Relación de Problemas. Tema 4

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Relación de Problemas. Tema 4"

Transcripción

1 Relación de Problemas. Tema 4 1. Un experimento consiste en lanzar cuatro monedas al aire. Calcular la función de probabilidad y la función de distribución de las siguientes variables aleatorias: 1) Número de caras antes de la primera cruz. 2) Número de caras después de la primera cruz. 3) Número de caras menos número de cruces. 2. La siguiente tabla muestra la función de distribución de una variable aleatoria discreta. Encontrar la función de probabilidad. x F (x) Sea X una variable leatoria con la siguiente función de densidad kx si 0 x 3 f(x) = k(6 x) si 3 x < 6 0 resto a). Hallar k para que f(x) sea función de densidad. b). Pr(X > 3) y Pr(1.5 X 4.5). 4. Nos proponen el siguiente juego: elegimos un número del 1 al 6 y la banca lanza 3 dados. Si el número elegido sale el los tres dados, cobramos 3000 ptas; si sale en dos, cobramos 2000, si sale en uno, cobramos 1000 y si no sale perdemos 1000 ptas. Según la banca, al jugar con tres dados, tenemos el triple de oportunidades y además, a veces se gana más de 1000 ptas que es lo máximo que se llega a perder cada vez. Es el juego tan ventajoso como parece?. 5. Supóngase que se selecciona al azar una palabra de la frase LA MU- JER SE PUSO SU PRECIOSO SOMBRERO ROJO. Si X es el número de letras de la palabra seleccionada. Cuál es el valor de E[X]?. Supóngase que 1

2 se selecciona al azar una de las 35 letras que tiene la oración anterior. Si Y es el número de letras de la palabra en que aparece la letra seleccionada, cuál es el valor de E[Y ]?. 6. Sea X una v.a. con función de densidad { f(x) = 1 2 si 1 x 0 ae x si x > 0 Calcular el valor de a para que f sea función de densidad. Calcular la función de distribución de probabilidad. 7. La función de densidad de una v.a. X viene dada por: { kx f(x) = 2 (1 x) x (0, 1) 0 resto a). Calcular k para que f sea función de densidad. b). Calcular la función de distribución de probabilidad. c). Calcular E[X] y V ar[x]. 8. En ocasiones, algunas líneas aéreas venden más billetes que los disponibles en un vuelo. Una de estas líneas aéreas ha vendido 205 billetes que corresponden a un avión con 200 plazas. Sea X la v.a. correspondiente al número de pasajeros que se presentan en el aeropuerto para viajar en avión. La distribución de X es: x i p i a). Hallar la probabilidad de que todos los pasajeros que llegan a coger el avión tengan plaza. b). Obtener la probabilidad de que alguno de los pasajeros que se presentan en el aeropuerto se queden sin plaza. c). Calcular el número esperado de viajeros que aparecen en el aeropuerto. d). Cuál es la probabilidad de que la primera persona que está en lista de espera tenga sitio en el vuelo?. 9. La longitud de una cierta pieza se distribuye con función de densidad { k(x 1)(3 x) x [1, 3] f(x) = 0 x resto 2

3 Se consideran válidas las piezas cuya logitud esté comprendida entre 1.7 y 2.1 cm. Se pide: a). Caclular el valor de k para que sea función de densidad. b). Calcular la probabilidad de que una determinada pieza sea útil. 10. La función de densidad de una variable aleatoria X es: { e k(x 1) x > 1 f(x) = 0 x 1 Calcular el valor de k para que sea una función de densidad. 11. Un vendedor de helados suele ganar 7000 ptas en un día soleado y 2000 en un día lluvioso. Hallar la ganancia esperada del vendedor en un día para el que se sabe que la probabilidad de que llueva es 1/ El tiempo de reparar una máquina en horas tiene una función de distribución: 0 x 0 x/2 0 x 1 F (x) = 1/2 1 x 2 x/4 2 x 4 1 x 4 a). Dibujar la función de distribución. b). Obtener la función de densidad. c). Si el tiempo de reparación es superior a 1 hora, cuál es la probabilidad de que sea superior a 3.5 horas?. 13. Se considera una v.a. Bernoulli que toma el valor 1 con probabilidad Se toma una muestra de n elementos. Calcular el valor mínimo que debe tener n para que la probabilidad de obtener al menos una vez como resultado un 1 sea mayor o igual que Sabemos que en una ciudad, de cada personas, 1500 están viendo un cierto programa de TV. Cuál es la probabilidad de que de 100 personas elegidas aleatoriamente, menos de 4 estén viendo el programa?. 15. Una universidad sabe que el 75% de sus graduados tiene trabajo a los 12 meses de su graduación. Se eligen 8 graduados al azar. Se pide: a). Probabilidad de que al menos 6 tengan empleo a las 12 meses. b). Probabilidad de que como máximo 6 tengan empleo. 3

