Cartilla 2 Solución Unidad 5: Distribuciones de funciones de variables aleatorias

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cartilla 2 Solución Unidad 5: Distribuciones de funciones de variables aleatorias"

Transcripción

1 Cartilla Solución Unidad 5: Distribuciones de funciones de variables aleatorias a P(X b P(Y0 X / c La variables no son independientes dado que, por ejemplo: P(X0., Y30 0 es distinto a P(X0..P(Y a c b P(X< x x c f (x e ( e x 0 X > y e y>0 fy(y El valor de la densidad conjunta para el par (, es , en cambio el producto de las densidades marginales en estos mismos valores es Por lo tanto no son independientes. 3 a E(XY E(XY/3 b f X (x x 0.5 x f Y (y.5 y 0 y El valor de la densidad conjunta en el punto (, es en cambio el producto de funciones de densidad marginales es 0.75, por lo tanto no son independientes las variables. c cov(x,ye(xy-e(xe(y/3-(9/(5//.0069 Cov (axb, cyd E[(aXb- E(aXb ][(cyd-e(cyd] E[( ax b - a E(X b (cy d - c E(Y d] ac E[(X - E(X(Y - E(Y] ac Cov (X,Y 5 Y ax b Cov(X, Y E[X(aX b]- E(XE(aX b ae(x ρ (X, Y σ σ σx a σx x y [ ] a E(X - (E(X a σ luego ρ ( X,Y X a a 6 Xi Consumo semanal de cada cliente,,, 5 Xi N(30,5 Y 5 X i be(x - a N(750, 5 por eorema de las Combinaciones Lineales P(Y> φ( 0.03 a σ [ E(X ] X be(x La probabilidad de que en una semana el proveedor se quede sin combustible es 0.03.

2 7 X Contenido de maíz de cada lata,,,5 Xi N (60, 5 X n 5 X i i N(60, 5/ 5 por eorema de las Combinaciones Lineales -P(< X <80-[φ(.98 - φ(-.98]-φ( El 0.3% de las veces diremos que el proceso no está funcionando correctamente. 8 X Cantidad de pacientes que se recuperan de cierta enfermedad X b(00, 0. Puesto que np(-p > 5 se puede aproximar a una distribución Normal con media y desvío estándar por eorema Central del Límite P(X<30 P(X< 9.5 φ(-.]-φ(.] 0.06 La probabilidad de que menos de 30 pacientes se recuperen es X Cantidad de clientes que llegan por hora a ciertas instalaciones de servicio automotriz X P(5 Y Cantidad de clientes que llegan en horas a ciertas instalaciones de servicio automotriz Y P(60 Puesto que λ > 5 puedo aproximar por una distribución Normal con media 60 y desvío estándar 60 P(30<X<70 P(30.5<X< 69.5 φ(.3- φ(-3.8 φ(.3- [- φ(3.8] La probabilidad de en un período de horas lleguen entre 30 y 70 clientes es a X Cantidad de personas que contraen una infección respiratoria X b(600, 0.00 Como np. > y p0.00 < 0., puedo aproximar por una distribución de Poisson con λ.. e. P(X 0. 7 b X Cantidad de personas que contraen una infección respiratoria X b(5000, 0.00 Puesto que np(-p9.98 >5 puedo aproximar por una distribución Normal con media 0 y desvío estándar por eorema Central del Límite. P(X>0P(X>0.5 -φ(0.60. La probabilidad de que más de diez personas contraigan la enfermedad es 0. ax Medición de la gravedad específica de cierto cuerpo E(Xx σ X 0.05 Por eorema Central del Límite X N(x, 0.05/5 P( X x < 0. 0 φ( La probabilidad aproximada de que el promedio difiera de la verdadera gravedad del cuerpo en menos de 0.0 unidades es b P( X x <

3 0.0 P(-0.0< X - x < 0.0 P < Z < 0.05 n φ ( 0. n φ ( 0. n n n 96.0 Se necesitan al menos 97 mediciones. 0.0 φ ( 0. n -[-φ ( 0. n ] 0.05 n P( X - < kσ Por desigualdad de Chebycshev P X < n k k k 0 k k kσ kσ k σ 0.0 n n 500 n 500 n Se necesitan al menos 500 mediciones. 3 a Llamaremos e i al error de redondeo de cada número a la decena. e i U [ 5,5] E (e i ( 5 5 / 0; V ( e i ( 5 5 / El error total, al sumar los 00 números, es la suma de los errores de cada uno. 00 e con esperanza e i Los e i se suponen independientes, entonces: V(e V( ei V(ei / σe 8.87 e N (0, 8.87 por eorema Central del Límite E(e E( e i E(e i 0 0 b Si por cada número se puede cometer error máximo de 5, entonces el valor máximo que puede tomar el error de la suma de 00 números es 5*00. Es decir: el valor máximo que puede tomar es 500 y el valor mínimo es 500. c P ( -c < e < c 0.99 c e P < < z c 8.87 c c φ(z φ( z 0.99 φ(z 0.995

