El Secreto de las Abejas y la Geometría de la Naturaleza

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El Secreto de las Abejas y la Geometría de la Naturaleza"

Transcripción

1 El Secreto de las Abejas y la Geometría de la Naturaleza José Acevedo Jiménez Santiago, Rep. Dom. "Las abejas..., en virtud de una cierta intuición geométrica..., saben que el hexágono es mayor que el cuadrado y que el triángulo, y que podrá contener más miel con el mismo gasto de material." Pappus de Alejandría. El geómetra de Alejandría claramente estaba a favor de las abejas, pero sus palabras, más poéticas que matemáticas, no son ciertas del todo. Analicemos los argumentos. Según Pappus, las abejas, por intuición geométrica, saben que de las tres figuras regulares (hexágono, cuadrado, triángulo) el hexágono es la figura más eficiente para almacenar la miel. Se puede demostrar, matemáticamente, que efectivamente el hexágono, de las tres dadas, es la figura perfecta para efectuar dicha labor, pero, cómo pueden las abejas saberlo? Se podría pensar que nuestros melíferos amigos poseen cierta intuición natural para la geometría, sin embargo esto no es lo que ocurre en la realidad. Las abejas, con cierta ayuda de las leyes de la física, construyen panales hexagonales no porque sea la forma más

2 efectiva para almacenar su miel, entre otras cosas, utilizan esa figura porque no pueden construir otra. Explicándolo mejor. Las formas circulares y esféricas abundan en la naturaleza, podemos ver flores, frutas, cuerpos celestes, entre muchas otras cosas que adoptan dichas formas, por otro lado es difícil, por no decir imposible, encontrar en la naturaleza objetos u organismos vivientes que adopten formas perfectamente cuadradas o triangulares. Un círculo perfecto es relativamente fácil de construir, pero hacer triángulos y cuadrados, perfectos, no es cosa tan fácil. Gotas de agua sobre la superficie de una hoja. Como podemos ver en la figura, las formas circulares y esféricas son comunes en la naturaleza.

3 Un poco de ayuda de las leyes físicas Como ya hemos señalado, las abejas no saben que, entre las tres evaluadas, el hexágono es la forma perfecta para la construcción de las celdillas que forman el panal, si buscamos formas eficientes el círculo resultaría la forma perfecta, dicha forma es la que las abejas precisamente construyen, pero no lo hacen porque sea la forma más eficiente para sus propósitos, lo erigen porque es una de las figuras más fáciles de construir.. Arriba tenemos dos imágenes de panales distintos, claramente se puede notar que las celdas del panal de la derecha son mucho más hexagonales que su homólogo de las izquierda que tienden a ser más circulares. Si las abejas no construyen hexágonos cómo podemos explicar las formas hexagonales de las celdas de la figura de la derecha? Las leyes de la física nos proporcionan la respuesta, tal como lo sugiere la figura de la izquierda, las abejas construyen sus celdas de forma circular. Al estar juntas unas de otras y al encontrarse la cera en un estado cuasifluido mientras las abejas giran sobre un punto fijo para darle forma a la celda la fuerza de adhesión, entre otras que no mencionaremos, provocan que las celdas (círculos) adopten la forma hexagonal.

4 En la figura lindante de arriba se distinguen varias pompas de jabón, en condiciones normales las pompas adoptarían formas esféricas pero al estar juntas unas de otras se comprimen un poco y adoptan formas más poligonales. Un fenómeno similar ocurre con las celdas en los panales de abejas. Dado que el material que utilizan las avispas para construir sus panales es menos semifluido que la cera que usan las abejas, las celdas de los panales de las primeras suelen ser menos hexagonales que el de las abejas.

5 La geometría natural y la abstracción matemática En la natura podemos encontrar diversas formas geométricas, en la figura observamos flores con forma de estrella, aunque los lados de la flor (bordes de los pétalos) no son totalmente rectos se pueden asociar con una idea abstracta por lo que se puede decir que la flor tiene diez lados e igual cantidad de ángulos (cinco externos y cinco internos). Todas las formas presentes en la naturaleza se pueden asociar a ideas abstractas (existentes sólo en la mente del pensador) algunos objetos poseen formas difíciles de describir como una piedra o montaña por ejemplo, que por sus formas irregulares no pueden ser asociadas con ninguna de las figuras geométricas regulares (triángulos, cuadrados, círculos, polígonos, etc).

