qxd 9/7/08 9:07 Página 405 4 Probabilidad INTRODUCCIÓN En la vida cotidiana tienen lugar acontecimientos cuya realización es incierta y en los que el grado de incertidumbre es mayor o menor

Más detalles

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

EJ:LANZAMIENTO DE UNA MONEDA AL AIRE : S { } { } ESPACIO MUESTRAL:CONJUNTO DE TODOS LOS SUCESOS ELEMENTALES DE UN EXPERIMENTO ALEATORIO.

EJ:LANZAMIENTO DE UNA MONEDA AL AIRE : S { } { } ESPACIO MUESTRAL:CONJUNTO DE TODOS LOS SUCESOS ELEMENTALES DE UN EXPERIMENTO ALEATORIO. GUIA DE EJERCICIOS. TEMA: ESPACIO MUESTRAL-PROBABILIDADES-LEY DE LOS GRANDES NUMEROS. MONTOYA.- CONCEPTOS PREVIOS. EQUIPROBABILIDAD: CUANDO DOS O MAS EVENTOS TIENEN LA MISMA PROBABILIDAD DE OCURRIR. SUCESO

Más detalles

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral.

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral. Capítulo 2 Probabilidades 2. Definición y propiedades Al realizar un experimento aleatorio nuestro interés es obtener información sobre las leyes que rigen el fenómeno sometido a estudio. El punto de partida

Más detalles

PROBABILIDAD. 2.1. Experimentos aleatorios. 2.2. Definiciones básicas

PROBABILIDAD. 2.1. Experimentos aleatorios. 2.2. Definiciones básicas Capítulo 2 PROBABILIDAD La probabilidad y la estadística son, sin duda, las ramas de las Matemáticas que están en mayor auge en este siglo, y tienen una tremenda aplicabilidad en todos los aspectos y ciencias,

Más detalles

PROBABILIDAD ELEMENTAL

PROBABILIDAD ELEMENTAL PROBABILIDAD ELEMENTAL La mayoría de estos problemas han sido propuestos en exámenes de selectividad de los distintos distritos universitarios españoles.. Una caja con una docena de huevos contiene dos

Más detalles

PARTE 1 PROBLEMAS PROPUESTOS FACTORIAL. 2. 31 Calcular:

PARTE 1 PROBLEMAS PROPUESTOS FACTORIAL. 2. 31 Calcular: PARTE 1 FACTORIAL 2. 31 Calcular: PROBLEMAS PROPUESTOS i. 9!, (9)(8)(7)(6)(5)(4)(3)(2)(1) = 362880 ii. 10! (10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 3628800 iii. 11! (11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 39916800

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD.

INTRODUCCIÓN A LA PROBABILIDAD. INTRODUCCIÓN A LA ROBABILIDAD. Departamento de Matemáticas Se denomina experimento aleatorio a aquel en que jamás se puede predecir el resultado. El conjunto formado por todos los resultados posibles de

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 7 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

CAPÍTULO 5. Probabilidad. 5.1 Álgebra de sucesos. 1. Experimento lanzar un dado y anotar la cara que sale:

CAPÍTULO 5. Probabilidad. 5.1 Álgebra de sucesos. 1. Experimento lanzar un dado y anotar la cara que sale: CAPÍTULO 5 Probabilidad 5.1 Álgebra de sucesos 5.1.1 Fenómenos determinísticos y aleatorios En la naturaleza se producen dos tipos de fenómenos: Determinísticos: Son los fenómenos que siempre que se efectúen

Más detalles

LAS PROBABILIDADES Y EL SENTIDO COMÚN

LAS PROBABILIDADES Y EL SENTIDO COMÚN LAS PROBABILIDADES Y EL SENTIDO COMÚN Existen leyes del azar? Nuestro sentido común pareciera decirnos que el azar y las leyes son conceptos contradictorios. Si algo sucede al azar, es porque no hay leyes

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES 8 Unidad didáctica 8. Cálculo de probabilidades CÁLCULO DE PROBABILIDADES CONTENIDOS Experimentos aleatorios Espacio muestral. Sucesos Sucesos compatibles e incompatibles Sucesos contrarios Operaciones

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 3. Definición intuitiva de probabilidad: ley de Laplace La palabra probabilidad, que usamos habitualmente, mide el grado de creencia que tenemos de que ocurra un hecho que puede pasar o no pasar. Imposible,

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II Probabilidad

Matemáticas aplicadas a las Ciencias Sociales II Probabilidad Matemáticas aplicadas a las Ciencias Sociales II Índice 1. Experimentos aleatorios 2 1.1. Espacio muestral...................................... 2 1.2. Los sucesos.........................................