4 Si usamos la distribución de probabilidades con la que modelamos el error ganamos mucho, es decir con una probabilidad de 0.99 sabemos que el error está entre 7.8 y 7.8; en cambio, sin hacer uso de esto, decimos que el error está entre 500 y 500. d Bosquejo de la densidad de probabilidad del error de cada sumando y de la suma a e i U( 0., 0.] E(e i 0; V(e i 0. / 00 e E(e 0 0 e i 00 Los e i se suponen independientes, entonces: V(e V(ei 00 σe e N (0, por eorema Central del Límite b e i U( 0., 0] E(e i 0.05; V(e i 0. / 00 e E(e ( * ( e i V(e V(ei 00 σe 0.89 e N ( 5, 0.89 por eorema Central del Límite.

5 Bosquejo de la densidad de probabilidad del error de cada sumando y de la suma 5 a P I I 3A σ I 0.75A P I 8 I ( I - I E(P *3 36 V( P ( 8 I σ I 3 σ P 8 b Error relativo de P σ/ W MV / M V V a W (M M M V (V v E(W M V Como las variables M y F son independientes. V V(W σm ( M V σ v Luego error relativo de W V σ M M ( V M V σ v σm σ error relativo de W v V 0. M

6 b Por desarrollo en series de aylor y por eorema de Combinaciones Lineales W N( W,σ W 7 ( ( E( V( V( V( σ 0.33

Vectores aleatorios. Estadística I curso 2008 2009

Vectores aleatorios. Estadística I curso 2008 2009 Vectores aleatorios Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 En numerosas ocasiones estudiamos más de una variable asociada a

Más detalles

Elementos de Probabilidad y Estadística Segundo de Economía Examen del 26 de junio de 2006 DURACIÓN: 2 horas

Elementos de Probabilidad y Estadística Segundo de Economía Examen del 26 de junio de 2006 DURACIÓN: 2 horas Elementos de Probabilidad y Estadística Segundo de Economía Examen del 6 de junio de 6 DURACIÓN: horas. a) Se realizan lanzamientos de un dado regular. i) Calcular la probabilidad de obtener exactamente

Más detalles

Variables aleatorias. Función de distribución y características asociadas

Variables aleatorias. Función de distribución y características asociadas Índice 3 Variables aleatorias. Función de distribución y características asociadas 3.1 3.1 Introducción.......................................... 3.1 3.2 Concepto de variable aleatoria................................

Más detalles

9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES

9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES 9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES Objetivo Introducir la idea de la distribución conjunta de dos variables discretas. Generalizar las ideas del tema 2. Introducir la distribución normal

Más detalles

Tema 5: Vectores aleatorios bidimensionales.

Tema 5: Vectores aleatorios bidimensionales. Estadística 52 Tema 5: Vectores aleatorios bidimensionales. Hasta ahora hemos estudiado las variables aleatorias unidimensionales, es decir, los valores de una característica aleatoria. En muchos casos,

Más detalles

Lista provisional de becas de comedores, por colegios

Lista provisional de becas de comedores, por colegios 1-3601 - 75 % 3 EP 2-3602 - 75 % 3 EI 3-3603 - 100 % 3 EP 4-3604 - 75 % 3 EP 5-3605 - 90 % 3 EP 6-3606 - 100 % 2 EI 7-3607 - 100 % 3 EI 8-3608 - 100 % 4 EP 9-3609 - 100 % 3 EI 10-3610 - 100 % 6 EP 11-3611

Más detalles

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Métodos estadísticos de la ingeniería, Estadística Problemas de examenes: Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

x i x, y j y f X,Y (x, y) dx dy {X x, Y y} a F X (a) = lím F X,Y (a, b) = f X (x) = f X,Y (x, y) dy. y x F X,Y (x, y) = f X,Y (x, y),

x i x, y j y f X,Y (x, y) dx dy {X x, Y y} a F X (a) = lím F X,Y (a, b) = f X (x) = f X,Y (x, y) dy. y x F X,Y (x, y) = f X,Y (x, y), TEMA 3 3.1 La distribución conjunta de dos (o más) variables. Veamos las definiciones básicas, en el caso de dos v.a.s X, Y sobre un mismo espacio de probabilidad (Ω, F, P). Definiciones: 1) La función

Más detalles

Teoría de Probabilidad

Teoría de Probabilidad Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para las que no existe