6 El árbol de pino, pertenece a la familia de las coníferas, crece por lo general de forma regular, dicho árbol tiene un contorno cónico que nos recuerda la referida figura con la cual asociamos el mencionado árbol. Aunque no es un pentágono, la flor de la figura nos recuerda mucho el mencionado polígono regular. Si bien podemos encontrar muchas formas irregulares en la naturaleza, también podemos encontrar muchas otras muy regulares las cuales pueden ser descritas

7 con detallada precisión matemática como la concha del nautilo por ejemplo que puede ser asociada con una espiral logarítmica, gracias a su forma regular el molusco puede crecer sin tener que variar la misma. Los fractales y la naturaleza Como hemos señalado, muchas formas de la naturaleza no pueden asociarse o ser descritas con formas regulares como los polígonos, sin embargo existe una geometría relativamente nueva que si las puede describir, la geometría fractal. De manera algo vaga, un fractal puede describirse como una réplica de figuras que se autosemejan variando sólo en el tamaño de las mismas, dado que se van reduciendo. El término fractal fue acuñado por el matemático francés Benoît B. Mandelbrot quien creó la geometría fractal por ahí por los años setenta. La nueva geometría resulto muy útil para describir o reproducir formas naturales como: nubes, montañas, entre otras formas complejas que serían prácticamente imposibles de semejar empleando sólo las figuras descritas por la geometría tradicional. En la figura lindante podemos ver ejemplo de un fractal en la naturaleza, nótese como una parte hoja de la planta se asemeja al todo.

GEOMETRÍA SAGRADA. Ejemplos y dibujos vectoriales JUNIO de 2009 - Roberto García

GEOMETRÍA SAGRADA. Ejemplos y dibujos vectoriales JUNIO de 2009 - Roberto García GEOMETRÍA SAGRADA Ejemplos y dibujos vectoriales JUNIO de 2009 - Roberto García Génesis 1:1 En el principio creó Dios los cielos y la tierra. Espacio tridimensional definido Espacio tridimensional creado

Más detalles

Qué son los cuerpos geométricos?

Qué son los cuerpos geométricos? Qué son los cuerpos geométricos? Definición Los cuerpos geométricos son regiones cerradas del espacio. Una caja de tetrabrick es un ejemplo claro de la figura que en matemáticas se conoce con el nombre

Más detalles

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro 8 Cuerpos geométricos. Objetivos En esta quincena aprenderás a: Identificar que es un poliedro. Determinar los elementos de un poliedro: Caras, aristas y vértices. Clasificar los poliedros. Especificar

Más detalles

PRISMAS Y PIRÁMIDES. Qué es un poliedro? Un poliedro es un cuerpo geométrico que tiene alto, ancho y largo.

PRISMAS Y PIRÁMIDES. Qué es un poliedro? Un poliedro es un cuerpo geométrico que tiene alto, ancho y largo. PRISMAS Y PIRÁMIDES. 06 1 Comprende la relación que existe entre el volumen de un prisma con respecto al volumen de una pirámide que tienen la misma base y altura. En Presentación de Contenidos para explicar

Más detalles

Los Teselados, Arte y Matemática

Los Teselados, Arte y Matemática Los Teselados, Arte y Matemática José Acevedo Jiménez Santiago, Rep. Dom. La matemática, como actividad humana, está desbordada de entes que son hermosos ante los ojos de aquellos que tienen la capacidad

Más detalles

Investigación ser vivo Abeja

Investigación ser vivo Abeja PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA Dirección de Pregrado Curso Desafíos de la ingeniería Investigación ser vivo Abeja Nombre: Joaquín Fuentes Domingo 16 de Marzo, Santiago Contexto:

Más detalles

4 m. Sabemos que las caras de las pirámides son proporcionales. Los triángulos son equiláteros y la base es un cuadrado.

4 m. Sabemos que las caras de las pirámides son proporcionales. Los triángulos son equiláteros y la base es un cuadrado. M001 La pirámide A) PRESENTACIÓN DEL PROBLEMA En el museo de una ciudad se va a presentar una exposición del arte egipcio y como parte de la decoración han mandado fabricar un par de pirámides. Ambas pirámides

Más detalles

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15 LOS POLIEDROS Los poliedros son cuerpos geométricos que tienen todas sus caras formadas por polígonos. Muchos objetos de nuestro alrededor tienen forma de poliedro: Los elementos de un poliedro son caras,

Más detalles

INFLUENCIA DE LA GEOMETRIA Y LA NATURALEZA EN EL ARTE.

INFLUENCIA DE LA GEOMETRIA Y LA NATURALEZA EN EL ARTE. INFLUENCIA DE LA GEOMETRIA Y LA NATURALEZA EN EL ARTE. Natalia González Zaragoza ngzaragoza@yahoo.es DNI: 48395126K telf.:600745169 Introducción El hombre ha intentando, por todos los medios, extraer del

Más detalles

Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media

Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media Este instrumento presenta los indicadores de evaluación del proceso 2014 de la Modalidad Flexible de Estudios;

Más detalles

Tema 1: Cuerpos geométricos. Aplicaciones

Tema 1: Cuerpos geométricos. Aplicaciones Tema 1: Cuerpos geométricos. Aplicaciones 1.- los polígonos. Un polígono es un trozo de plano limitado por una línea poligonal (sin curvas) cerrada. Es un polígono No son polígonos Hay dos clases de polígonos:

Más detalles

Fractales, la Nueva Geometría de Mandelbrot

Fractales, la Nueva Geometría de Mandelbrot Fractales, la Nueva Geometría de Mandelbrot José Acevedo Jiménez Santiago, Rep. Dom. "Una nube está hecha de billones de billones de billones que parecen nubes. Mientras más te acercas a una nube no obtienes