Más detalles

Tema 11 Probabilidad Matemáticas B 4º ESO 1

Tema 11 Probabilidad Matemáticas B 4º ESO 1 Tema 11 Probabilidad Matemáticas B 4º ESO 1 TEMA 11 PROBABILIDAD SUCESOS EJERCICIO 1 : En una bolsa hay 8 bolas numeradas del 1 al 8. Extraemos una bola al azar y anotamos su número. a Escribe el espacio

Más detalles

Clase 4: Probabilidades de un evento

Clase 4: Probabilidades de un evento Clase 4: Probabilidades de un evento Definiciones A continuación vamos a considerar sólo aquellos experimentos para los que el EM contiene un número finito de elementos. La probabilidad de la ocurrencia

Más detalles

TEMA I. PROBABILIDAD

TEMA I. PROBABILIDAD TEMA I. PROBABILIDAD I.1. La Probabilidad. El Origen. Francia, 1654. A mediados del siglo XVI la alta sociedad francesa, ociosa y sin ocupación, tenia en los juegos de azar una de sus principales diversiones.

Más detalles

2 3 independientes? y mutuamente excluyentes? Halla )

2 3 independientes? y mutuamente excluyentes? Halla ) EJERCICIOS DE PROBABILIDAD para hacer en casa IES Jovellanos 1º BI-NS Probabilidad 1. a) Demuestre mediante un diagrama de Venn que ( A B) \ ( A C) = A ( B \ C) b) Demuestre con propiedades Booleanas que

Más detalles

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I 1. Supongamos que Ω = A B y P (A B) = 0.2. Hallar: (a) El máximo valor posible para P (B), de tal manera

Más detalles

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125. MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido

Más detalles

PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán.

PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. PROBABILIDAD Junio 1994. El año pasado el 60% de los veraneantes de una cierta localidad

Más detalles

Lección 22: Probabilidad (definición clásica)

Lección 22: Probabilidad (definición clásica) LECCIÓN 22 Lección 22: Probabilidad (definición clásica) Empezaremos esta lección haciendo un breve resumen de la lección 2 del libro de primer grado. Los fenómenos determinísticos son aquellos en los

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de ntonio Francisco Roldán López de Hierro * Convocatoria de 2007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7

Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7 Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7 Definiciones: 1- La probabilidad estudia la verosimilitud de que determinados sucesos o eventos ocurran o no, con respecto a otros sucesos o eventos

Más detalles

Diana del Pilar Cobos del Angel. Experimento: Es una prueba o ensayo. Es el proceso de obtener una observación.

Diana del Pilar Cobos del Angel. Experimento: Es una prueba o ensayo. Es el proceso de obtener una observación. Diana del Pilar Cobos del Angel Términos básicos Experimento: Es una prueba o ensayo. Es el proceso de obtener una observación. Eventos Simples: Cualquier resultado básico de un experimento. Un evento

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1]

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1] Probabilidad Un fenómeno es aleatorio si conocemos todos sus posibles resultados pero no podemos predecir cual de ellos ocurrirá. Cada uno de estos posibles resultados es un suceso elemental del fenómeno

Más detalles

Teoría de Probabilidad Recopilado por JAMH. Rev. agosto 2004

Teoría de Probabilidad Recopilado por JAMH. Rev. agosto 2004 Teoría de Probabilidad Recopilado por JAMH. Rev. agosto 2004 Vivimos en un mundo de incertidumbre, no sabemos lo que nos depara exactamente el mañana. Sin embargo, muchas veces conocemos los posibles evento

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

2.- PROBABILIDAD. En este tema se estudian los sucesos aleatorios y la probabilidad de los mismos. Estos sucesos se rigen por el azar.