4 16. Un examen tipo test consiste en 20 preguntas, cada una de ellas con 4 posibles respuestas. Un estudiante es capaz de identificar y eliminar como incorrecta una de las opciones de cada pregunta y elige aleatoriamente entre las otras tres. El examen se aprueba si hay 12 o más preguntas correctas. a) Cuál es la probabilidad de que el estudiante apruebe?. b) Cuál es la probabilidad de que el estudiante apruebe si puede eliminar dos opciones de cada pregunta?. 17. Las llamadas de teléfono recibidas en una casa siguen un proceso de Poisson con parámetro λ = 2 cada hora. a) Si una persona toma una ducha de 10 minutos, cuál es la probabilidad de que el teléfono suene durante ese tiempo?. b) Durante cuánto tiempo puede tomar una ducha si desea que la probabilidad de no recibir ninguna llamada sea como mucho 0.5?. 18. Consideremos que el número de trozos de chocolate de una galleta sigue una distribución de Poisson. Queremos que la probabilidad de que una galleta seleccionada al azar tenga por lo menos tres trozos de chocolate sea mayor que 0.8. Encontrar el menor valor entero de la media de la distribución que asegura esa probabilidad. 19. En la realización de un programa, el número de errores cometidos por página sigue una distribución de Poisson de varianza 2. Cuál será la probabilidad de no cometerlos en un programa de 20 páginas?. 20. Un aparcamiento tiene dos entradas. Los coches llegan a la entrada I según una Poisson con 3 coches por hora y a la entrada II con 4 coches por hora. Si el número de coches que llega a cada entrada son independientes, cuál es la probabilidad de que en una hora lleguen 3 coches al aparcamiento?. 21. En un proceso de fabricación de película fotográfica aparece por término medio 1 defecto por cada 20 metros de película. Si la distribución de defectos es Poisson, calcular la probabilidad de que haya 6 defectos en un rollo de 200 metros. 22. Se supone que una persona cualquiera contrae en promedio 3 resfriados durante el invierno y se distribuye según una P (λ). a) Calcular la probabilidad de que una persona en un invierno determinado, contraiga por lo menos 1 resfriado. b) Calcular la probabilidad de que de 5 personas elegidas al azar, 4 contraigan 2 resfriados en un invierno. 4

5 23. Supongamos que el tiempo de vida de un componente electrónico sigue una exponencial con λ = 0.1. a) Calcular la probabilidad de que el tiempo de vida sea menor que 10. b) Calcular la probabilidad de que el tiempo de vida esté entre 5 y 15. c) Calcular t para que la probabilidad de que el tiempo de vida sea mayor que t sea Una máquina consta de 12 componentes cuya duración sigue una distribución exponencial de media 500 horas. La política de mantenimiento preventivo consiste en sustituir todos los componentes simultáneamente cada 700 horas. La máquina se avería cuando uno cualquiera de sus componentes lo hace, sustituyéndose en ese caso dicho componente por uno nuevo. Se supone que los componentes funcionan independientemente. a) Cuál es la probabilidad de que una máquina se averíe en el intervalo comprendido entre dos renovaciones? b) Si han transcurrido 500 horas desde la última sutitución de todos los componentes, cuál es la probabilidad de que la máquina se averíe antes de la próxima renovación?, depende esta probabilidad del número de averías que haya habido en las 500 horas?. 25. Un sistema electrónico consta de 4 subsistemas idénticos conectados en serie, con distribución exponencial de tiempo de fallo. Si el tiempo medio de fallo de cada subsistema es de 2000 horas, hallar la probabilidad de que el sistema falle antes del tiempo t y la probabilidad de que no haya fallos después de 100 horas. 26. La duración de un componente eléctrico sigue una distribución exponencial con media horas. Se pide: a) Calcular la probabilidad de que si el componente ha durado más de 20000, dure más de horas. Comparar esta probabilidad con la probabilidad de que dure entre 0 y 1000 horas. Comentar razonadamente el resultado. b) Si se instalan 4 de esos componentes en serie en un aparato, calcular la probabilidad de que el aparato siga funcionando al cabo de horas. 27. La longitud, X, de los tornillos producidos por una máquina sigue una distribución normal con media 112 milímetros y desviación típica de 2.2 milímetros. Construir tres intervalos centrados en la media que contengan el 68.3%, el 95.5% y el 99.7% de la población respectivamente. Si Y es la longitud en centímetros, a) Obtener la distribución de Y. 5