Más detalles

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 8. Preparado por: Héctor Muñoz

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 8. Preparado por: Héctor Muñoz GUÍAS DE TRABAJO Material de trabajo para los estudiantes UNIDAD 8 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl Responde en tu cuaderno las siguientes preguntas. Guía de Trabajo

Más detalles

Profr. Efraín Soto Apolinar. Límites

Profr. Efraín Soto Apolinar. Límites Límites Cada rama de las matemáticas tiene conceptos que resultan centrales para el desarrollo de la misma. Nosotros empezamos el estudio del cálculo infinitesimal, que está compuesto del cálculo diferencial

Más detalles

Talento Matemático 2002/2003. Real Academia de Ciencias

Talento Matemático 2002/2003. Real Academia de Ciencias Volvemos al hermoso tema de la simetría. Además de la imágenes de multitud de objetos y de seres vivos que poseen simetrías recuerdas en qué consistía una simetría desde el punto de vista matemático?,

Más detalles

UNIDAD N º 6: Volumen (1ª parte)

UNIDAD N º 6: Volumen (1ª parte) UNIDAD N º 6: Volumen (1ª parte) De manera intuitiva, el volumen de un objeto es el espacio que él ocupa. El procedimiento a seguir para medir el volumen de un objeto dependerá del estado en que se encuentre:

Más detalles

Universidad de Costa Rica Facultad de Ciencias Escuela de Matemática Departamento de Enseñanza de la Matemática

Universidad de Costa Rica Facultad de Ciencias Escuela de Matemática Departamento de Enseñanza de la Matemática Universidad de Costa Rica Facultad de Ciencias Escuela de Matemática Departamento de Enseñanza de la Matemática Curso del I año de carrera, I ciclo Número de créditos: 4 Horas lectivas por semana: 5 horas

Más detalles

Ejercicios guiados de comentario de texto. Ejercicio 2. Descartes

Ejercicios guiados de comentario de texto. Ejercicio 2. Descartes Ejercicios guiados de comentario de texto Ejercicio 2. Descartes Así, por ejemplo, estimaba correcto que, suponiendo un triángulo, entonces era preciso que sus tres ángulos fuesen iguales a dos rectos;

Más detalles

Autor: 2º ciclo de E.P.

Autor: 2º ciclo de E.P. 1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.

Más detalles

Introducción. Desde que despiertas en tu habitación hasta que llegas a la escuela podemos encontrarnos con gran cantidad de ellos.

Introducción. Desde que despiertas en tu habitación hasta que llegas a la escuela podemos encontrarnos con gran cantidad de ellos. PREFACIO Introducción Te has dado cuenta que estamos rodeados de polígonos? Desde que despiertas en tu habitación hasta que llegas a la escuela podemos encontrarnos con gran cantidad de ellos. En la recámara,

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

Por Luis Balbuena Castellano desde La Laguna, Tenerife, Islas Canarias. Septiembre de 2010.

Por Luis Balbuena Castellano desde La Laguna, Tenerife, Islas Canarias. Septiembre de 2010. HAY QUE APRENDER MATEMÁTICAS Por Luis Balbuena Castellano desde La Laguna, Tenerife, Islas Canarias. Septiembre de 2010. balbuenaluisx@gmail.com/ Es actualmente el Secretario General de la Federación Iberoamericana

Más detalles

6. FORMAS Y SUPERFICIES

6. FORMAS Y SUPERFICIES 6. FORMAS Y SUPERFICIES Figuras planas: los polígonos Las figuras planas limitadas sólo por líneas rectas se llaman polígonos. Las figuras planas limitadas por curvas o por rectas y curvas, no son polígonos.

Más detalles

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN...1 2. SUPERFICIES POLIÉDRICAS. POLIEDROS...1 3. FIGURAS DE REVOLUCIÓN...3 4. POLIEDROS

Más detalles

GEOMETRÍA FLEXIBLE CON POLIFIELTROS 3D

GEOMETRÍA FLEXIBLE CON POLIFIELTROS 3D GEOMETRÍA FLEXIBLE CON POLIFIELTROS 3D Dolores Jiménez Cárdenas, CEIP Joaquín Tena Sicilia (Abla, Almería) José Luis Rodríguez Blancas, Universidad de Almería http://www.polifieltros3d.com/ RESUMEN. Polifieltros

Más detalles

Matemáticas en la Física

Matemáticas en la Física Matemáticas en la Física Fractales: La geometría de la naturaleza Talleres de Matemáticas 2005-2006 J. Güémez Fractales: La geometría de la naturaleza 1. Descripción de los objetos naturales. 2. Cuánto

Más detalles

Método Genérico Para Resolver Cuadrados Mágicos de Orden Par

Método Genérico Para Resolver Cuadrados Mágicos de Orden Par Método Genérico Para Resolver Cuadrados Mágicos de Orden Par José Acevedo Jiménez No hay ninguna rama de las matemáticas, por abstracta que sea, que no pueda aplicarse algún día a los fenómenos del mundo