2.- PROBABILIDAD. En este tema se estudian los sucesos aleatorios y la probabilidad de los mismos. Estos sucesos se rigen por el azar. 1 II. 2.- PROBABILIDAD 0.-Combinatoria. Una razonable probabilidad es la única certeza. (Howe). En este tema se estudian los sucesos aleatorios y la probabilidad de los mismos. Estos sucesos se rigen por

Más detalles

Clase 3: Introducción a las Probabilidades

Clase 3: Introducción a las Probabilidades Clase 3: Introducción a las Probabilidades Introducción Tal vez estemos acostumbrados con algunas ideas de probabilidad, ya que esta forma parte de la cultura cotidiana. Con frecuencia escuchamos a personas

Más detalles

Notas de Probabilidades

Notas de Probabilidades 1 Introducción Notas de Probabilidades En la vida cotidiana nos encontramos con frecuencia con situaciones que producen varios resultados conocidos, sin poder determinar con exactitud cual de ellos ocurrirá.

Más detalles

EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30

EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30 EVALUACIÓN 1. Si la probabilidad que llueva en San Pedro en verano es 1/30 y la probabilidad que caigan 100 cc es 1/40, cuál es la probabilidad que no llueva en San Pedro y que no caigan 100 cc? A) 1/1200

Más detalles

Probabilidad Colección B.1. MasMates.com Colecciones de ejercicios

Probabilidad Colección B.1. MasMates.com Colecciones de ejercicios 1. Tenemos un dado (con sus seis caras numeradas del 1 al 6), trucado en el que es dos veces mas probable que salga un número par que un número impar. a) Calcula la probabilidad de salir par y la de salir

Más detalles

Problemas de Probabilidad(Selectividad) Ciencias Sociales

Problemas de Probabilidad(Selectividad) Ciencias Sociales Problemas de Probabilidad(Selectividad) Ciencias Sociales Problema 1 En un instituto se ofertan tres modalidades excluyetes, A, B y C, y dos idiomas excluyentes, inglés y francés. La modalidad A es elegida

Más detalles

Repaso de Cálculo de Probabilidades Básico

Repaso de Cálculo de Probabilidades Básico Repaso de Cálculo de Probabilidades Básico 1.2. Introducción Se comienza este tema con la noción de probabilidad y la terminología subyacente. La probabilidad constituye por sí misma un concepto básico

Más detalles

I.E.S. CUADERNO Nº 12 NOMBRE: FECHA: / / Probabilidad

I.E.S. CUADERNO Nº 12 NOMBRE: FECHA: / / Probabilidad Probabilidad Contenidos 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos incompatibles 2. Probabilidad de un suceso La regla de Laplace Frecuencia y probabilidad Propiedades

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD POBLEMAS ESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: POBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B eserva 1, Ejercicio 3, Opción A

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES Página PARA EMPEZAR, REFLEXIONA Y RESUELVE Calcula matemáticamente cuál es la probabilidad de que no toque raya en la cuadrícula de cm cm una moneda de cm de diámetro. De qué

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008 Probabilidad 2008 EJERCICIO A Laura tiene en su monedero 6 monedas francesas, 2 italianas y 4 españolas. Vicente tiene 9 francesas y 3 italianas. Cada uno saca, al azar, una moneda de su monedero y observa

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

El azar y la probabilidad. Un enfoque elemental

El azar y la probabilidad. Un enfoque elemental El azar y la probabilidad. Un enfoque elemental Experimentos al azar El azar puede percibirse fácilmente cuando se repite muchas veces una acción cuyo resultado no conocemos, como tirar dados, repartir

Más detalles

16 SUCESOS ALEATORIOS. PROBABILIDAD

16 SUCESOS ALEATORIOS. PROBABILIDAD EJERCICIOS PROPUESTOS 16.1 Indica si estos experimentos son aleatorios y, en caso afirmativo, forma el espacio muestral. a) Se extrae, sin mirar, una carta de una baraja española. b) Se lanza un dado tetraédrico

Más detalles

Tema 3. Concepto de Probabilidad

Tema 3. Concepto de Probabilidad Tema 3. Concepto de Probabilidad Presentación y Objetivos. El Cálculo de Probabilidades estudia el concepto de probabilidad como medida de incertidumbre. En situaciones donde se pueden obtener varios resultados

Más detalles

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 13. COMBINACIONES Y PROBABILIDAD

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 13. COMBINACIONES Y PROBABILIDAD FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 13. COMBINACIONES Y PROBABILIDAD Grado 11 Taller # 13 Nivel II RESEÑA HISTORICA El concepto de Probabilidad ha evolucionado en

