El Secreto de las Abejas y la Geometría de la Naturaleza

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El Secreto de las Abejas y la Geometría de la Naturaleza"

Transcripción

1 El Secreto de las Abejas y la Geometría de la Naturaleza José Acevedo Jiménez Santiago, Rep. Dom. "Las abejas..., en virtud de una cierta intuición geométrica..., saben que el hexágono es mayor que el cuadrado y que el triángulo, y que podrá contener más miel con el mismo gasto de material." Pappus de Alejandría. El geómetra de Alejandría claramente estaba a favor de las abejas, pero sus palabras, más poéticas que matemáticas, no son ciertas del todo. Analicemos los argumentos. Según Pappus, las abejas, por intuición geométrica, saben que de las tres figuras regulares (hexágono, cuadrado, triángulo) el hexágono es la figura más eficiente para almacenar la miel. Se puede demostrar, matemáticamente, que efectivamente el hexágono, de las tres dadas, es la figura perfecta para efectuar dicha labor, pero, cómo pueden las abejas saberlo? Se podría pensar que nuestros melíferos amigos poseen cierta intuición natural para la geometría, sin embargo esto no es lo que ocurre en la realidad. Las abejas, con cierta ayuda de las leyes de la física, construyen panales hexagonales no porque sea la forma más

2 efectiva para almacenar su miel, entre otras cosas, utilizan esa figura porque no pueden construir otra. Explicándolo mejor. Las formas circulares y esféricas abundan en la naturaleza, podemos ver flores, frutas, cuerpos celestes, entre muchas otras cosas que adoptan dichas formas, por otro lado es difícil, por no decir imposible, encontrar en la naturaleza objetos u organismos vivientes que adopten formas perfectamente cuadradas o triangulares. Un círculo perfecto es relativamente fácil de construir, pero hacer triángulos y cuadrados, perfectos, no es cosa tan fácil. Gotas de agua sobre la superficie de una hoja. Como podemos ver en la figura, las formas circulares y esféricas son comunes en la naturaleza.

3 Un poco de ayuda de las leyes físicas Como ya hemos señalado, las abejas no saben que, entre las tres evaluadas, el hexágono es la forma perfecta para la construcción de las celdillas que forman el panal, si buscamos formas eficientes el círculo resultaría la forma perfecta, dicha forma es la que las abejas precisamente construyen, pero no lo hacen porque sea la forma más eficiente para sus propósitos, lo erigen porque es una de las figuras más fáciles de construir.. Arriba tenemos dos imágenes de panales distintos, claramente se puede notar que las celdas del panal de la derecha son mucho más hexagonales que su homólogo de las izquierda que tienden a ser más circulares. Si las abejas no construyen hexágonos cómo podemos explicar las formas hexagonales de las celdas de la figura de la derecha? Las leyes de la física nos proporcionan la respuesta, tal como lo sugiere la figura de la izquierda, las abejas construyen sus celdas de forma circular. Al estar juntas unas de otras y al encontrarse la cera en un estado cuasifluido mientras las abejas giran sobre un punto fijo para darle forma a la celda la fuerza de adhesión, entre otras que no mencionaremos, provocan que las celdas (círculos) adopten la forma hexagonal.

4 En la figura lindante de arriba se distinguen varias pompas de jabón, en condiciones normales las pompas adoptarían formas esféricas pero al estar juntas unas de otras se comprimen un poco y adoptan formas más poligonales. Un fenómeno similar ocurre con las celdas en los panales de abejas. Dado que el material que utilizan las avispas para construir sus panales es menos semifluido que la cera que usan las abejas, las celdas de los panales de las primeras suelen ser menos hexagonales que el de las abejas.

5 La geometría natural y la abstracción matemática En la natura podemos encontrar diversas formas geométricas, en la figura observamos flores con forma de estrella, aunque los lados de la flor (bordes de los pétalos) no son totalmente rectos se pueden asociar con una idea abstracta por lo que se puede decir que la flor tiene diez lados e igual cantidad de ángulos (cinco externos y cinco internos). Todas las formas presentes en la naturaleza se pueden asociar a ideas abstractas (existentes sólo en la mente del pensador) algunos objetos poseen formas difíciles de describir como una piedra o montaña por ejemplo, que por sus formas irregulares no pueden ser asociadas con ninguna de las figuras geométricas regulares (triángulos, cuadrados, círculos, polígonos, etc).