Más detalles

UNIDAD 4. Transformaciones isométricas (Primera parte)

UNIDAD 4. Transformaciones isométricas (Primera parte) Matemática UNIDD 4. Transformaciones isométricas (Primera parte) 1 Medio GUÍ N 1 INTRODUCCIÓN El artista holandés Maurits Cornelis Escher (1898 1972) es considerado uno de los artistas gráficos más famosos

Más detalles

TRANSFORMACIONES ISOMÉTRICAS

TRANSFORMACIONES ISOMÉTRICAS TRANSFORMACIONES ISOMÉTRICAS En una transformación isométrica: 1) No se altera la forma ni el tamaño de la figura. 2) Sólo cambia la posición (orientación o sentido de ésta). TRANSFORMACIONES ISOMÉTRICAS

Más detalles

PROYECTO DE LA REAL ACADEMIA DE CIENCIAS Estímulo del talento matemático

PROYECTO DE LA REAL ACADEMIA DE CIENCIAS Estímulo del talento matemático PROYECTO DE L REL CDEMI DE CIENCIS Estímulo del talento matemático Prueba de selección 8 de junio de 2013 Nombre:... pellidos:... Fecha de nacimiento:... Teléfonos:... Información importante que debes

Más detalles

Hay 5 sólidos platónicos

Hay 5 sólidos platónicos 1 Un sólido es un poliedro, o sea una figura tridimensional conformada por planos de diversas formas (polígonos) que se intersectan. Hay 5 sólidos platónicos Fueron estudiados y descriptos por los geómetras

Más detalles

ANÁLISIS DE DAVID HUME DEL PRINCIPIO DE CAUSALIDAD Francesc Llorens

ANÁLISIS DE DAVID HUME DEL PRINCIPIO DE CAUSALIDAD Francesc Llorens ANÁLISIS DE DAVID HUME DEL PRINCIPIO DE CAUSALIDAD Francesc Llorens QUÉ ES EL PRINCIPIO DE CAUSALIDAD El principio de causalidad es el pilar fundamental de la epistemología de David Hume. Tras determinar,

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo 10 La circunferencia y el círculo Objetivos En esta quincena aprenderás a: Identificar los diferentes elementos presentes en la circunferencia y el círculo. Conocer las posiciones relativas de puntos,

Más detalles

Propuesta didáctica: Fútbol: campo de juego matemático

Propuesta didáctica: Fútbol: campo de juego matemático Propuesta didáctica: Fútbol: campo de juego matemático Clase: 4º año Contenidos programáticos: Proporcionalidad directa. Operaciones con racionales. Simetría axial. Magnitudes: área, amplitud angular y

Más detalles

Volumen de los cuerpos geométricos.

Volumen de los cuerpos geométricos. 10 Volumen de los cuerpos geométricos. Objetivos En esta quincena aprenderás a: Comprender el concepto de medida del volumen y conocer y manejar las unidades de medida del S.M.D. Obtener y aplicar expresiones

Más detalles

8. CONSTRUCCIÓN DE FRACTALES CON PAPEL

8. CONSTRUCCIÓN DE FRACTALES CON PAPEL La geometría fractal es una rama de las matemáticas creada hace menos de 50 años por Benoît Mandelbrot (1924-2010). En 1967, Mandelbrot escribió un artículo titulado Cuán larga es la costa de Gran Bretaña?

Más detalles

Cuerpos geométricos: poliedros

Cuerpos geométricos: poliedros Cuerpos geométricos: poliedros Viajar desde la geometría en el plano hacia un espacio tridimensional, donde se insertan los cuerpos geométricos, nos acerca al mundo real. En el proceso de fabricación de

Más detalles

POLIEDROS E CORPOS REDONDOS

POLIEDROS E CORPOS REDONDOS Escribe na parte dereita o que falta. POLIEDROS E CORPOS REDONDOS 1. Os corpos redondos. A xeometría do espazo estuda os corpos que teñen tres dimensións: lonxitude, anchura e altura. Os corpos que teñen

Más detalles

Sistema Diédrico (I). Verdadera magnitud. Abatimientos

Sistema Diédrico (I). Verdadera magnitud. Abatimientos Sistema Diédrico (I). Verdadera magnitud. Abatimientos Cuando dibujamos las proyecciones diédricas (planta, alzado y perfil) de una figura, superficie, sólido, etc.., observamos cómo sus elementos (aristas

Más detalles

El Secreto de los Místicos Españoles y el Poder Creador de la Palabra

El Secreto de los Místicos Españoles y el Poder Creador de la Palabra El Secreto de los Místicos Españoles y el Poder Creador de la Palabra Soteriología Cristológica en Fray Luis de León desde la perspectiva de su juicio por la Inquisición Jaime Fernando Leal Anaya, B.D.,

Más detalles

Ley de crecimiento de una mancha de aceite.

Ley de crecimiento de una mancha de aceite. Ley de crecimiento de una mancha de aceite. María Florencia Filadoro Alikhanoff E-mail: floty@hotmail.com Resumen Se realizaron mediciones del diámetro de una mancha de petróleo para determinar la tasa

Más detalles

1.- LÍNEAS POLIGONALES Y POLÍGONOS.