Más detalles

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales 1 PROBABILIDAD 1.(97).- Para realizar un control de calidad de un producto se examinan tres unidades del producto, extraídas al azar (y sin reemplazamiento) de un lote de 100 unidades. Las unidades pueden

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. Sean A y B dos sucesos y A, B sus complementarios. Si se verifica que p( B) = 2 / 3, p( A B) = 3 / 4 y p( A B) = 1/ 4, hallar: p( A), p( A B), y la probabilidad condicionada

Más detalles

Probabilidad 0.9 0.9 0.8 0.9 0.95 0.75. U. D. de Matemáticas de la ETSITGC de la U.P.M. Asignatura: Cálculo y Estadística 1

Probabilidad 0.9 0.9 0.8 0.9 0.95 0.75. U. D. de Matemáticas de la ETSITGC de la U.P.M. Asignatura: Cálculo y Estadística 1 .- Obtener la probabilidad de las siguientes jugadas en una mano de 5 cartas de una baraja de 5 cartas: a) Pareja. b) Doble pareja. c) Trío. d) Escalera. e) Color. f) Full. g) Póker h) Escalera de color..-

Más detalles

14Soluciones a los ejercicios y problemas

14Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 8 Pág. P RACTICA Relaciones entre sucesos En un sorteo de lotería observamos la cifra en que termina el gordo. a) Cuál es el espacio muestral? b)escribe los

Más detalles

TEMA 14 CÁLCULO DE PROBABILIDADES

TEMA 14 CÁLCULO DE PROBABILIDADES Tema 14 Cálculo de probabilidades Matemáticas I 1º Bachillerato 1 TEMA 14 CÁLCULO DE PROBABILIDADES ESPACIO MUESTRAL. SUCESOS EJERCICIO 1 : En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una

Más detalles

Introducción al Cálculo de Probabilidades a través de casos reales

Introducción al Cálculo de Probabilidades a través de casos reales MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Introducción al Cálculo de Probabilidades a través de casos reales Paula Lagares Barreiro * Federico Perea

Más detalles

PROBABILIDAD. 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles.

PROBABILIDAD. 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles. OPCION A: 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles. k t si t [0,2] b) Sea f(t)= 0 en el resto Calcular k para que f sea de densidad, calcular la función de distribución. 2. a) De

Más detalles

Problemas de Probabilidad Soluciones

Problemas de Probabilidad Soluciones Problemas de Probabilidad Soluciones. En una carrera participan los caballos A, B, C y D. Se estima que la probabilidad de que gane A es el doble de la probabilidad de que gane cada uno de los otros tres.

Más detalles

Probabilidad Colección C.2. MasMates.com Colecciones de ejercicios

Probabilidad Colección C.2. MasMates.com Colecciones de ejercicios 1. En un examen teórico para la obtención del permiso de conducir hay 14 preguntas sobre normas, 12 sobre señales y 8 sobre educación vial. Si se eligen dos preguntas al azar. a) Cuál es la probabilidad

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD EJERCICIOS DE PROBABILIDAD 1. Se extrae una carta de una baraja española, calcula la probabilidad de que: a) Sea un rey; b) Sea un oro; c) Sea el rey de oros; d) Sea un rey o un oros; e) Sea un rey o una

Más detalles

P R O B A B I L I D A D

P R O B A B I L I D A D P R O B A B I L I D A D INTRODUCCIÓN: El nacimiento del cálculo de probabilidades estuvo ligado a los juegos de azar. Cardano (que tenía una afición desordenada por el ajedrez y los dados, según reconoce

Más detalles

Ejercicios y problemas resueltos de probabilidad condicionada

Ejercicios y problemas resueltos de probabilidad condicionada Ejercicios y problemas resueltos de probabilidad condicionada 1.- Sean A y B dos sucesos aleatorios con p(a) = 1/2, p(b) = 1/3, p(a B)= 1/4. Determinar: 1 2 3 4 5 2.- Sean A y B dos sucesos aleatorios

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008 Probabilidad 2008 EJERCICIO 1A Laura tiene en su monedero 6 monedas francesas, 2 italianas y 4 españolas. Vicente tiene 9 francesas y 3 italianas. Cada uno saca, al azar, una moneda de su monedero y observa

Más detalles

Probabilidad. Objetivos. Antes de empezar

Probabilidad. Objetivos. Antes de empezar 12 Probabilidad Objetivos En esta quincena aprenderás a: Distinguir los experimentos aleatorios de los que no lo son. Hallar el espacio muestral y distintos sucesos de un experimento aleatorio. Realizar