Más detalles

Análisis de procesos estocásticos en el dominio del tiempo

Análisis de procesos estocásticos en el dominio del tiempo Análisis de procesos estocásticos en el dominio del tiempo F. Javier Cara ETSII-UPM Curso 2012-2013 1 Contenido Introducción Procesos estocásticos Variables aleatorias Una variable aleatoria Dos variables

Más detalles

PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS

PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS Grupos P y P (Prof. Ledesma) Problemas. Variables aleatorias..- Sea la v.a. X que toma los valores - y con probabilidades, y, respectivamente y

Más detalles

Distribuciones de probabilidad conjunta y muestras aleatorias

Distribuciones de probabilidad conjunta y muestras aleatorias 5 Distribuciones de probabilidad conjunta y muestras aleatorias INTRODUCCIÓN En los capítulos 3 y 4 se estudiaron modelos de probabilidad para una sola variable aleatoria. Muchos problemas de probabilidad

Más detalles

1. Conceptos de teoría de la probabilidad

1. Conceptos de teoría de la probabilidad Master de Investigación en Economía Aplicada. Métodos Cuantitativos II. 9-. G.García.. Conceptos de teoría de la probabilidad Espacios de probabilidad. Establece el espacio de probabilidad asociado al

Más detalles

Introducción a la Econometría

Introducción a la Econometría Introducción a la Econometría Curso 2009/2010 Seriedeproblemas1 1.- Considere la siguiente distribución de probabilidad: Llueve (X=0) No llueve (X=1) Total Tiempo de viaje largo (Y=0) 0.15 0.07 0.22 Tiempo

Más detalles

Tema 3. Variables aleatorias. Inferencia estadística

Tema 3. Variables aleatorias. Inferencia estadística Estadística y metodología de la investigación Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 3. Variables aleatorias. Inferencia estadística 1. Introducción 1 2. Variables aleatorias 1 2.1. Variable

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

NOCIONES BÁSICAS DE ESTADÍSTICA ACTUARIAL VIDA

NOCIONES BÁSICAS DE ESTADÍSTICA ACTUARIAL VIDA NOCIONES BÁSICAS DE ESTADÍSTICA ACTUARIAL VIDA A NTONIO F ERNÁNDEZ M ORALES MÁLAGA, 2006 Nociones Básicas de Estadística Actuarial Vida Antonio Fernández Morales Málaga, 2006 Nociones Básicas de Estadística

Más detalles

HERRAMIENTAS Y DECISIONES BAJO RIESGO

HERRAMIENTAS Y DECISIONES BAJO RIESGO INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO HERRAMIENTAS Y DECISIONES BAJO RIESGO M. En C. Eduardo Bustos Farías as 1 Las Decisiones en el Mundo Real Características: Múltiples objetivos

Más detalles

1.1. Operaciones básicas: complemento, unión e intersección... 7 1.2. Variable aleatoria X... 10

1.1. Operaciones básicas: complemento, unión e intersección... 7 1.2. Variable aleatoria X... 10 Índice general 1. Estadística y Procesos Estocásticos 7 1.1. Introducción a la estadística..................... 7 1.1.1. Axiomas de la probabilidad................. 7 1.1.2. Probabilidad condicional e

Más detalles

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS 4.1 Distribución binomial 4.1.1 Definición. Ejemplos 4.1.2 La media y la varianza 4.1.3 Uso de tablas 4.1.4 Aditividad 4.2 Distribución de Poisson 4.2.1 Definición.

Más detalles

Problemas. Variables Aleatorias. Modelos de Probabilidad

Problemas. Variables Aleatorias. Modelos de Probabilidad Problemas. Variables Aleatorias. Modelos de Probabilidad Ejemplos resueltos y propuestos Variables Aleatorias Discretas Una variable aleatoria discreta X de valores x 1, x 2,..., x k con función de probabilidad

Más detalles

Universidad del País Vasco

Universidad del País Vasco Universidad del País Vasco eman ta zabal zazu Euskal Herriko Unibertsitatea INSTRUCCIONES. El examen consta de 50 cuestiones. Hay una única respuesta correcta para cada cuestión. Las cuestiones respondidas

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA PROBABILIDAD Y ESTADÍSTICA GUÍA 3: VARIABLES ALEATORIAS DISCRETAS Y DISTRIBUCIONES DE PROBABILIDAD Plan Común de Ingeniería 1.