6 b) Hallar la probabilidad de que un tornillo elegido al azar mida más de 11.5 centrímetros. Un tornillo es defectuoso si su longitud está fuera del intervalo (10.9 cms, 11.5 cms). a) Cuál es la proporción de tornillos defectuosos?. b) Cuál es la probabilidad de que de entre 10 tornillos ninguno se defectuoso?. 28. Sea X una variable aleatoria normal con µ = 5 y σ = 10. Calcular: a) Pr(X > 10), b) Pr( 20 < X < 15), c) el valor de x tal que Pr(X > x) = La longitud L de las piezas fabricadas en un proceso es una variable aleatoria N(32, 0.3), considerándose aceptables aquellas cuya medida se encuentra en el intervalo (31.1,32.6). a) Calcular la probabilidad de que una pieza elegida al azar sea aceptable. b) Si se toma al azar una muestra de tres piezas, cuál es la probabilidad de que la primera y la tercera sean aceptables y la segunda no lo sea?. c) Cuál es la probabilidad de que en una muestra de 3 piezas al menos una sea aceptable?. d) Las piezas se embalan en lotes de 500 piezas. Calcular la probabilidad de que un lote tenga más de 15 defectuosas. 30. Se admite que las retribuciones recibidas en una empresa se distribuyen normalmente. Se conoce que el 1% son superiores a ptas y el 10% inferiores a ptas. Se pregunta qué proporción de las retribuciones son superiores a ?. 31. Se considera el siguiente juego. Participar cuesta una cantidad fija c que se ha de pagar de antemano y el juego consiste en acertar el número de caras que se obtendrán al lanzar una moneda equilibrada veces; llamamos S a esta variable aleatoria. Para adivinar el valor de S, el jugador puede elegir 101 números naturales cualesquiera. si S está entre ellos el jugador gana ptas; si no está pirde la misma cantidad. Se pide: a) Indicar cuál es la elección de número más recomendable para el apostante. b) Calcular la probabilidad de ganar utilizando esos números (utilizar el Teorema Central del Límite). c) Se dice que un juego es justo si la esperanza de ganancia del jugador es cero. A partir de la probabilidad de ganar halla da en el apartado anterior, calcular el valor de c para que el juego se justo. d) Si nos informan de que la moneda está trucada y la probabilidad de salir cara es 0.4, razonar si el juego sigue siendo justo. En el caso de que no lo sea 6

7 indicar si el apostante saldrá beneficiado o perjudicado al pagar c. 32. Un sistema está formado por tres componentes conectados en serie. El sistema falla cuando falla uno de los componentes. Los componentes C1 y C2 tienen tiempo de vida T1 y T2 que se distribuyen como una exponencial de media horas. La distribución de probabilidad de la vida del componente C3, T3, es N(3000, 200). Las tiempos de vida de los tres componentes son independientes. C1 C2 C3 a) Calcular la probabilidad de que el componente C1 dure más de 3000 horas. b) Calcular la probabilidad de que el componente C1 dure más de 6000 horas, si ha durado ya 3000 horas. c) Calcular la probabilidad de qu el sistema dure más de 3000 horas. d) Para reforzar el componente C3 se instala un componente gemelo en paralelo, con un interruptor que hace entrar en funcionamiento a la pareja cuando el componente C3 falla. Suponiendo que el interruptor funciona siempre que es necesario, calcular la probabilidad de que el sstema dure más de 3000 horas. C3 C1 C2 C3 7