1.- LÍNEAS POLIGONALES Y POLÍGONOS. 1.- LÍNEAS POLIGONALES Y POLÍGONOS. Línea poligonal.- Una línea poligonal está formada por varios segmentos consecutivos. Las líneas poligonales pueden ser abiertas o cerradas. Polígono.- Es la región

Más detalles

1 PRACTICA: QCAD. COORDENADAS

1 PRACTICA: QCAD. COORDENADAS 1 PRACTICA: QCAD. COORDENADAS 1.1 Coordenadas cartesianas. En dibujo técnico, se pueden utilizar las coordenadas cartesianas, es decir, para indicar un punto, se nombra primero la medida en x y luego la

Más detalles

DESARROLLANDO TÉCNICAS Y RUTINAS DE PROGRAMACIÓN EN EL GEÓMETRA.

DESARROLLANDO TÉCNICAS Y RUTINAS DE PROGRAMACIÓN EN EL GEÓMETRA. IV CIEMAC J.J Fallas, J. Chavarría 1 DESARROLLANDO TÉCNICAS Y RUTINAS DE PROGRAMACIÓN EN EL GEÓMETRA. Juan José Fallas Monge 1 Jeffry Chavarría Molina. Resumen Frecuentemente al Geómetra se le relaciona

Más detalles

UNIT 1: PERIMETER AND AREA OF SHAPES

UNIT 1: PERIMETER AND AREA OF SHAPES UNIT 1: PERIMETER AND AREA OF SHAPES 1.- LÍNEAS POLIGONALES. POLÍGONO http://recursostic.educacion.es/secundaria/edad/2esomatematicas/2quincena8/index_2quincena8.htm Observa en el ordenador la diferencia

Más detalles

LAS ECUACIONES DE LAS FLORES

LAS ECUACIONES DE LAS FLORES LAS ECUACIONES DE LAS FLORES SIGMA 26 DE LA GEOMETRÍA HUMANA... Antonio Pérez Sanz (*) Echa una ojeada a tu alrededor... Al menos que hayas decidido irte al campo a leer este artículo, estarás rodeado

Más detalles

11 SUCESIONES. PROGRESIONES

11 SUCESIONES. PROGRESIONES EJERCICIOS PROPUESTOS. Con cerillas se han construido las figuras. a) Cuántas cerillas se necesitan para formar una figura con 5 hexágonos? b) Cuántas cerillas se necesitan para formar una figura con n

Más detalles

Cuerpos geométricos OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Elementos de un poliedro y su desarrollo. Los poliedros regulares y sus características.

Cuerpos geométricos OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Elementos de un poliedro y su desarrollo. Los poliedros regulares y sus características. 826464 _ 0385-0396.qxd /2/07 09:27 Página 385 Cuerpos geométricos INTRODUCCIÓN Esta unidad completa la serie dedicada a la Geometría y afianza su comprensión mediante la descripción y desarrollo de las

Más detalles

EL MODELO DE DATOS RASTER

EL MODELO DE DATOS RASTER EL MODELO DE DATOS RASTER El modelo de datos raster, como señala Bosque (1992), es el modelo de datos complementario al modelo vectorial presentado anteriormente. Tiene como principal característica el

Más detalles

DEFECTOS EN PIEZAS MECÁNICAS

DEFECTOS EN PIEZAS MECÁNICAS DEFECTOS EN PIEZAS MECÁNICAS Defectos dimensionales: diferencia entre las dimensiones obtenidas midiendo la pieza y las teóricas dadas por el diseño o pieza prototipo. Pueden ser de tipo lineal o angular.

Más detalles

Software dinámico Comprensión lectora Mapas mentales Mapas conceptuales

Software dinámico Comprensión lectora Mapas mentales Mapas conceptuales PROYECTO PERMANENCIA Y GRADUACIÓN ESTUDIANTIL EXPERIENCIA CON LA UNIVERSIDAD DE MEDELLÍN Software dinámico Comprensión lectora Mapas mentales Mapas conceptuales Software dinámico Después de realizar un

Más detalles

Matemáticas III. Matemáticas III. Calcular área, perímetro y los demás elementos de polígonos tanto regulares como irregulares.

Matemáticas III. Matemáticas III. Calcular área, perímetro y los demás elementos de polígonos tanto regulares como irregulares. Matemáticas III Tema 6 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Calcular área, perímetro y los demás elementos de polígonos tanto regulares como irregulares. 2 1 Introducción

Más detalles

COMPARACIÓN DE ÁREAS DE FIGURAS POR ESTUDIANTES DE PRIMERO DE MAGISTERIO

COMPARACIÓN DE ÁREAS DE FIGURAS POR ESTUDIANTES DE PRIMERO DE MAGISTERIO COMPARACIÓN DE ÁREAS DE FIGURAS POR ESTUDIANTES DE PRIMERO DE MAGISTERIO Sonia Aguilera Piqueras y Pablo Flores Martínez Departamento de Didáctica de la Matemática Universidad de Granada 1. Introducción

Más detalles

Guías Excel 2007 Matrices Guía 77

Guías Excel 2007 Matrices Guía 77 MATRICES Las hojas de cálculo poseen prestaciones interesantes la gestión de matrices de tipo matemático. Unas consisten en facilitar los cálculos matriciales y otras están orientadas a cálculos estadísticos.