Más detalles

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Problema 1 PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Hoja 2 Una población de 20 animales insectívoros se introduce en una zona donde el 14% de los insectos que le sirven de alimento son venenosos. Cada

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Formulario y Tablas de Probabilidad para el Curso de Estadística II

Formulario y Tablas de Probabilidad para el Curso de Estadística II Formulario y Tablas de Probabilidad para el Curso de Estadística II Ernesto Barrios Zamudio 1 José Ángel García Pérez2 Departamento Académico de Estadística Instituto Tecnológico Autónomo de México Octubre

Más detalles

Conceptos Fundamentales. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas

Conceptos Fundamentales. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas Conceptos Fundamentales Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas Análisis de datos en física de partículas Experimento en física de partículas: Observación de n sucesos de un cierto tipo (colisiones

Más detalles

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Páginas 74-75 Lanzamiento de varios dados Comprobación de que: Desviación típica de n dados = (Desv. típica para un dado) / 1,71 n = 1,1 1,71 n = 3 0,98

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.3 Ecuaciones diferenciales lineales Las ecuaciones diferenciales ordinarias de primer orden pueden ser lineales o no lineales. En esta sección centraremos

Más detalles

Estadística. 1. Cuántos números impares hay de cinco cifras? (Respuesta: 45000)

Estadística. 1. Cuántos números impares hay de cinco cifras? (Respuesta: 45000) 1. Cuántos números impares hay de cinco cifras? (Respuesta: 45000) 2. De cuántas maneras distintas se pueden ordenar en fila 8 personas? (Respuesta: 40320) 3. De cuántas maneras distintas se pueden repartir

Más detalles

CAPITULO VII VARIABLE ALEATORIA

CAPITULO VII VARIABLE ALEATORIA Variable Aleatoia 65 CAPITULO VII VARIABLE ALEATORIA Definición. Una variable aleatoria es una función X que asigna un número real a cada elemento de un espacio muestral "Ω". Las variables aleatorias pueden

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

Variables Parcialmente Continuas. Walter Sosa Escudero. wsosa@udesa.edu.ar Universidad de San Andr es

Variables Parcialmente Continuas. Walter Sosa Escudero. wsosa@udesa.edu.ar Universidad de San Andr es Variables Parcialmente Continuas Walter Sosa Escudero wsosa@udesa.edu.ar Universidad de San Andr es 1 Introduccion ² Variables aleatorias discretas: los valores del soporte pueden ocurrir con probabilidad

Más detalles

Relación de problemas: Variables aleatorias

Relación de problemas: Variables aleatorias Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución

Más detalles

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS DESCRIPCIÓN DEL TEMA: 10.1. Introducción. 10.2. Método de las transformaciones. 10.3. Método de inversión. 10.4. Método de aceptación-rechazo.

Más detalles

Estimación de la densidad

Estimación de la densidad 23 de marzo de 2009 : histograma Si suponemos que F tiene función de densidad f puede ser útil estimarla. Un estimador muy utilizado es el histograma. Dado un origen x 0 y un ancho h > 0 el histograma

Más detalles

Tema 5: Análisis conjunto y teoremas límite

Tema 5: Análisis conjunto y teoremas límite Facultad de Economía y Empresa 1 Tema 5: Análisis conjunto y teoremas límite COCHES Se han analizado conjuntamente las variables número de hijos de cada familia (X) y número de coches por familia (Y),

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

1.- CONCEPTO DE ESTADÍSTICA 2.- TABLA ESTADÍSTICA Y PARÁMETROS ESTADÍSTICOS

1.- CONCEPTO DE ESTADÍSTICA 2.- TABLA ESTADÍSTICA Y PARÁMETROS ESTADÍSTICOS TEMA 6.- ESTADÍSTICA 1.- CONCEPTO DE ESTADÍSTICA Considera el conjunto formado por todos los alumnos del instituto. Supongamos que queremos estudiar, por ejemplo, el color del pelo, la estatura ó el nº

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Temas: (1) Introducción, (2) Probabilidad y (3) Distribuciones y Densidades de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística ( ) x n P(X x) = p i (1 p) n i i σ 2 X i=0 µ X = np = np(1 p) Variables Aleatorias Discretas y algunas Distribuciones de Probabilidad Raúl D. Katz Pablo A. Sabatinelli 2013 Índice

Más detalles

Esperanza Condicional y Martingalas

Esperanza Condicional y Martingalas Capítulo 4 Esperanza Condicional y Martingalas 4.1. Preliminares Comenzamos recordando algunos conceptos fundamentales sobre Espacios de Hilbert. Definición 4.1 Sea V un espacio vectorial real. Una función,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES Junio, Ejercicio 1, Opción B 3 Sean las matrices A 0 3, B y C 0 1 1 5 1 3 0 a) Calcule las

Más detalles

SIMULACIÓN MCMC. Dr. Holger Capa Santos

SIMULACIÓN MCMC. Dr. Holger Capa Santos SIMULACIÓN MCMC Dr. Holger Capa Santos Septiembre, 2009 CONTENIDO Integración Montecarlo Problema con la Integración Montecarlo Muestreo de Importancia Algoritmos de Metropolis y Metropolis-Hastings Muestreador