6 El árbol de pino, pertenece a la familia de las coníferas, crece por lo general de forma regular, dicho árbol tiene un contorno cónico que nos recuerda la referida figura con la cual asociamos el mencionado árbol. Aunque no es un pentágono, la flor de la figura nos recuerda mucho el mencionado polígono regular. Si bien podemos encontrar muchas formas irregulares en la naturaleza, también podemos encontrar muchas otras muy regulares las cuales pueden ser descritas

7 con detallada precisión matemática como la concha del nautilo por ejemplo que puede ser asociada con una espiral logarítmica, gracias a su forma regular el molusco puede crecer sin tener que variar la misma. Los fractales y la naturaleza Como hemos señalado, muchas formas de la naturaleza no pueden asociarse o ser descritas con formas regulares como los polígonos, sin embargo existe una geometría relativamente nueva que si las puede describir, la geometría fractal. De manera algo vaga, un fractal puede describirse como una réplica de figuras que se autosemejan variando sólo en el tamaño de las mismas, dado que se van reduciendo. El término fractal fue acuñado por el matemático francés Benoît B. Mandelbrot quien creó la geometría fractal por ahí por los años setenta. La nueva geometría resulto muy útil para describir o reproducir formas naturales como: nubes, montañas, entre otras formas complejas que serían prácticamente imposibles de semejar empleando sólo las figuras descritas por la geometría tradicional. En la figura lindante podemos ver ejemplo de un fractal en la naturaleza, nótese como una parte hoja de la planta se asemeja al todo.

GEOMETRÍA SAGRADA. Ejemplos y dibujos vectoriales JUNIO de 2009 - Roberto García

GEOMETRÍA SAGRADA. Ejemplos y dibujos vectoriales JUNIO de 2009 - Roberto García GEOMETRÍA SAGRADA Ejemplos y dibujos vectoriales JUNIO de 2009 - Roberto García Génesis 1:1 En el principio creó Dios los cielos y la tierra. Espacio tridimensional definido Espacio tridimensional creado

Más detalles

Qué son los cuerpos geométricos?

Qué son los cuerpos geométricos? Qué son los cuerpos geométricos? Definición Los cuerpos geométricos son regiones cerradas del espacio. Una caja de tetrabrick es un ejemplo claro de la figura que en matemáticas se conoce con el nombre

Más detalles

PRISMAS Y PIRÁMIDES. Qué es un poliedro? Un poliedro es un cuerpo geométrico que tiene alto, ancho y largo.

PRISMAS Y PIRÁMIDES. Qué es un poliedro? Un poliedro es un cuerpo geométrico que tiene alto, ancho y largo. PRISMAS Y PIRÁMIDES. 06 1 Comprende la relación que existe entre el volumen de un prisma con respecto al volumen de una pirámide que tienen la misma base y altura. En Presentación de Contenidos para explicar

Más detalles

Los Teselados, Arte y Matemática

Los Teselados, Arte y Matemática Los Teselados, Arte y Matemática José Acevedo Jiménez Santiago, Rep. Dom. La matemática, como actividad humana, está desbordada de entes que son hermosos ante los ojos de aquellos que tienen la capacidad

Más detalles

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro 8 Cuerpos geométricos. Objetivos En esta quincena aprenderás a: Identificar que es un poliedro. Determinar los elementos de un poliedro: Caras, aristas y vértices. Clasificar los poliedros. Especificar

Más detalles

Investigación ser vivo Abeja

Investigación ser vivo Abeja PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA Dirección de Pregrado Curso Desafíos de la ingeniería Investigación ser vivo Abeja Nombre: Joaquín Fuentes Domingo 16 de Marzo, Santiago Contexto:

Más detalles

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15 LOS POLIEDROS Los poliedros son cuerpos geométricos que tienen todas sus caras formadas por polígonos. Muchos objetos de nuestro alrededor tienen forma de poliedro: Los elementos de un poliedro son caras,

Más detalles

4 m. Sabemos que las caras de las pirámides son proporcionales. Los triángulos son equiláteros y la base es un cuadrado.

4 m. Sabemos que las caras de las pirámides son proporcionales. Los triángulos son equiláteros y la base es un cuadrado. M001 La pirámide A) PRESENTACIÓN DEL PROBLEMA En el museo de una ciudad se va a presentar una exposición del arte egipcio y como parte de la decoración han mandado fabricar un par de pirámides. Ambas pirámides

Más detalles

INFLUENCIA DE LA GEOMETRIA Y LA NATURALEZA EN EL ARTE.

INFLUENCIA DE LA GEOMETRIA Y LA NATURALEZA EN EL ARTE. INFLUENCIA DE LA GEOMETRIA Y LA NATURALEZA EN EL ARTE. Natalia González Zaragoza ngzaragoza@yahoo.es DNI: 48395126K telf.:600745169 Introducción El hombre ha intentando, por todos los medios, extraer del

Más detalles

Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media

Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media Este instrumento presenta los indicadores de evaluación del proceso 2014 de la Modalidad Flexible de Estudios;

Más detalles

Tema 1: Cuerpos geométricos. Aplicaciones

Tema 1: Cuerpos geométricos. Aplicaciones Tema 1: Cuerpos geométricos. Aplicaciones 1.- los polígonos. Un polígono es un trozo de plano limitado por una línea poligonal (sin curvas) cerrada. Es un polígono No son polígonos Hay dos clases de polígonos:

Más detalles

Profr. Efraín Soto Apolinar. Límites

Profr. Efraín Soto Apolinar. Límites Límites Cada rama de las matemáticas tiene conceptos que resultan centrales para el desarrollo de la misma. Nosotros empezamos el estudio del cálculo infinitesimal, que está compuesto del cálculo diferencial