8 33. En una planta industrial dos bombas B1 y B2 en paralelo conducen agua desde un pozo a una depuradora D, y posteriormente a otras dos bomas B3 y B4, también en paralelo, la trasladan a un depósito. Pozo B2 B4 D B1 B3 Depósito Los tiempos de vida de la depuradora y de las bombas son variables aleatorias independientes con distribución exponencial, siendo horas la vida media de la depuradora y horas la de cada bomba. a) Calcular la probabilidad de que el agua llegue al depósito después de horas de funcionamiento. b) Calcular la probabilidad de que una depuradora que ha trabajado T horas falle antes de las mil horas siguientes. Es razonable que para evitar fallos de la depuradora se renueve ésta cada horas?, por qué?. 3. Los circuitos integrados (chips) se obtienen a partir de ob 34. (Feb 05) Los circuitos fabricación, integrados (chips) los chips se optienen son muy a partir susceptibles de obleasa cualquier defecto de silicio y son muy susceptibles como defecto a culaquier fatal falloaquel en la defecto superficiede la oblea. que pueda echar Se define como defecto fatal de pista aquel defecto los chips que pueda que echar se están a perder produciendo un chip. a partir de dicha El número de defectos fatales por 100 milímetros cuadrados de oblea de silicio viene caracterizado por una El número variable aleatoria de defectos de media fatales 0.1 por 100 milímetros cuadrados d por una variable aleatoria de media 0,1. a) Cuál es la probabilidad d haya más de un defecto fa b) Si se toman 25 chips difer probabilidad de que m defectos? c) Si se pretenden obtener obleas de 100 milímetros 58 chips de 10x10 mm 2 de encontrar más de 12 total de 4 obleas? a) Cuál es la probabilidad de que en un chip de mm 2 haya más de un defecto fatal?. X: Nº de defectuosos por 100 mm 2 = (0,1) a) 8 De la figura se observa que un chip de 20x de 10x10. Tenemos pues:

9 b) Si se toman 25 chips diferentes de mm 2, cuál es la probabilidad de que más de 22 de esos chips no tengan defectos? c) Si se pretenden obtener chips de mm 2 de las obleas de 100 mm de diámetro, cuál es la probabilidad de encontrar más de 12 defectos fatales en la superficie útil total de 4 obleas? 35. (Feb. 05) El valor de una determinada señal s producida por un aparato sufre pequeñas perturbaciones que consideramos aleatorias. a) Supongamos que la distribución de los valores de s se puede aproximar por una distribución Normal con media 12 y desviación típica 0.5. Entre los valores de la señal que son mayores que 12.5, cuál es la proporción de valores que son mayores que 13?. b) Queremos ahora medir la señal s con un aparato de medición. Sea X la v.a. valor proporcionado por el aparato al realizar una medición y ɛ la variable error cometido por el aparato al realizar la medición. Suponiendo que ɛ sigue una distribución normal con media 0 y desviación típica 0.4, y es independiente de s. Cuál es la relación entre s, X y ɛ, cuál es la distribución de X? c) Se planifica realizar varias mediciones y proporcionar su media para aproximar el valor de la señal. Cuántas mediciones habrá que tomar para que nos aseguremos con una probabilidad mayor o igual a 0.95 que el valor proporcionado no se alejará en más de 0.1 unidades de la señal promedio? d) Después de ser producida la señal entra en un dispositivo que la transforma en una señal saliente con tres estado: -1, 0, 1. La señal s out toma el valor -1 si la señal entrante es menor que 11.5, toma el valor 0 si la señal entrante está entre 11.5 y 12.5, y toma el valor 1 si la señal entrante es mayor que Calcula la función de probabilidad de s out. Si se toman 1124 valores de s out, cuál es en promedio el número de valores no nulos de s out? 36. (Sep. 05) La resistencia de ciertos componentes eléctricos fabricados en un proceso es una v.a. que sigue una distribución Normal de media 36 ohmios y varianza 0.64 ohmios 2. Dicho componente se considera defectuoso para montarlo en cualquier sistema cuando su resistencia es menor de 35 ohmios. Se pide: a) Proporción de componentes defectuosos. 9

10 b) Se toma una muestra aleatoria de 400 componentes, cuál es la probabilidad de que haya al menos 350 componentes no defectuosos?. c) Un sistema acopla 2 componentes en serie, calcular la probabilidad de que el sistema funcione. Y si se acoplan en paralelo? 10

Relación de Problemas. Variables Aleatorias

Relación de Problemas. Variables Aleatorias Relación de Problemas. Variables Aleatorias 1. Un experimento consiste en lanzar cuatro monedas al aire. Calcular la función de probabilidad y la función de distribución de las siguientes variables aleatorias:

Más detalles

Tema 4: Ejercicios de Modelos de Probabilidad

Tema 4: Ejercicios de Modelos de Probabilidad Tema 4: s de Modelos de Probabilidad Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 12 - I.T.I.G. Otros Se considera una v.a. Bernoulli que toma el valor 1 con probabilidad

Más detalles

Relación de Problemas. Modelos de Probabilidad

Relación de Problemas. Modelos de Probabilidad Relación de Problemas. Modelos de Probabilidad 1. Sabemos que en una ciudad, de cada 50000 personas, 1500 están viendo un cierto programa de TV. Cuál es la probabilidad de que de 100 personas elegidas

Más detalles

Soluciones Examen de Estadística

Soluciones Examen de Estadística Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 15 de Febrero, 5 Cuestiones horas C1. Un programa se ejecuta desde uno cualquiera de cuatro periféricos A, B, C y D con arreglo

Más detalles

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema: Tema 4: Variables aleatorias Tema 4: Variables Aleatorias Distribución de Bernouilli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

PROBABILIDAD Relación de problemas 3: Variables aleatorias continuas

PROBABILIDAD Relación de problemas 3: Variables aleatorias continuas PROBABILIDAD Relación de problemas 3: Variables aleatorias continuas 1. Un autobús pasa por una cierta parada cada 8 minutos. Si un usuario llega a la parada, el tiempo que debe esperar es una variable

Más detalles

Ejercicios de Modelos de Probabilidad

Ejercicios de Modelos de Probabilidad Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 67 GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES 10/03/2009 Se considera una v.a. Bernoulli que toma el valor 1 con probabilidad

Más detalles

Tema 4: Ejercicios de Modelos de Probabilidad

Tema 4: Ejercicios de Modelos de Probabilidad Tema 4: Ejercicios de Modelos de Probabilidad Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 83 - INGENIERÍA INFORMÁTICA Otros Ejercicio Un servidor que alberga una

Más detalles

Matemática 3 Curso 2013

Matemática 3 Curso 2013 Matemática 3 Curso 2013 Práctica 3: Variables aleatorias discretas. Funciones de distribución Binomial, Geométrica, Hipergeométrica, Poisson. 1) Dadas las siguientes funciones, determinar cuales son funciones

Más detalles

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 7 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

1. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

1. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla: (variables aleatorias) 1 1. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla: 2. Se lanza tres veces una moneda

Más detalles

Variables aleatòries vectorials Els problemes assenyalats amb un (*) se faran a classe. 1.- Los estudiantes de una universidad se clasifican de acuerdo a sus años en la universidad (X) y el número de visitas

Más detalles

10 0,1 12 0,3 14 0, , ,15

10 0,1 12 0,3 14 0, , ,15 1. Una variable aleatoria X puede tomar los valores 30, 40, 50 y 60 con probabilidades 0.4, 0., 0.1 y 0.3. Represente en una tabla la función de probabilidad P(X=x), y la función de distribución de probabilidad,

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

EJERCICIOS VARIABLES ALEATORIAS

EJERCICIOS VARIABLES ALEATORIAS EJERCICIOS VARIABLES ALEATORIAS 1.- Tenemos dos urnas, en la urna A hay 5 bolas blancas y 4 rojas y en la B hay 6 blancas y 3 rojas. Se sacan, sin reemplazamiento, dos bolas de cada urna. Sea X el nº de

Más detalles

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo.

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Tema 6 - Introducción 1 Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Generalización Tema 6. Variables aleatorias unidimensionales

Más detalles

Variables Aleatorias Discretas

Variables Aleatorias Discretas Profesor Alberto Alvaradejo Ojeda 9 de septiembre de 2015 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3.

Más detalles

b) Si decides elegir el trabajo que con más probabilidad te permita ganar más de 900 euros al mes, qué trabajo debes elegir?

b) Si decides elegir el trabajo que con más probabilidad te permita ganar más de 900 euros al mes, qué trabajo debes elegir? Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Hoja 4, curso 2006 2007. Ejercicio 1. Suponer que los cuatro motores de una aeronave comercial se disponen para que

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200.

1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200. 1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200. 2. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras esté entre 180 y 220.