Más detalles

Capítulo VI. Diagramas de Entidad Relación

Capítulo VI. Diagramas de Entidad Relación Diagramas de Entidad Relación Diagramas de entidad relación Tabla de contenido 1.- Concepto de entidad... 91 1.1.- Entidad del negocio... 91 1.2.- Atributos y datos... 91 2.- Asociación de entidades...

Más detalles

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado,

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

Descripciones de las Habilidades de Primaria por Trimestre Materia: Matemáticas Grade: Kinder

Descripciones de las Habilidades de Primaria por Trimestre Materia: Matemáticas Grade: Kinder Grade: Kinder Medición Geometría Leer y escribir los números hasta 5 Entender que escribiendo los números representan la cantidad de objetos (0-5) Contar de uno en uno hasta 10 (empezar con cualquier número

Más detalles

Tema 6 Istmo Centroamericano, un mundo de formas, personas y lugares Nivel 4

Tema 6 Istmo Centroamericano, un mundo de formas, personas y lugares Nivel 4 Tema 6 Istmo Centroamericano, un mundo de formas, personas y lugares Nivel 4 Contenido matemático Polígonos regulares e irregulares. Lectura y escritura de números naturales menores que 100 000. Notación

Más detalles

Educación Plástica y Visual. Láminas verano. 3º ESO

Educación Plástica y Visual. Láminas verano. 3º ESO Educación Plástica y Visual. Láminas verano. 3º ESO 1. Título: El Verano. Nº Lámina: V.1. Cuenta una anécdota que te haya sucedido este verano, en plan cómic. Tamaño mínimo una lámina de dibujo. Presta

Más detalles

Una recta es una línea (de puntos) que no tiene ni principio ni final. Un segmento es la parte de una recta que se encuentra entre 2 puntos.

Una recta es una línea (de puntos) que no tiene ni principio ni final. Un segmento es la parte de una recta que se encuentra entre 2 puntos. RECTAS Y ÁNGULOS RECTAS Una recta es una línea (de puntos) que no tiene ni principio ni final. Un punto divide a una recta en 2 semirrectas. Un segmento es la parte de una recta que se encuentra entre

Más detalles

El polígono es una porción del plano limitado por una línea poligonal cerrada.

El polígono es una porción del plano limitado por una línea poligonal cerrada. UNIDAD 12: GEOMETRÍA PLANA 12.1. Los polígonos: Elementos El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los

Más detalles

Tema 1.1 La bóveda celeste. Fundamentos geométricos.

Tema 1.1 La bóveda celeste. Fundamentos geométricos. Módulo 1. La bóveda celeste. Astronomía observacional. Tema 1.1 La bóveda celeste. Fundamentos geométricos. Objetivos del tema: En este tema aprenderemos los fundamentos geométricos del movimiento de la

Más detalles

CRITERIOS DE VALORACIÓN

CRITERIOS DE VALORACIÓN PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO Ejercicio nº 1 CRITERIOS DE VALORACIÓN OPCIÓN A 1. Construcción del heptágono conocido el lado...

Más detalles

Constelación de Satélites Navstar

Constelación de Satélites Navstar Constelación de Satélites Navstar El Sistema GPS (Sistema de Posicionamiento Global) fue creado por el Departamento de Defensa de los Estados Unidos (DD) para constituir un sistema de navegación preciso

Más detalles

Aprendemos las características de las figuras bidimensionales

Aprendemos las características de las figuras bidimensionales SEXTO GRADO - UNIDAD 5 - SESIÓN 08 Aprendemos las características de las figuras bidimensionales Se espera que, en esta sesión, los estudiantes logren identificar las características de figuras bidimensionales

Más detalles

Diferencias entre Figuras y

Diferencias entre Figuras y 10 Lección Refuerzo Matemáticas Diferencias entre Figuras y Cuerpos Geométricos APRENDO JUGANDO Competencia Aplica conocimientos acerca de las principales características de polígonos y cuerpos geométricos.

Más detalles

ESTRUCTURAS CRISTALINAS (P2)

ESTRUCTURAS CRISTALINAS (P2) ESTRUCTURAS CRISTALINAS (P2) Objetivos - Visualización de estructuras de sólidos mediante el uso de modelos - Estudio de redes cristalinas basadas en ordenamientos de esferas de igual tamaño - Identificación

Más detalles

Dibujo y geometría descriptiva II 2014

Dibujo y geometría descriptiva II 2014 ` CONTENIDO 1. Conceptos básicos Cuerpos geométricos Intersección 2. Intersección entre planos y sólidos. 3. Intersección de plano con prisma 4. Intersección de plano con cilindro. 5. Intersección de sólido

Más detalles

Actividades con Geoplano

Actividades con Geoplano Descripción General Actividades con Geoplano El Geoplano es un arreglo rectángular de puntos (clavos) de tal manera que entre puntos adyacentes horizontal o verticalmente hay una distancia constante. En

Más detalles

El punto de unión de cada par de segmentos se denomina ángulo. El numero de lados, ( y por tanto de ángulos) ha de ser mayor o igual a tres.