Más detalles

Talento Matemático 2002/2003. Real Academia de Ciencias

Talento Matemático 2002/2003. Real Academia de Ciencias Volvemos al hermoso tema de la simetría. Además de la imágenes de multitud de objetos y de seres vivos que poseen simetrías recuerdas en qué consistía una simetría desde el punto de vista matemático?,

Más detalles

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 8. Preparado por: Héctor Muñoz

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 8. Preparado por: Héctor Muñoz GUÍAS DE TRABAJO Material de trabajo para los estudiantes UNIDAD 8 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl Responde en tu cuaderno las siguientes preguntas. Guía de Trabajo

Más detalles

Universidad de Costa Rica Facultad de Ciencias Escuela de Matemática Departamento de Enseñanza de la Matemática

Universidad de Costa Rica Facultad de Ciencias Escuela de Matemática Departamento de Enseñanza de la Matemática Universidad de Costa Rica Facultad de Ciencias Escuela de Matemática Departamento de Enseñanza de la Matemática Curso del I año de carrera, I ciclo Número de créditos: 4 Horas lectivas por semana: 5 horas

Más detalles

UNIDAD N º 6: Volumen (1ª parte)

UNIDAD N º 6: Volumen (1ª parte) UNIDAD N º 6: Volumen (1ª parte) De manera intuitiva, el volumen de un objeto es el espacio que él ocupa. El procedimiento a seguir para medir el volumen de un objeto dependerá del estado en que se encuentre:

Más detalles

Ejercicios guiados de comentario de texto. Ejercicio 2. Descartes

Ejercicios guiados de comentario de texto. Ejercicio 2. Descartes Ejercicios guiados de comentario de texto Ejercicio 2. Descartes Así, por ejemplo, estimaba correcto que, suponiendo un triángulo, entonces era preciso que sus tres ángulos fuesen iguales a dos rectos;

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN...1 2. SUPERFICIES POLIÉDRICAS. POLIEDROS...1 3. FIGURAS DE REVOLUCIÓN...3 4. POLIEDROS

Más detalles

GEOMETRÍA FLEXIBLE CON POLIFIELTROS 3D

GEOMETRÍA FLEXIBLE CON POLIFIELTROS 3D GEOMETRÍA FLEXIBLE CON POLIFIELTROS 3D Dolores Jiménez Cárdenas, CEIP Joaquín Tena Sicilia (Abla, Almería) José Luis Rodríguez Blancas, Universidad de Almería http://www.polifieltros3d.com/ RESUMEN. Polifieltros

Más detalles

Método Genérico Para Resolver Cuadrados Mágicos de Orden Par

Método Genérico Para Resolver Cuadrados Mágicos de Orden Par Método Genérico Para Resolver Cuadrados Mágicos de Orden Par José Acevedo Jiménez No hay ninguna rama de las matemáticas, por abstracta que sea, que no pueda aplicarse algún día a los fenómenos del mundo

Más detalles

LAS ECUACIONES DE LAS FLORES

LAS ECUACIONES DE LAS FLORES LAS ECUACIONES DE LAS FLORES SIGMA 26 DE LA GEOMETRÍA HUMANA... Antonio Pérez Sanz (*) Echa una ojeada a tu alrededor... Al menos que hayas decidido irte al campo a leer este artículo, estarás rodeado

Más detalles

TRANSFORMACIONES ISOMÉTRICAS

TRANSFORMACIONES ISOMÉTRICAS TRANSFORMACIONES ISOMÉTRICAS En una transformación isométrica: 1) No se altera la forma ni el tamaño de la figura. 2) Sólo cambia la posición (orientación o sentido de ésta). TRANSFORMACIONES ISOMÉTRICAS

Más detalles

Hay 5 sólidos platónicos

Hay 5 sólidos platónicos 1 Un sólido es un poliedro, o sea una figura tridimensional conformada por planos de diversas formas (polígonos) que se intersectan. Hay 5 sólidos platónicos Fueron estudiados y descriptos por los geómetras

Más detalles

ANÁLISIS DE DAVID HUME DEL PRINCIPIO DE CAUSALIDAD Francesc Llorens

ANÁLISIS DE DAVID HUME DEL PRINCIPIO DE CAUSALIDAD Francesc Llorens ANÁLISIS DE DAVID HUME DEL PRINCIPIO DE CAUSALIDAD Francesc Llorens QUÉ ES EL PRINCIPIO DE CAUSALIDAD El principio de causalidad es el pilar fundamental de la epistemología de David Hume. Tras determinar,

Más detalles

Propuesta didáctica: Fútbol: campo de juego matemático

Propuesta didáctica: Fútbol: campo de juego matemático Propuesta didáctica: Fútbol: campo de juego matemático Clase: 4º año Contenidos programáticos: Proporcionalidad directa. Operaciones con racionales. Simetría axial. Magnitudes: área, amplitud angular y

Más detalles

PROYECTO DE LA REAL ACADEMIA DE CIENCIAS Estímulo del talento matemático

PROYECTO DE LA REAL ACADEMIA DE CIENCIAS Estímulo del talento matemático PROYECTO DE L REL CDEMI DE CIENCIS Estímulo del talento matemático Prueba de selección 8 de junio de 2013 Nombre:... pellidos:... Fecha de nacimiento:... Teléfonos:... Información importante que debes

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo 10 La circunferencia y el círculo Objetivos En esta quincena aprenderás a: Identificar los diferentes elementos presentes en la circunferencia y el círculo. Conocer las posiciones relativas de puntos,

Más detalles

Volumen de los cuerpos geométricos.