Más detalles

PÁGINA 261 PARA EMPEZAR

PÁGINA 261 PARA EMPEZAR 13 Soluciones a las actividades de cada epígrafe PÁGINA 261 Pág. 1 PARA EMPEZAR Un desafío interrumpido Uno de los problemas que el caballero de Meré le propuso a Pascal es el siguiente: Dos contendientes,

Más detalles

Sistemas Aleatorios: Probabilidad Condicional

Sistemas Aleatorios: Probabilidad Condicional MA2006 El concepto de la probabilidad condicional Imagine la probabilidad de que un hombre presente cáncer pulmonar antes de los 70 años. Imagine la probabilidad de que tal hombre presente cáncer pulmonar

Más detalles

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios } La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas

Más detalles

CAPÍTULO 5: PROBABILIDADES

CAPÍTULO 5: PROBABILIDADES Página de PÍTULO : PROBBILIDDE Para extender los resultados de la muestra a la población, es necesario utilizar la idea de modelo probabilístico. uando tomamos una muestra de una población, nuestras conclusiones

Más detalles

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo Soluciones de los ejercicios de la primera Unidad Dr. Víctor Hernández Dr. Jorge Martín Dr. José Antonio Carrillo 5 de marzo de 0 Índice general Ejercicio.. Manejo del formalismo de los sucesos.............

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

César Antonio Aguilar Facultad de Lenguas y Letras 25/03/2013 Cesar.Aguilar72@gmail.com

César Antonio Aguilar Facultad de Lenguas y Letras 25/03/2013 Cesar.Aguilar72@gmail.com Métodos y técnicas de investigación cuantitativa César Antonio Aguilar Facultad de Lenguas y Letras 25/03/2013 Cesar.Aguilar72@gmail.com Algunos conceptos básicos (1) En esta sesión, y basándonos en el

Más detalles

Matemáticas, juego,...fortuna: Jugamos?

Matemáticas, juego,...fortuna: Jugamos? Matemáticas, juego,...fortuna: Jugamos? Blaise Pascal y Pierre de Fermat en Wikimedia Commons Una de las ramas de la matemática más novedosas es la teoría de probabilidades, que estudia las probabilidades

Más detalles

Práctico 4. Probabilidad

Práctico 4. Probabilidad Práctico 4. Probabilidad Problema Calcular la probabilidad que si se lanzan dos dados la suma de los resultados obtenidos sea inferior a 9. Problema 2 Las posibilidades de apostar a pleno en la ruleta

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 280

13Soluciones a los ejercicios y problemas PÁGINA 280 Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una

Más detalles

PROBABILIDAD. De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar.

PROBABILIDAD. De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. PROBABILIDAD Ejercicio nº 1.- De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. a Cuál es el espacio muestral? A "Mayor que 6" B "No obtener 6" C "Menor que 6" c Halla los

Más detalles

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES.

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES. ANDALUCIA: º) (Andalucía, junio, 98) Ana, Juan y Raúl, que están esperando para realizar una consulta médica, sortean, al azar, el orden en que van a entrar. a) Calcule la probabilidad de que los dos últimos

Más detalles

Manejo de la Información

Manejo de la Información Los juegos de azar Manejo de la Información Que las y los estudiantes deduzcan y argumenten que la probabilidad de que un evento suceda está relacionada con la frecuencia en que ocurre el resultado esperado

Más detalles

PROBABILIDADES. Ej: calcular la probabilidad de obtener dos veces cara y una vez sello al lanzar tres veces seguidas una moneda.

PROBABILIDADES. Ej: calcular la probabilidad de obtener dos veces cara y una vez sello al lanzar tres veces seguidas una moneda. OLEGIO ANTA ELENA PROBABILIDADE PROBABILIDAD LAIA: uando la ocurrencia de un suceso ( es igualmente posible que la ocurrencia de los demás. P ( = número de casos favorable para A número total de casos

Más detalles

Probabilidad y sus aplicaciones en ingeniería informática

Probabilidad y sus aplicaciones en ingeniería informática Probabilidad y sus aplicaciones en ingeniería informática Víctor Hernández Eduardo Ramos Ildefonso Yáñez c Víctor Hernández, Eduardo Ramos, Ildefonso Yánez EDICIONES CDÉMICS Probabilidad y sus aplicaciones