Más detalles

Introducción al Tema 9

Introducción al Tema 9 Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables

Más detalles

2. VARIABLE ALEATORIA CONTINUA

2. VARIABLE ALEATORIA CONTINUA Mientras la función de probabilidad se representa en unos ejes de coordenadas cartesianas por medio de una serie de barras, de cualquier anchura, discontinuas, la función de distribución se dibuja a partir

Más detalles

Guía para el estudio de la segunda Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo

Guía para el estudio de la segunda Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo Guía para el estudio de la segunda Unidad didáctica Dr. Víctor Hernández Dr. Jorge Martín Dr. José Antonio Carrillo 18 de marzo de 2011 Índice general Donald Erwin Knuth 5 Recomendaciones para el estudio

Más detalles

Muestreo estadístico. Relación 2 Curso 2007-2008

Muestreo estadístico. Relación 2 Curso 2007-2008 Muestreo estadístico. Relación 2 Curso 2007-2008 1. Para tomar la decisión de mantener un determinado libro como texto oficial de una asignatura, se pretende tomar una muestra aleatoria simple entre los

Más detalles

100 Preguntas Test Probabilidad Combinatoria y Variables Aleatorias 1-DIM

100 Preguntas Test Probabilidad Combinatoria y Variables Aleatorias 1-DIM Preguntas Test Probabilidad Combinatoria y Variables Aleatorias -DIM M.A. Fiol Departament de Matemàtica Aplicada IV Universitat Politècnica de Catalunya email: fiol@mat.upc.es webpage: www-ma4.upc.es/~fiol

Más detalles

Inferencia Estadística

Inferencia Estadística MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Inferencia Estadística Paula Lagares Barreiro * Justo Puerto Albandoz * MaMaEuSch ** Management Mathematics

Más detalles

Variables aleatorias continuas y distribuciones de probabilidad

Variables aleatorias continuas y distribuciones de probabilidad 4 Variables aleatorias continuas y distribuciones de probabilidad INTRODUCCIÓN El capítulo 3 se concentró en el desarrollo de distribuciones de probabilidad de variables aleatorias discretas. En este capítulo

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA Universidad Tecnológica Nacional Facultad Regional Avellaneda PROBABILIDAD Y ESTADÍSTICA Guía de Ejercitación (ª parte) Autores: Mg. Lic. María Cristina Kanobel Lic. Andrea Alvarez Lic. Luis Garaventa

Más detalles

Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría

Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría Ernesto Barrios Zamudio 1 José Ángel García Pérez2 Departamento Académico de Estadística Instituto

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o 2 Profesor: Hugo S. Salinas. Primer Semestre 20. El gerente

Más detalles

M.I. Isidro Ignacio Lázaro Castillo

M.I. Isidro Ignacio Lázaro Castillo UNIDAD 3 Muestreo CURSO DE ESTADÍSTICA M.I. Isidro Ignacio Lázaro Castillo ESTADÍSTICA La estadística se considera un método empleado para: Recoger Organizar Analizar Y contrastar los resultados numéricos

Más detalles

Reconocimiento Estadístico de Patrones, Parte 3. Johan Van Horebeek horebeek@cimat.mx Enero - Junio 2011

Reconocimiento Estadístico de Patrones, Parte 3. Johan Van Horebeek horebeek@cimat.mx Enero - Junio 2011 Reconocimiento Estadístico de Patrones, Parte 3 Johan Van Horebeek horebeek@cimat.mx Enero - Junio 2011 1. Temario del curso 2. Algunos ejemplos 3. Trabajar y analizar datos grandes en R 4. Visualizar

Más detalles

Números aleatorios. Contenidos

Números aleatorios. Contenidos Números aleatorios. Contenidos 1. Descripción estadística de datos. 2. Generación de números aleatorios Números aleatorios con distribución uniforme. Números aleatorios con otras distribuciones. Método

Más detalles

Aplicaciones de la Probabilidad en la Industria

Aplicaciones de la Probabilidad en la Industria Aplicaciones de la Probabilidad en la Industria Dr. Enrique Villa Diharce CIMAT, Guanajuato, México Verano de probabilidad y estadística CIMAT Guanajuato,Gto. Julio 2010 Contenido: 1.- Introducción Introducción

Más detalles

ESTADISTICA II CURSO 2009

ESTADISTICA II CURSO 2009 LIBRO DE PRÁCTICAS DEL PRIMER SEMESTRE ESTADISTICA II CURSO 009 CONTENIDO PRACTICA 1: V. ALEATORIA, F. GENERATRIZ DE MOMENTOS Y TRANSFORMACIONES... 3 PRÁCTICA : VARIABLES ALEATORIAS DISCRETAS... 8 PRÁCTICA