Volumen de los cuerpos geométricos. 10 Volumen de los cuerpos geométricos. Objetivos En esta quincena aprenderás a: Comprender el concepto de medida del volumen y conocer y manejar las unidades de medida del S.M.D. Obtener y aplicar expresiones

Más detalles

El Secreto de los Místicos Españoles y el Poder Creador de la Palabra

El Secreto de los Místicos Españoles y el Poder Creador de la Palabra El Secreto de los Místicos Españoles y el Poder Creador de la Palabra Soteriología Cristológica en Fray Luis de León desde la perspectiva de su juicio por la Inquisición Jaime Fernando Leal Anaya, B.D.,

Más detalles

Cuerpos geométricos: poliedros

Cuerpos geométricos: poliedros Cuerpos geométricos: poliedros Viajar desde la geometría en el plano hacia un espacio tridimensional, donde se insertan los cuerpos geométricos, nos acerca al mundo real. En el proceso de fabricación de

Más detalles

1 PRACTICA: QCAD. COORDENADAS

1 PRACTICA: QCAD. COORDENADAS 1 PRACTICA: QCAD. COORDENADAS 1.1 Coordenadas cartesianas. En dibujo técnico, se pueden utilizar las coordenadas cartesianas, es decir, para indicar un punto, se nombra primero la medida en x y luego la

Más detalles

Ley de crecimiento de una mancha de aceite.

Ley de crecimiento de una mancha de aceite. Ley de crecimiento de una mancha de aceite. María Florencia Filadoro Alikhanoff E-mail: floty@hotmail.com Resumen Se realizaron mediciones del diámetro de una mancha de petróleo para determinar la tasa

Más detalles

Sistema Diédrico (I). Verdadera magnitud. Abatimientos

Sistema Diédrico (I). Verdadera magnitud. Abatimientos Sistema Diédrico (I). Verdadera magnitud. Abatimientos Cuando dibujamos las proyecciones diédricas (planta, alzado y perfil) de una figura, superficie, sólido, etc.., observamos cómo sus elementos (aristas

Más detalles

1.- LÍNEAS POLIGONALES Y POLÍGONOS.

1.- LÍNEAS POLIGONALES Y POLÍGONOS. 1.- LÍNEAS POLIGONALES Y POLÍGONOS. Línea poligonal.- Una línea poligonal está formada por varios segmentos consecutivos. Las líneas poligonales pueden ser abiertas o cerradas. Polígono.- Es la región

Más detalles

DESARROLLANDO TÉCNICAS Y RUTINAS DE PROGRAMACIÓN EN EL GEÓMETRA.

DESARROLLANDO TÉCNICAS Y RUTINAS DE PROGRAMACIÓN EN EL GEÓMETRA. IV CIEMAC J.J Fallas, J. Chavarría 1 DESARROLLANDO TÉCNICAS Y RUTINAS DE PROGRAMACIÓN EN EL GEÓMETRA. Juan José Fallas Monge 1 Jeffry Chavarría Molina. Resumen Frecuentemente al Geómetra se le relaciona

Más detalles

DEFECTOS EN PIEZAS MECÁNICAS

DEFECTOS EN PIEZAS MECÁNICAS DEFECTOS EN PIEZAS MECÁNICAS Defectos dimensionales: diferencia entre las dimensiones obtenidas midiendo la pieza y las teóricas dadas por el diseño o pieza prototipo. Pueden ser de tipo lineal o angular.

Más detalles

11 SUCESIONES. PROGRESIONES

11 SUCESIONES. PROGRESIONES EJERCICIOS PROPUESTOS. Con cerillas se han construido las figuras. a) Cuántas cerillas se necesitan para formar una figura con 5 hexágonos? b) Cuántas cerillas se necesitan para formar una figura con n

Más detalles

EL MODELO DE DATOS RASTER

EL MODELO DE DATOS RASTER EL MODELO DE DATOS RASTER El modelo de datos raster, como señala Bosque (1992), es el modelo de datos complementario al modelo vectorial presentado anteriormente. Tiene como principal característica el

Más detalles

Cuerpos geométricos OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Elementos de un poliedro y su desarrollo. Los poliedros regulares y sus características.