Más detalles

D I S T R I B U C I Ó N N O R M A L

D I S T R I B U C I Ó N N O R M A L D I S T R I B U C I Ó N N O R M A L 1. V A R I A B L E A L E A T O R I A C O N T I N U A. F U N C I O N E S A S O C I A D A S Variable aleatoria continua es aquella que puede tomar valores en un conjunto

Más detalles

Variables aleatorias

Variables aleatorias Estadística Variables aleatorias Supongamos que realizamos el experimento: tirar dos veces un dado. Hasta ahora, hemos tratado sucesos, por ejemplo: A2 = la suma de dos tiradas de un dado es 2. Podemos

Más detalles

4.1. Definición de variable aleatoria. Clasificación.

4.1. Definición de variable aleatoria. Clasificación. Capítulo 4 Variable aleatoria Una variable aleatoria es un valor numérico que corresponde a un resultado de un experimento aleatorio. Algunos ejemplos son: número de caras obtenidas al lanzar seis veces

Más detalles

PROBABILIDADES Y DISTRIBUCIONES

PROBABILIDADES Y DISTRIBUCIONES PROBABILIDADES Y DISTRIBUCIONES 1. Supongamos que se lanza una moneda cuyo peso ha sido alterado de manera que P (C) = 2/3 y P (S) = 1/3. Si aparece cara, entonces selecciona un número al azar del 1 al

Más detalles

Relación de Problemas. Tema 5

Relación de Problemas. Tema 5 Relación de Problemas. Tema 5. Supongamos que tenemos una muestra aleatoria simple de tamaño n de una v.a. X que sigue una distribución geométrica con función de probabilidad P (X = k) = p( p) k Calcular

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2000

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2000 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2000 Dos compañeros de estudios comparten piso. El primero prepara la comida el 40% de los días y el resto lo hace el segundo. El porcentaje de veces

Más detalles

PROBLEMAS DE ESTADISTICA

PROBLEMAS DE ESTADISTICA ESTADÍSTICA, CURSO 2008 2009 1 PROBLEMAS DE ESTADISTICA 2. DISTRIBUCIONES DE PROBABILIDAD 2 1. Una urna contiene 6 bolas blancas, 4 rojas y 2 azules. Si se extraen 3 bolas sucesivamente sin reemplazamiento,

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMAS 14 y 15.- DISTRIBUCIONES DISCRETAS. LA DISTRIBUCIÓN BINOMIAL. DISTRIBUCIONES CONTINUAS. LA DISTRIBUCIÓN NORMAL 1 1.- VARIABLES ALEATORIAS DISCRETAS Concepto

Más detalles

Tema 3:Introducción a las variables aleatorias PROBLEMAS PROPUESTOS. 2. La función de densidad de la variable aleatoria X viene dada por la expresión

Tema 3:Introducción a las variables aleatorias PROBLEMAS PROPUESTOS. 2. La función de densidad de la variable aleatoria X viene dada por la expresión Tema :Introducción a las variables aleatorias PROBLEMAS PROPUESTOS. Puede ser la función de densidad de una variable aleatoria continua mayor que uno en algún punto? Sí. La función de densidad de la variable

Más detalles

Variable Aleatoria. Relación de problemas 6

Variable Aleatoria. Relación de problemas 6 Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es

Más detalles

PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad

PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad 1. Una urna contiene 5 bolas numeradas del 1 al 5. Calcular la probabilidad de que al sacar dos bolas la suma de los números sea impar

Más detalles

ESTADÍSTICA. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán.

ESTADÍSTICA. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. ESTADÍSTICA Junio 1996. Se sabe que la desviación típica del peso de los individuos de una cierta población es de 6 Kg. Calcula el tamaño de la muestra que se ha de considerar para, con un nivel de confianza

Más detalles

Ejercicios de Modelos de Probabilidad

Ejercicios de Modelos de Probabilidad Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 66 GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES 16/03/2009 Las llamadas de teléfono recibidas en una casa siguen un

Más detalles

Variables aleatorias 1. Problema 1

Variables aleatorias 1. Problema 1 Variables aleatorias 1 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Variables aleatorias Problema 1 La dimensión de ciertas piezas sigue una distribución normal

Más detalles

Variable aleatoria continua: Distribución normal

Variable aleatoria continua: Distribución normal Variable aleatoria continua: Distribución normal 1º) Usando las tablas de la normal, calcula las siguientes áreas: a) Área entre 0 y 0,2 b) Área desde hasta 1,32 c) Área entre 2,23 y 1, 2º) Sea Z una variable