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA PROBLEMAS RESUELTOS DE PROBABILIDAD

CURSO DE ESTADÍSTICA DESCRIPTIVA PROBLEMAS RESUELTOS DE PROBABILIDAD CURSO DE ESTADÍSTICA DESCRIPTIVA PROBLEMAS RESUELTOS DE PROBABILIDAD I. Encuentre los errores en cada uno de los siguientes planteamientos: a. Las probabilidades de que un vendedor de automóviles venda

Más detalles

Problemas Resueltos del Tema 1

Problemas Resueltos del Tema 1 Tema 1. Probabilidad. 1 Problemas Resueltos del Tema 1 1- Un estudiante responde al azar a dos preguntas de verdadero o falso. Escriba el espacio muestral de este experimento aleatorio.. El espacio muestral

Más detalles

PROBABILIDAD. Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias cuáles son aleatorias?

PROBABILIDAD. Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias cuáles son aleatorias? PROBABILIDAD Ejercicio nº 1.- a Al lanzar un dado sacar puntuación par. b Lanzar un dado y sacar una puntuación mayor que 6. c Bajar a la planta baja en ascensor. Ejercicio nº 2 a En una caja hay cinco

Más detalles

Probabilidad. Objetivos. Antes de empezar.

Probabilidad. Objetivos. Antes de empezar. 12 Probabilidad Objetivos En esta quincena aprenderás a: Hallar los sucesos de un experimento aleatorio y realizar operaciones con ellos. Calcular la probabilidad de un suceso mediante la regla de Laplace.

Más detalles

Valeri Makarov: Estadística Aplicada y Cálculo Numérico (Grado en Química)

Valeri Makarov: Estadística Aplicada y Cálculo Numérico (Grado en Química) Estadística Aplicada y Cálculo Numérico (Grado en Química) Valeri Makarov 10/02/2015 29/05/2015 F.CC. Matemáticas, Desp. 420 http://www.mat.ucm.es/ vmakarov e-mail: vmakarov@mat.ucm.es Capítulo 3 Elementos

Más detalles

11 Cálculo de probabilidades

11 Cálculo de probabilidades Cálculo de probabilidades ACTIVIDADES INICIALES.I. Define por extensión o comprensión, según el caso, los siguientes conjuntos. a) A {divisores de } b) B {soluciones de la ecuación x x + 0} c) C {,,, 7,,,

Más detalles

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática 1. Un número telefónico consta de siete cifras enteras. Supongamos que la primera cifra debe ser un número entre 2 y 9, ambos inclusive. La segunda y la tercera cifra deben ser números entre 1 y 9, ambos

Más detalles

Curso elemental de PROBABILIDAD Y ESTADÍSTICA

Curso elemental de PROBABILIDAD Y ESTADÍSTICA Curso elemental de PROBABILIDAD Y ESTADÍSTICA Luis Rincón Departamento de Matemáticas Facultad de Ciencias UNAM Circuito Exterior de CU 04510 México DF Versión: Diciembre 2007 Una versión actualizada del

Más detalles

Un problema sobre repetidas apuestas al azar

Un problema sobre repetidas apuestas al azar Un problema sobre repetidas apuestas al azar Eleonora Catsigeras 1 10 de marzo de 2003. Resumen En estas notas se da el enunciado y una demostración de un conocido resultado sobre la probabilidad de éxito

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de Antonio Francisco Roldán López de Hierro * Convocatoria de 2008 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

Probabilidad Clásica

Probabilidad Clásica PROF.: GUILLERMO CORBACHO C. Probabilidad Clásica Los ejercicios que a continuación se presentan son extraídos de diversas publicaciones escritas en Chile para la preparación de la prueba de selección

Más detalles

Elementos de Combinatoria

Elementos de Combinatoria Elementos de Combinatoria 1 Introducción Previamente al estudio de la probabilidad en sí, conviene dedicar algún tiempo al repaso de las técnicas combinatorias. Recordemos que la Combinatoria es la parte

Más detalles

Repaso de Combinatoria y Probabilidades

Repaso de Combinatoria y Probabilidades Objetivos de la práctica: Repaso de Combinatoria y Probabilidades Objetivo general: El objetivo de esta práctica es dar al un repaso de los conceptos básicos de teoría combinatoria y la teoría de las probabilidades,

Más detalles