Cuerpos geométricos OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Elementos de un poliedro y su desarrollo. Los poliedros regulares y sus características. 826464 _ 0385-0396.qxd /2/07 09:27 Página 385 Cuerpos geométricos INTRODUCCIÓN Esta unidad completa la serie dedicada a la Geometría y afianza su comprensión mediante la descripción y desarrollo de las

Más detalles

Matemáticas III. Matemáticas III. Calcular área, perímetro y los demás elementos de polígonos tanto regulares como irregulares.

Matemáticas III. Matemáticas III. Calcular área, perímetro y los demás elementos de polígonos tanto regulares como irregulares. Matemáticas III Tema 6 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Calcular área, perímetro y los demás elementos de polígonos tanto regulares como irregulares. 2 1 Introducción

Más detalles

Software dinámico Comprensión lectora Mapas mentales Mapas conceptuales

Software dinámico Comprensión lectora Mapas mentales Mapas conceptuales PROYECTO PERMANENCIA Y GRADUACIÓN ESTUDIANTIL EXPERIENCIA CON LA UNIVERSIDAD DE MEDELLÍN Software dinámico Comprensión lectora Mapas mentales Mapas conceptuales Software dinámico Después de realizar un

Más detalles

UNIDAD 4. Transformaciones isométricas (Primera parte)

UNIDAD 4. Transformaciones isométricas (Primera parte) Matemática UNIDD 4. Transformaciones isométricas (Primera parte) 1 Medio GUÍ N 1 INTRODUCCIÓN El artista holandés Maurits Cornelis Escher (1898 1972) es considerado uno de los artistas gráficos más famosos

Más detalles

Guías Excel 2007 Matrices Guía 77

Guías Excel 2007 Matrices Guía 77 MATRICES Las hojas de cálculo poseen prestaciones interesantes la gestión de matrices de tipo matemático. Unas consisten en facilitar los cálculos matriciales y otras están orientadas a cálculos estadísticos.

Más detalles

COMPARACIÓN DE ÁREAS DE FIGURAS POR ESTUDIANTES DE PRIMERO DE MAGISTERIO

COMPARACIÓN DE ÁREAS DE FIGURAS POR ESTUDIANTES DE PRIMERO DE MAGISTERIO COMPARACIÓN DE ÁREAS DE FIGURAS POR ESTUDIANTES DE PRIMERO DE MAGISTERIO Sonia Aguilera Piqueras y Pablo Flores Martínez Departamento de Didáctica de la Matemática Universidad de Granada 1. Introducción

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado,

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo

Más detalles

Educación Plástica y Visual. Láminas verano. 3º ESO

Educación Plástica y Visual. Láminas verano. 3º ESO Educación Plástica y Visual. Láminas verano. 3º ESO 1. Título: El Verano. Nº Lámina: V.1. Cuenta una anécdota que te haya sucedido este verano, en plan cómic. Tamaño mínimo una lámina de dibujo. Presta

Más detalles

Descripciones de las Habilidades de Primaria por Trimestre Materia: Matemáticas Grade: Kinder

Descripciones de las Habilidades de Primaria por Trimestre Materia: Matemáticas Grade: Kinder Grade: Kinder Medición Geometría Leer y escribir los números hasta 5 Entender que escribiendo los números representan la cantidad de objetos (0-5) Contar de uno en uno hasta 10 (empezar con cualquier número

Más detalles

Tema 1.1 La bóveda celeste. Fundamentos geométricos.

Tema 1.1 La bóveda celeste. Fundamentos geométricos. Módulo 1. La bóveda celeste. Astronomía observacional. Tema 1.1 La bóveda celeste. Fundamentos geométricos. Objetivos del tema: En este tema aprenderemos los fundamentos geométricos del movimiento de la

Más detalles

Capítulo VI. Diagramas de Entidad Relación

Capítulo VI. Diagramas de Entidad Relación Diagramas de Entidad Relación Diagramas de entidad relación Tabla de contenido 1.- Concepto de entidad... 91 1.1.- Entidad del negocio... 91 1.2.- Atributos y datos... 91 2.- Asociación de entidades...

Más detalles

Por Luis Balbuena Castellano desde La Laguna, Tenerife, Islas Canarias. Septiembre de 2010.

Por Luis Balbuena Castellano desde La Laguna, Tenerife, Islas Canarias. Septiembre de 2010. HAY QUE APRENDER MATEMÁTICAS Por Luis Balbuena Castellano desde La Laguna, Tenerife, Islas Canarias. Septiembre de 2010. balbuenaluisx@gmail.com/ Es actualmente el Secretario General de la Federación Iberoamericana

Más detalles

CRITERIOS DE VALORACIÓN

CRITERIOS DE VALORACIÓN PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO Ejercicio nº 1 CRITERIOS DE VALORACIÓN OPCIÓN A 1. Construcción del heptágono conocido el lado...