Más detalles

PROBLEMAS DE ESTIMACIÓN PUNTUAL Y POR INTERVALOS

PROBLEMAS DE ESTIMACIÓN PUNTUAL Y POR INTERVALOS Estadística 1 PROBLEMAS DE ESTIMACIÓN PUNTUAL Y POR INTERVALOS 1. Obtener un estimador insesgado para p en una m.a.s. de tamaño n de una distribución binomial B(m,p) con m conocido y calcular su error

Más detalles

Estadística I Tema 5: Modelos probabiĺısticos

Estadística I Tema 5: Modelos probabiĺısticos Estadística I Tema 5: Modelos probabiĺısticos Tema 5. Modelos probabiĺısticos Contenidos Variables aleatorias: concepto. Variables aleatorias discretas: Función de probabilidad y función de distribución.

Más detalles

ESTADÍSTICA Y PROBABILIDAD

ESTADÍSTICA Y PROBABILIDAD (distribución normal) 1 1.- Calcular las probabilidades de los siguientes intervalos, empleando para ello las tablas de la distribución de probabilidad normal estándar N(0, 1): (1) P(z 2 14) (2) P(z 0

Más detalles

Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León

Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Distribuciones Muestrales 1. Sea una población de 5 números: 2,

Más detalles

Relación 4. Modelos discretos de distribuciones.

Relación 4. Modelos discretos de distribuciones. Relación 4. Modelos discretos de distribuciones. 1. Si se lanzan dos dados diez veces al aire, cuál es la probabilidad de que en más de la mitad de las ocasiones se obtenga una suma par de puntos? 2. Una

Más detalles

Pendientes 1ºMACS y CyT. Probabilidad PROBABILIDAD

Pendientes 1ºMACS y CyT. Probabilidad PROBABILIDAD PROBABILIDAD 1. Lanzamos dos monedas al aire (primero una y luego la otra). Calcular la probabilidad de obtener: a) Una sola cara b) Al menos una cara c) Dos caras Sol: a) 1/2; b) 3/4; c) 1/4 2. Un lote

Más detalles

RELACIÓN DE PROBLEMAS. Distribuciones de probabilidad

RELACIÓN DE PROBLEMAS. Distribuciones de probabilidad RELACIÓN DE PROBLEMAS Distribuciones de probabilidad 1. Se lanzan al aire dos monedas tres veces consecutivas. Sea X la v.a. que representa el número de veces que se obtiene cara en ambas monedas en los

Más detalles

Ejercicios Estadística-Probabilidad-Distribución Binomial-Distribución Normal-Test de hipótesis

Ejercicios Estadística-Probabilidad-Distribución Binomial-Distribución Normal-Test de hipótesis Ejercicios Estadística-Probabilidad-Distribución Binomial-Distribución Normal-Test de hipótesis 1) Con los datos de la siguiente tabla de frecuencias deduce, rango, media, moda y mediana. Realiza gráfico

Más detalles

puede afirmar, con un nivel de significación de 0.01, que la media de la población es de 40

puede afirmar, con un nivel de significación de 0.01, que la media de la población es de 40 Soluciones: 7. El diámetro de unos ejes sigue una distribución normal de media desconocida y desviación típica 2 mm. Se toma una muestra de tamaño 25 y se obtiene un diámetro medio de 36 mm. Se puede afirmar,

Más detalles

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de

Más detalles

[ ] [ 0,5( )] [ ] 0,5

[ ] [ 0,5( )] [ ] 0,5 85.-Si el 0,5 % de las piezas que fabrica una máquina son defectuosas. Cuál es la probabilidad de obtener alguna pieza defectuosa de 0? X número de piezas defectuosas de 0 x B(0,0,05) Px ( > 0) Px ( 1)

Más detalles

Tema 13. Distribuciones de Probabilidad Problemas Resueltos

Tema 13. Distribuciones de Probabilidad Problemas Resueltos Tema 3. Distribuciones de Probabilidad Problemas Resueltos Distribución de Probabilidad. Una variable aleatoria discreta, X, se distribuye como se indica en la siguiente tabla: ( ) a) Halla el valor de