Más detalles

Clase 7: Algunas Distribuciones Continuas de Probabilidad

Clase 7: Algunas Distribuciones Continuas de Probabilidad Clase 7: Algunas Distribuciones Continuas de Probabilidad Distribución Uniforme Continua Una de las distribuciones continuas más simples en Estadística es la Distribución Uniforme Continua. Esta se caracteriza

Más detalles

8. Estimación puntual

8. Estimación puntual 8. Estimación puntual Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 8. Estimación puntual Curso 2009-2010 1 / 30 Contenidos 1 Introducción 2 Construcción de estimadores

Más detalles

Unidad 4: Variables aleatorias

Unidad 4: Variables aleatorias Unidad 4: Variables aleatorias Logro de la unidad 4 Al finalizar la unidad 4, el alumno aplica el concepto de variable aleatoria, valor esperado y probabilidad para la toma de decisiones en un trabajo

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Algunas Distribuciones de Probabilidad

Algunas Distribuciones de Probabilidad Relación de problemas 7 Algunas Distribuciones de Probabilidad 1. En un hospital se ha comprobado que la aplicación de un tratamiento en enfermos de cirrosis produce una cierta mejoría en el 80 % de los

Más detalles

PROGRAMA DE CURSO. Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT 6 10 3 2 5

PROGRAMA DE CURSO. Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT 6 10 3 2 5 PROGRAMA DE CURSO Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT Unidades Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal

Más detalles

DESCRIPCIÓN ESPECÍFICA

DESCRIPCIÓN ESPECÍFICA DESCRIPCIÓN ESPECÍFICA NÚCLEO: COMERCIO Y SERVICIO SUBSECTOR: PRODUCCION Y SALUD OCUPACIONAL Nombre del Módulo: Análisis estadístico de datos. total: 45 HORAS. Objetivo General: Analizar la conformidad

Más detalles

Capítulo 9. Regresión lineal simple

Capítulo 9. Regresión lineal simple Capítulo 9. Regresión lineal simple 9.1 Introducción Uno de los aspectos más relevantes de la Estadística es el análisis de la relación o dependencia entre variables. Frecuentemente resulta de interés

Más detalles

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el LA PARABOLA Señor... cuando nos equivoquemos, concédenos la voluntad de rectificar; y cuando tengamos razón... no permitas que nos hagamos insufribles para el prójimo. Marshall En la presente entrega,

Más detalles

Tema 6 Algunos modelos de distribuciones discretas.

Tema 6 Algunos modelos de distribuciones discretas. Tema 6 Algunos modelos de distribuciones discretas. Una vez epuesta la teoría general sobre variables aleatorias y sus distribuciones de probabilidad, vamos a describir algunas distribuciones particulares

Más detalles

DEPARTAMENT D ESTADÍSTICA I INVESTIGACIÓ OPERATIVA. Ejercicios de Cálculo de Probabilidades

DEPARTAMENT D ESTADÍSTICA I INVESTIGACIÓ OPERATIVA. Ejercicios de Cálculo de Probabilidades DEPARTAMENT D ESTADÍSTICA I INVESTIGACIÓ OPERATIVA Ejercicios de Cálculo de Probabilidades Curso académico 2004-2005 Ejercicios de Cálculo de Probabilidades. Depto. Estadística e I.O. 2 Tema 1: Concepto

Más detalles

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores.

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores. 2.2.- Ha sido medida la distancia de frenado (en metros) de una determinada marca de coches, según el tipo de suelo y velocidad a la que circula, los resultados en 64 pruebas aparecen en el listado siguiente:

Más detalles

En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10).

En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10). MODELOS DE PROBABILIDAD En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10). (a) Si tomamos dos manzanos al azar, cuál

Más detalles

Notas de Probabilidades y Estadística

Notas de Probabilidades y Estadística Notas de Probabilidades y Estadística Capítulos 1 al 12 Víctor J. Yohai vyohai@dm.uba.ar Basadas en apuntes de clase tomados por Alberto Déboli, durante el año 2003 Versión corregida durante 2004 y 2005,

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación EXAMEN RESUELTO DE ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS CONVOCATORIA: ENERO / FECHA: de Enero de Duración del examen: 3 horas Fecha publicación

Más detalles

Una invitación al estudio de las cadenas de Markov

Una invitación al estudio de las cadenas de Markov Una invitación al estudio de las cadenas de Markov Víctor RIVERO Centro de Investigación en Matemáticas A. C. Taller de solución de problemas de probabilidad, 21-25 de Enero de 2008. 1/ 1 Introducción

Más detalles

18. Las averías de máquinas en un taller siguen una distribución de Poisson de media 2 averías por semana. Calcular la probabilidad de:

18. Las averías de máquinas en un taller siguen una distribución de Poisson de media 2 averías por semana. Calcular la probabilidad de: a. Encuentre la probabilidad de cambiar el dispositivo. b. Repita a. Sí la tercera falla del dispositivo se presenta en el décimo periodo de cheaueo c. Cuál de las dos variables aleatorias asumidas en

Más detalles

Ejercicios distribuciones discretas probabilidad

Ejercicios distribuciones discretas probabilidad Ejercicios distribuciones discretas probabilidad 1. Una máquina que produce cierta clase de piezas no está bien ajustada. Un porcentaje del 4.2% de las piezas están fuera de tolerancias, por lo que resultan

Más detalles

Distribuciones Multivariantes. Distribuciones Multivariantes. Distribuciones Multivariantes. Objetivos del tema:

Distribuciones Multivariantes. Distribuciones Multivariantes. Distribuciones Multivariantes. Objetivos del tema: Distribuciones Multivariantes Distribuciones Multivariantes Distribución conjunta de un vector aleatorio Objetivos del tema: Distribuciones marginales y condicionadas Al final del tema el alumno será capaz

Más detalles

Explicación de la tarea 3 Felipe Guerra

Explicación de la tarea 3 Felipe Guerra Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo Estacionarias (Univariadas) Carlos Capistrán Carmona ITAM Serie de tiempo Una serie de tiempo es una sequencia de valores

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. Sean A y B dos sucesos y A, B sus complementarios. Si se verifica que p( B) = 2 / 3, p( A B) = 3 / 4 y p( A B) = 1/ 4, hallar: p( A), p( A B), y la probabilidad condicionada

Más detalles

4 Varianza y desviación típica. 6 Covarianza y correlación. 9 Regresión lineal mínimo cuadrática. 22 Riesgo

4 Varianza y desviación típica. 6 Covarianza y correlación. 9 Regresión lineal mínimo cuadrática. 22 Riesgo MÓDULO 1: GESTIÓN DE CARTERAS Índice Conceptos estadísticos Media aritmética y esperanza matemática 4 Varianza y desviación típica 6 Covarianza y correlación 9 Regresión lineal mínimo cuadrática Rentabilidad

Más detalles

PROBABILIDAD I (10 créditos) Licenciatura en Matemáticas Curso 1999/2000 PROGRAMA

PROBABILIDAD I (10 créditos) Licenciatura en Matemáticas Curso 1999/2000 PROGRAMA PROBABILIDAD I (10 créditos) Licenciatura en Matemáticas Curso 1999/2000 PROGRAMA 1. Espacios de Probabilidad Introducción histórica. Fenómenos aleatorios. Álgebras y sigma álgebras. Sucesos y probabilidades.

Más detalles

La Probabilidad. Heraldo Gonzalez S.

La Probabilidad. Heraldo Gonzalez S. La Probabilidad Heraldo Gonzalez S. 2 Plan de Regularización, Estadistica I LA DISTRIBUCIÓN NORMAL Quizás es la más importante de las distribuciones continuas, se usa profusamente en Inferencia Estadística

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA SEGUNDA PRUEBA PARCIAL Profesor: Hugo S. Salinas. Primer Semestre 2009 1. Resolver los siguientes

Más detalles

Series de tiempo: Una aplicación a registros hidrométricos en una cuenca del Estado de Oaxaca. Arlette Méndez Bustamante

Series de tiempo: Una aplicación a registros hidrométricos en una cuenca del Estado de Oaxaca. Arlette Méndez Bustamante Series de tiempo: Una aplicación a registros hidrométricos en una cuenca del Estado de Oaxaca Arlette Méndez Bustamante Julio de 2013 Dedicatoria A quienes me han heredado el tesoro más valioso que puede

Más detalles

Relación de problemas: Distribuciones de probabilidad

Relación de problemas: Distribuciones de probabilidad Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Distribuciones de probabilidad 1. Un jugador de dardos da justo en la diana 2 de cada cinco veces que lanza. Si

Más detalles

Estadística EIAE (UPM) Estadística p. 1

Estadística EIAE (UPM) Estadística p. 1 Ö Ó ÓÒØ ÒÙÓ ÑÓ ÐÓ p. 1 Ejercicio 1 A una gasolinera llegan, en media, 3 coches por minuto. Calcular la probabilidad de que a) En 1 minuto lleguen dos coches. b) En 1 minuto lleguen al menos dos coches.