Más detalles

Constelación de Satélites Navstar

Constelación de Satélites Navstar Constelación de Satélites Navstar El Sistema GPS (Sistema de Posicionamiento Global) fue creado por el Departamento de Defensa de los Estados Unidos (DD) para constituir un sistema de navegación preciso

Más detalles

Aprendemos las características de las figuras bidimensionales

Aprendemos las características de las figuras bidimensionales SEXTO GRADO - UNIDAD 5 - SESIÓN 08 Aprendemos las características de las figuras bidimensionales Se espera que, en esta sesión, los estudiantes logren identificar las características de figuras bidimensionales

Más detalles

Diferencias entre Figuras y

Diferencias entre Figuras y 10 Lección Refuerzo Matemáticas Diferencias entre Figuras y Cuerpos Geométricos APRENDO JUGANDO Competencia Aplica conocimientos acerca de las principales características de polígonos y cuerpos geométricos.

Más detalles

Actividades con Geoplano

Actividades con Geoplano Descripción General Actividades con Geoplano El Geoplano es un arreglo rectángular de puntos (clavos) de tal manera que entre puntos adyacentes horizontal o verticalmente hay una distancia constante. En

Más detalles

En el aparador de la joyería. Nos engaña Hollywood?

En el aparador de la joyería. Nos engaña Hollywood? Veamos los siguientes ejemplos prácticos de aplicación: En el desayuno En el aparador de la joyería De paso por la papelería Los códigos de identificación Nos engaña Hollywood? El rectángulo ureo En el

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO CRITERIOS PARA LA REALIZACIÓN DE LA PRUEBA 1.- Se establecen dos opciones A- y B- de tres problemas

Más detalles

MINISTERIO DE EDUCACIÓN PÚBLICA VICEMINISTERIO ACADÉMICO DIRECCIÓN DE DESARROLLO CURRICULAR 3, 13, 23, 33,,,

MINISTERIO DE EDUCACIÓN PÚBLICA VICEMINISTERIO ACADÉMICO DIRECCIÓN DE DESARROLLO CURRICULAR 3, 13, 23, 33,,, MATERIALES NECESARIOS: Una tabla de cien. Fichas o marcadores. ACTIVIDADES PROPUESTAS: 1. Usando la tabla de 100 completen la siguiente sucesión: 3, 13, 23, 33,,, a. Qué patrón sigue la sucesión? Descríbanlo

Más detalles

ESTRUCTURAS CRISTALINAS (P2)

ESTRUCTURAS CRISTALINAS (P2) ESTRUCTURAS CRISTALINAS (P2) Objetivos - Visualización de estructuras de sólidos mediante el uso de modelos - Estudio de redes cristalinas basadas en ordenamientos de esferas de igual tamaño - Identificación

Más detalles

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede

Más detalles

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio. CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los

Más detalles

Círculo. Para ello, necesita elaborar unos aros de cinta de acero como el que representa la figura siguiente:

Círculo. Para ello, necesita elaborar unos aros de cinta de acero como el que representa la figura siguiente: Lección 1 Círculo Macario trabaja en la fábrica de pintura. Tiene que reforzar las tapas de los barriles para que embone perfectamente y las materias primas que almacenan en ellos se conserven adecuadamente.

Más detalles

ESTALMAT-Andalucía. Geometría dinámica con Cabri. Sesión 16

ESTALMAT-Andalucía. Geometría dinámica con Cabri. Sesión 16 Geometría dinámica con Cabri Sesión 16 SAEM THALES Material recopilado y elaborado por: Encarnación Amaro Parrado Agustín Carrillo de Albornoz Torres Granada, 8 de marzo de 2008-2 - Actividades de repaso

Más detalles

LA GEOMETRIA SAGRADA DE LOS CROP CIRCLES

LA GEOMETRIA SAGRADA DE LOS CROP CIRCLES LA GEOMETRIA SAGRADA DE LOS CROP CIRCLES Uno de los fenómenos característicos de los Crop Circles es la precisión geométrica de sus diseños, (incluso estando en campos de cultivo con pendientes pronunciadas

Más detalles

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.

Más detalles

Operación de Microsoft Excel

Operación de Microsoft Excel Representación gráfica de datos Generalidades Excel puede crear gráficos a partir de datos previamente seleccionados en una hoja de cálculo. El usuario puede incrustar un gráfico en una hoja de cálculo,

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO:

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: 2º ESO OBJETIVOS: Resolver problemas con enunciados relacionados con la

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

Tema 6 Istmo Centroamericano, un mundo de formas, personas y lugares Nivel 4

Tema 6 Istmo Centroamericano, un mundo de formas, personas y lugares Nivel 4 Tema 6 Istmo Centroamericano, un mundo de formas, personas y lugares Nivel 4 Contenido matemático Polígonos regulares e irregulares. Lectura y escritura de números naturales menores que 100 000. Notación

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

La maduración de la miel

La maduración de la miel La maduración de la miel Fuente: www.e-campo.com El maravilloso proceso que convierte al néctar en miel incluye modificaciones físico químicas que requieren una compleja labor de la colmena. Por su parte

Más detalles

Cuerpos Geométricos Son aquellos elementos que ocupan un volumen en el espacio se componen de tres partes: alto, ancho y largo.