El punto de unión de cada par de segmentos se denomina ángulo. El numero de lados, ( y por tanto de ángulos) ha de ser mayor o igual a tres. POLÍGONOS: POLÍGONOS REGULARES y POLÍGONOS REGULARES ESTRELLADOS. Polígono es la superficie plana encerrada dentro de un contorno formado por segmentos rectos unidos en sus extremos. Cada uno de los segmentos

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO CRITERIOS PARA LA REALIZACIÓN DE LA PRUEBA 1.- Se establecen dos opciones A- y B- de tres problemas

Más detalles

En el aparador de la joyería. Nos engaña Hollywood?

En el aparador de la joyería. Nos engaña Hollywood? Veamos los siguientes ejemplos prácticos de aplicación: En el desayuno En el aparador de la joyería De paso por la papelería Los códigos de identificación Nos engaña Hollywood? El rectángulo ureo En el

Más detalles

MINISTERIO DE EDUCACIÓN PÚBLICA VICEMINISTERIO ACADÉMICO DIRECCIÓN DE DESARROLLO CURRICULAR 3, 13, 23, 33,,,

MINISTERIO DE EDUCACIÓN PÚBLICA VICEMINISTERIO ACADÉMICO DIRECCIÓN DE DESARROLLO CURRICULAR 3, 13, 23, 33,,, MATERIALES NECESARIOS: Una tabla de cien. Fichas o marcadores. ACTIVIDADES PROPUESTAS: 1. Usando la tabla de 100 completen la siguiente sucesión: 3, 13, 23, 33,,, a. Qué patrón sigue la sucesión? Descríbanlo

Más detalles

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede

Más detalles

- Propiedades de las figuras planas

- Propiedades de las figuras planas MATEMÁTICAS 1ºESO TEMA 10 PROPIEDADES DE LAS FIGURAS PLANAS 1 Tema 10 - Propiedades de las figuras planas 1 Escribe de línea poligonal y dibuja una: 2 Escribe el concepto de polígono. Dibuja un polígono

Más detalles

ESTALMAT-Andalucía. Geometría dinámica con Cabri. Sesión 16

ESTALMAT-Andalucía. Geometría dinámica con Cabri. Sesión 16 Geometría dinámica con Cabri Sesión 16 SAEM THALES Material recopilado y elaborado por: Encarnación Amaro Parrado Agustín Carrillo de Albornoz Torres Granada, 8 de marzo de 2008-2 - Actividades de repaso

Más detalles

Operación de Microsoft Excel

Operación de Microsoft Excel Representación gráfica de datos Generalidades Excel puede crear gráficos a partir de datos previamente seleccionados en una hoja de cálculo. El usuario puede incrustar un gráfico en una hoja de cálculo,

Más detalles

APU TES Y EJERCICIOS DEL TEMA 9 PROPORC. GEOMÉTRICA. THALES. ESCALA.

APU TES Y EJERCICIOS DEL TEMA 9 PROPORC. GEOMÉTRICA. THALES. ESCALA. APU TES Y DEL TEMA 9 PROPORC. GEOMÉTRICA. THALES. ESCALA. 1-T 9--2ºESO RECORDATORIO INICIAL: Antes de empezar de lleno con este tema, os digo que, ocasionalmente, se van a trabajar ciertos conceptos que

Más detalles

Círculo. Para ello, necesita elaborar unos aros de cinta de acero como el que representa la figura siguiente:

Círculo. Para ello, necesita elaborar unos aros de cinta de acero como el que representa la figura siguiente: Lección 1 Círculo Macario trabaja en la fábrica de pintura. Tiene que reforzar las tapas de los barriles para que embone perfectamente y las materias primas que almacenan en ellos se conserven adecuadamente.

Más detalles

Arquímedes de Siracusa. La deslumbrante sabiduría y la cautivadora humanidad de un genio.

Arquímedes de Siracusa. La deslumbrante sabiduría y la cautivadora humanidad de un genio. Arquímedes de Siracusa. La deslumbrante sabiduría y la cautivadora humanidad de un genio. FICHA TÉCNICA Título: El contador de arena Autora: Gilliam Bradshaw ISBN: -93-032- Publicaciones y Ediciones Salamandra,

Más detalles

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio. CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los

Más detalles

Área de polígonos regulares. Perímetro de polígonos regulares. Dibujo de figuras geométricas.