Más detalles

Ejercicios de inferencia estadística

Ejercicios de inferencia estadística 1. Una población consiste en las edades de los niños en una familia de cuatro hijos. Estas edades son: x 1 = años, x = 4años, x 3 = 6años, x 4 = 8años. (a) Determina la media y la desviación típica de

Más detalles

Relación de Problemas. Tema 6

Relación de Problemas. Tema 6 Relación de Problemas. Tema 6 1. En una urna hay 5 bolas blancas y 2 negras y se sacan tres bolas sin reemplazamiento. a) Calcular la distribución conjunta del número de bolas blancas y negras de entre

Más detalles

GEOMETRIA ANALITICA CUADERNO DE EJERCICIOS EL MATERIAL QUE SE PRESENTA EN ESTE CUADERNO DE EJERCICIOS CORRESPONDE AL PROGRAMA VIGENTE DEL CURRICULUM

GEOMETRIA ANALITICA CUADERNO DE EJERCICIOS EL MATERIAL QUE SE PRESENTA EN ESTE CUADERNO DE EJERCICIOS CORRESPONDE AL PROGRAMA VIGENTE DEL CURRICULUM GEOMETRIA ANALITICA CUADERNO DE EJERCICIOS EL MATERIAL QUE SE PRESENTA EN ESTE CUADERNO DE EJERCICIOS CORRESPONDE AL PROGRAMA VIGENTE DEL CURRICULUM DEL BACHILLERATO DE LA U.A.E.M. PRESENTA EJERCICIOS

Más detalles

En la presente investigación, se contrastará el modelo propuesto en la. investigación de Marisa Bucheli y Carlos Casacubierta, Asistencia escolar y

En la presente investigación, se contrastará el modelo propuesto en la. investigación de Marisa Bucheli y Carlos Casacubierta, Asistencia escolar y Capítulo 2.- Metodología En la presente investigación, se contrastará el modelo propuesto en la investigación de Marisa Bucheli y Carlos Casacubierta, Asistencia escolar y Participación en el mercado de

Más detalles

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial.

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial. UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO Facultad de Contaduría y Ciencias Administrativas Academia de Matemáticas Apuntes para la Materia de Estadística II Guía Básica para el Estudio de la Estadística

Más detalles

CAPÍTULO I Estadística Descriptiva

CAPÍTULO I Estadística Descriptiva CAPÍTULO I Estadística Descriptiva María Margarita Olivares M. Abril 004 1 INTRODUCCIÓN: Si estamos interesados en conocer alguna característica de una población (ó conjunto de individuos u objetos) acerca

Más detalles

4 Ecuaciones diferenciales de orden superior

4 Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4. educción de orden allar un método para encontrar soluciones que formen un conjunto fundamental de la ED será nuestro trabajo en las siguientes secciones.

Más detalles

LICENCIADO EN CIENCIAS AMBIENTALES PROGRAMA DE ESTADÍSTICA

LICENCIADO EN CIENCIAS AMBIENTALES PROGRAMA DE ESTADÍSTICA LICENCIADO EN CIENCIAS AMBIENTALES PROGRAMA DE ESTADÍSTICA CURSO 2010-2011 TITULACIÓN: CIENCIAS AMBIENTALES ASIGNATURA: ESTADISTICA ÁREA DE CONOCIMIENTO: Estadística e Investigación Operativa Número de

Más detalles

Facultad de Economía y Empresa Departamento de Economía e Historia Económica. Listado de ejercicios. Estadística II

Facultad de Economía y Empresa Departamento de Economía e Historia Económica. Listado de ejercicios. Estadística II Facultad de Economía y Empresa Departamento de Economía e Historia Económica Listado de ejercicios Estadística II Curso 2011-2012 ii Probabilidad Variables aleatorias unidimesionales 1. Se lanza dos veces

Más detalles

EVALUACIÓN DE PROYECTOS BAJO INCERTIDUMBRE

EVALUACIÓN DE PROYECTOS BAJO INCERTIDUMBRE EVALUACIÓN DE PROYECTOS BAJO INCERTIDUMBRE Introducción Un proyecto de inversión consiste en asignar recursos a una cierta actividad, partiendo en un tiempo próximo, para generar beneficios en el futuro.

Más detalles

Lección 3: Funciones de varias variables. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 3: Funciones de varias variables. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 3: Funciones de varias variables Introducción al Cálculo Infinitesimal I.T.I. Gestión Esquema: - Concepto de función de dos variables - Dominio y conjunto imagen - Representación gráfica - Funciones

Más detalles

Colegio Hermanos Carrrera. Departamento de Matemática Prof. Roberto Medina

Colegio Hermanos Carrrera. Departamento de Matemática Prof. Roberto Medina Colegio Hermanos Carrrera Departamento de Matemática Prof. Roberto Medina Unidad 2 Objetivos: - Conceptos algebraicos básicos - Valoración de expresiones algebraicas - Reducción de términos semejantes

Más detalles