Cuerpos Geométricos Son aquellos elementos que ocupan un volumen en el espacio se componen de tres partes: alto, ancho y largo. CUERPOS GEOMÉTRICOS 06 Describe qué son e identifica las características de los cuerpos geométricos. El maestro comenta qué es, cómo se forman y cuáles son las partes de un cuerpo geométrico. Los alumnos

Más detalles

Pequeños experimentos científicos

Pequeños experimentos científicos Pequeños experimentos científicos Volcán de sal A veces explorar con insumos de cocina es divertido y podemos aprender sobre cómo se comportan algunos elementos cuando los mezclamos. Nota: siempre debes

Más detalles

CRITERIOS DE EVALUACIÓN Resolver problemas geométricos valorando el método y el razonamiento de las construcciones, su acabado y presentación.

CRITERIOS DE EVALUACIÓN Resolver problemas geométricos valorando el método y el razonamiento de las construcciones, su acabado y presentación. ASIGNATURA: DIBUJO TÉCNICO II Actualización: FEBRERO DE 2009 Validez desde el curso: 2009-2010 Autorización: COPAEU Castilla y León PROGRAMA Análisis del currículo y acuerdos para las Pruebas de Acceso

Más detalles

Movimientos y semejanzas

Movimientos y semejanzas 865 _ 057-068.qxd 7/4/07 :4 Página 57 Movimientos y semejanzas INTRODUIÓN Esta unidad tiene un componente gráfico muy importante, por lo que conviene comenzar la unidad aportando ejemplos reales, sobre

Más detalles

Efectos Espaciales en Interrelaciones de Formas

Efectos Espaciales en Interrelaciones de Formas Fundamentos del Diseño Bi y Tridimensional W. Wong, G. Gili Interrelación de Formas Las formas pueden encontrarse entre sí de diferentes maneras. Hemos demostrado que cuando una forma se superpone a otra,

Más detalles

Sobre los Tamaños y Distancias del Sol y la Luna.

Sobre los Tamaños y Distancias del Sol y la Luna. El CSIC en la Escuela El lenguaje que normalmente empleamos para comunicarnos no es capaz de describir adecuadamente todos los procesos que tienen lugar en la naturaleza. Afortunadamente las matemáticas

Más detalles

TRANSICIÓN JUGAR CON BLOQUES LÓGICOS

TRANSICIÓN JUGAR CON BLOQUES LÓGICOS SECUENCIAS DIDÁCTICAS DESARROLLO DEL PENSAMIENTO LÓGICO MATEMÁTICO TRANSICIÓN JUGAR CON BLOQUES LÓGICOS Los bloques lógicos son un material estructurado creado por el matemático y psicólogo húngaro, Zoltan

Más detalles

OLIMPIADAS REGIONALES DE MATEMÁTICAS OCTAVA EDICIÓN PRUEBA CLASIFICATORIA. Documento de estudio: cuestionario, análisis de preguntas y respuestas.

OLIMPIADAS REGIONALES DE MATEMÁTICAS OCTAVA EDICIÓN PRUEBA CLASIFICATORIA. Documento de estudio: cuestionario, análisis de preguntas y respuestas. OLIMPIADAS REGIONALES DE MATEMÁTICAS OCTAVA EDICIÓN PRUEBA CLASIFICATORIA NIVEL BÁSICO Documento de estudio: cuestionario, análisis de preguntas y respuestas DEPARTAMENTO DE MATEMÁTICAS UNIVERSIDAD DEL

Más detalles

Mosaicos: rompiendo el plano de manera armónica

Mosaicos: rompiendo el plano de manera armónica V Seminario sobre Actividades para Estimular el Talento Precoz en Matemáticas IX Reunión Nacional ESTALMAT Castro Urdiales, 2012 Mosaicos: rompiendo el plano de manera armónica ENRIQUE DE LA TORRE FERNÁNDEZ

Más detalles

El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales

El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales By Luis Mederos Como todos sabemos, alrededor del 21 de Diciembre se produce el solsticio de invierno (en el hemisferio norte).

Más detalles

DIBUJO TÉCNICO BACHILLERATO INTRODUCCIÓN

DIBUJO TÉCNICO BACHILLERATO INTRODUCCIÓN DIBUJO TÉCNICO BACHILLERATO INTRODUCCIÓN El Dibujo Técnico tiene como finalidad, formar al estudiante en las competencias necesarias para poder desenvolverse en una realidad cada vez más científica y tecnológica,

Más detalles

2 Métodos combinatorios

2 Métodos combinatorios 2 Métodos combinatorios Las pruebas pueden aplicarse de muchas maneras, es decir, existen diferentes formas de preparar casos de prueba. En este capítulo se presentan dos formas de prueba muy fáciles de

Más detalles

Problemas fáciles y problemas difíciles. Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el siguiente problema:

Problemas fáciles y problemas difíciles. Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el siguiente problema: Problemas fáciles y problemas difíciles Alicia Avila Profesora investigadora de la Universidad Pedagógica Nacional Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el

Más detalles

Guía para resolver la prueba Graduandos 2015

Guía para resolver la prueba Graduandos 2015 1 Prueba de Matemáticas 1. Objetivo del documento El objetivo principal de este documento es dar a conocer los temas de Matemáticas que se incluyen en la Evaluación Nacional de. 2. La importancia de evaluar

Más detalles

Usá la tarjeta, usá la cabeza. Proyecto de investigación metodológica y reuso.