Área de polígonos regulares. Perímetro de polígonos regulares. Dibujo de figuras geométricas. ACTIVIDAD: ABEJAS Y GEOMETRÍA NIVEL DE DIFICULTAD: / ( : fácil / : dificultad media / : alta) NÚCLEO (S): HOGAR, CONSUMO, NUTRICIÓN GEOMETRÍA DE CALLE LECTURA Y MATEMÁTICAS ENTRETENIMIENTO, MEDIOS COMUN.

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO:

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: 2º ESO OBJETIVOS: Resolver problemas con enunciados relacionados con la

Más detalles

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

LA GEOMETRIA SAGRADA DE LOS CROP CIRCLES

LA GEOMETRIA SAGRADA DE LOS CROP CIRCLES LA GEOMETRIA SAGRADA DE LOS CROP CIRCLES Uno de los fenómenos característicos de los Crop Circles es la precisión geométrica de sus diseños, (incluso estando en campos de cultivo con pendientes pronunciadas

Más detalles

CRITERIOS DE EVALUACIÓN Resolver problemas geométricos valorando el método y el razonamiento de las construcciones, su acabado y presentación.

CRITERIOS DE EVALUACIÓN Resolver problemas geométricos valorando el método y el razonamiento de las construcciones, su acabado y presentación. ASIGNATURA: DIBUJO TÉCNICO II Actualización: FEBRERO DE 2009 Validez desde el curso: 2009-2010 Autorización: COPAEU Castilla y León PROGRAMA Análisis del currículo y acuerdos para las Pruebas de Acceso

Más detalles

Pequeños experimentos científicos

Pequeños experimentos científicos Pequeños experimentos científicos Volcán de sal A veces explorar con insumos de cocina es divertido y podemos aprender sobre cómo se comportan algunos elementos cuando los mezclamos. Nota: siempre debes

Más detalles

TRANSICIÓN JUGAR CON BLOQUES LÓGICOS

TRANSICIÓN JUGAR CON BLOQUES LÓGICOS SECUENCIAS DIDÁCTICAS DESARROLLO DEL PENSAMIENTO LÓGICO MATEMÁTICO TRANSICIÓN JUGAR CON BLOQUES LÓGICOS Los bloques lógicos son un material estructurado creado por el matemático y psicólogo húngaro, Zoltan

Más detalles

La maduración de la miel

La maduración de la miel La maduración de la miel Fuente: www.e-campo.com El maravilloso proceso que convierte al néctar en miel incluye modificaciones físico químicas que requieren una compleja labor de la colmena. Por su parte

Más detalles

1 Indica, en la ilustración, dos edificios que sean poliedros y tengan formas diferentes. PÁGINA 186

1 Indica, en la ilustración, dos edificios que sean poliedros y tengan formas diferentes. PÁGINA 186 PÁGINA 186 En la Casa de la Cultura se ha montado una exposición fotográfica. En ella se recogen modernos edificios en los que los poliedros y los cuerpos de revolución han sido elevados a la categoría

Más detalles

Cuerpos Geométricos Son aquellos elementos que ocupan un volumen en el espacio se componen de tres partes: alto, ancho y largo.

Cuerpos Geométricos Son aquellos elementos que ocupan un volumen en el espacio se componen de tres partes: alto, ancho y largo. CUERPOS GEOMÉTRICOS 06 Describe qué son e identifica las características de los cuerpos geométricos. El maestro comenta qué es, cómo se forman y cuáles son las partes de un cuerpo geométrico. Los alumnos

Más detalles

Mosaicos: rompiendo el plano de manera armónica

Mosaicos: rompiendo el plano de manera armónica V Seminario sobre Actividades para Estimular el Talento Precoz en Matemáticas IX Reunión Nacional ESTALMAT Castro Urdiales, 2012 Mosaicos: rompiendo el plano de manera armónica ENRIQUE DE LA TORRE FERNÁNDEZ

Más detalles

Efectos Espaciales en Interrelaciones de Formas

Efectos Espaciales en Interrelaciones de Formas Fundamentos del Diseño Bi y Tridimensional W. Wong, G. Gili Interrelación de Formas Las formas pueden encontrarse entre sí de diferentes maneras. Hemos demostrado que cuando una forma se superpone a otra,

Más detalles

Movimientos y semejanzas

Movimientos y semejanzas 865 _ 057-068.qxd 7/4/07 :4 Página 57 Movimientos y semejanzas INTRODUIÓN Esta unidad tiene un componente gráfico muy importante, por lo que conviene comenzar la unidad aportando ejemplos reales, sobre

Más detalles

2 Métodos combinatorios

2 Métodos combinatorios 2 Métodos combinatorios Las pruebas pueden aplicarse de muchas maneras, es decir, existen diferentes formas de preparar casos de prueba. En este capítulo se presentan dos formas de prueba muy fáciles de

Más detalles

DIBUJO TÉCNICO BACHILLERATO INTRODUCCIÓN

DIBUJO TÉCNICO BACHILLERATO INTRODUCCIÓN DIBUJO TÉCNICO BACHILLERATO INTRODUCCIÓN El Dibujo Técnico tiene como finalidad, formar al estudiante en las competencias necesarias para poder desenvolverse en una realidad cada vez más científica y tecnológica,

Más detalles