Usá la tarjeta, usá la cabeza. Proyecto de investigación metodológica y reuso. Usá la tarjeta, usá la cabeza. Proyecto de investigación metodológica y reuso. rodrigo f valdivielso - www.valdivielso.com.ar Usá la tarjeta, usá la cabeza El proyecto subte surge como un trabajo de investigación

Más detalles

3- Matemáticas. 3.2 El Cero maya. 3.1 Sistema vigesimal

3- Matemáticas. 3.2 El Cero maya. 3.1 Sistema vigesimal 2009 energía 9 (140) 12, FTE de México 3- Matemáticas 3.1 Sistema vigesimal En Mesoamérica surgió el sistema numérico vigesimal, con números de posición y la aplicación del cero (0). Las mayas alcanzaron

Más detalles

PROGRAMACIONES DE AULA 4º MATEMÁTICAS. Unidad 0. Números y operaciones. Contenidos. Objetivos. Temporalización

PROGRAMACIONES DE AULA 4º MATEMÁTICAS. Unidad 0. Números y operaciones. Contenidos. Objetivos. Temporalización PROGRAMACIONES DE AULA 4º MATEMÁTICAS Unidad 0. Números y operaciones Números de hasta cinco cifras. Comparación de números. Tablas de multiplicar. Multiplicación y sus términos. División y sus términos.

Más detalles

LAS ABEJAS RECOLECCIÓN DEL NÉCTAR

LAS ABEJAS RECOLECCIÓN DEL NÉCTAR LS EJS La información de esta página y de la siguiente está tomada de un folleto sobre las abejas. onsulta la información para contestar a las preguntas que se formulan a continuación. REOLEIÓN EL NÉTR

Más detalles

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Soluciones Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Si no se dice otra cosa, no debe considerarse el efecto del roce con el aire. 1.- Un objeto de masa m cae libremente de cierta

Más detalles

INFORMACIÓN PARA LAS FAMILIAS CURSO ACADÉMICO 2014 2015 MATERIA: DIBUJO TÉCNICO I Curso: 1º de BACHILLERATO

INFORMACIÓN PARA LAS FAMILIAS CURSO ACADÉMICO 2014 2015 MATERIA: DIBUJO TÉCNICO I Curso: 1º de BACHILLERATO INFORMACIÓN PARA LAS FAMILIAS CURSO ACADÉMICO 2014 2015 MATERIA: DIBUJO TÉCNICO I Curso: 1º de BACHILLERATO 1. ORGANIZACIÓN DEL CURSO Primera Evaluación: Sistemas de representación I. Sistema diédrico.

Más detalles

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto?

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? GEOMETRÍA 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? A) 740 B) 840 C) 540 D) 640 308. El largo de un rectángulo

Más detalles

LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste

LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste Introducción: A simple vista, el cielo parece una inmensa cúpula que nos cubre. Durante el día se presenta de color azul con el Sol y en ciertas ocasiones

Más detalles

POLÍGONOS ESTRELLADOS ESTRELLAS FORMAS ESTRELLADAS

POLÍGONOS ESTRELLADOS ESTRELLAS FORMAS ESTRELLADAS II Seminario sobre actividades para estimular el talento precoz en Matemáticas. VI reunión nacional de Estalmat POLÍGONOS ESTRELLADOS ESTRELLAS FORMAS ESTRELLADAS ESTALMAT CASTILLA Y LEÓN MADRID 13/03/2009

Más detalles

Diseño de Moda Informatizado UNIDAD DIDÁCTICA 4 GRÁFICOS VECTORIALES

Diseño de Moda Informatizado UNIDAD DIDÁCTICA 4 GRÁFICOS VECTORIALES UNIDAD DIDÁCTICA 4 GRÁFICOS VECTORIALES 59 60 UNIDAD DIDÁCTICA 4 GRÁFICOS VECTORIALES 1.- GRÁFICO VECTORIAL DEFINICIÓN DE VECTORES CARACTERÍSTICAS DE LOS GRÁFICOS VECTORIALES VENTAJAS Y LIMITACIONES DE

Más detalles

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS 4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.

Más detalles

L02 - Espirales. La concreción de la progresividad del alejamiento del punto que gira del centro del giro nos da el tipo de espiral de que se trata.

L02 - Espirales. La concreción de la progresividad del alejamiento del punto que gira del centro del giro nos da el tipo de espiral de que se trata. L02 - Espirales Una curva espiral es la curva plana descrita por un punto que gira alrededor de otro, que podemos suponer el origen de coordenadas, aumentando su distancia progresivamente a medida que

Más detalles