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Distribuciones (discretas y continuas) EVALUACIÓN CONTINUA (Tipo I) 14-XII-11 1. Una prueba del examen de Estadística consiste en un cuestionario de 10 preguntas con tres posibles respuestas, solamente

Más detalles

P = , 0 2, (0 1] 2 + 1, (1 2) 1, 2

P = , 0 2, (0 1] 2 + 1, (1 2) 1, 2 Grado en IIAA _Grado en IHJ_Grado en IASB Asignatura: Estadística Aplicada. Curso 2014-2015 FEBRERO 2015 NOMBRE:...APELLIDOS:... ESPECIALIDAD:... 1. [0.5 puntos] Un determinado estudio intenta relacionar

Más detalles

PARTE 1 EJERCICIOS 1ºBACHILLERATO CIENCIAS SOCIALES. Ejercicios 1.1 = 10. Solución: Video Toma logaritmos en las siguientes expresiones:

PARTE 1 EJERCICIOS 1ºBACHILLERATO CIENCIAS SOCIALES. Ejercicios 1.1 = 10. Solución: Video Toma logaritmos en las siguientes expresiones: PARTE 1 1.1 = 10 Solución: Video 1.1 1.2 Toma logaritmos en las siguientes expresiones: Solución: Vídeo 1.2 1.3 Halla el valor de: Solución: Vídeo 1.3 1.4 Hallar: Solución: Vídeo 1.4 2.1 Solución: Vídeo

Más detalles

MATEMÁTICAS - 1º BACHILLERATO CCSS - DISTRIBUCIÓN NORMAL ˆ EJERCICIO 42. (a) P (X > 215) = P ( )

MATEMÁTICAS - 1º BACHILLERATO CCSS - DISTRIBUCIÓN NORMAL ˆ EJERCICIO 42. (a) P (X > 215) = P ( ) MATEMÁTICAS - 1º BACHILLERATO CCSS - DISTRIBUCIÓN NORMAL ˆ EJERCICIO 0 Supón que en cierta población pediátrica, la presión sistólica de la sangre en reposo se distribuye normalmente con media de 11 mm

Más detalles

Probabilidad, Variables Aleatorias y Distribuciones

Probabilidad, Variables Aleatorias y Distribuciones GRUPO A Prueba de Evaluación Continua 5-XII-.- Tres plantas de una fábrica de automóviles producen diariamente 00, 00 y 000 unidades respectivamente. El porcentaje de unidades del modelo A es 60%, 0% y

Más detalles

Guía de Modelos Probabilísticos

Guía de Modelos Probabilísticos Guía de Modelos Probabilísticos 1. Distribución Binomial 1. Una máquina produce cierto tipo de piezas de las cuales el 5 % son defectuosas. Se seleccionan en forma independiente 5 piezas al azar. Calcule

Más detalles

6. Si lanzamos un dado 1000 veces, cuál es la probabilidad de que el número de treses obtenidos sea menor que 100?.

6. Si lanzamos un dado 1000 veces, cuál es la probabilidad de que el número de treses obtenidos sea menor que 100?. CAPÍTULO 3. DISTRIBUCIÓN BINOMIAL Y DISTRIBUCIÓN NORMAL 51 3.5. EJERCICIOS 1. En una distribución Bin(10;0 2), calcula p(x=3), p(x 2), p(x > 2), x, σ. 2. Una urna contiene 40 bolas blancas y 60 bolas negras.

Más detalles

TALLER 3 ESTADISTICA I

TALLER 3 ESTADISTICA I TALLER 3 ESTADISTICA I Profesor: Giovany Babativa 1. Un experimento consiste en lanzar un par de dados corrientes. Sea la variable aleatoria X la suma de los dos números. a. Determine el espacio muestral

Más detalles

Apuntes de Clases. Modelos de Probabilidad Discretos

Apuntes de Clases. Modelos de Probabilidad Discretos 2010 Índice 1. Distribución de Bernouilli 2 2. Distribución Binomial 3 3. Distribución Hipergeométrica 3.1. Aproximación Binomial de la distribución Hipergeométrica............. 7 4. Distribución Geométrica

Más detalles

INGENIERÍA INFORMÁTICA DE GESTIÓN Junio 2005

INGENIERÍA INFORMÁTICA DE GESTIÓN Junio 2005 INGENIERÍA INFORMÁTICA DE GESTIÓN Junio 2005 1. En una pequeña empresa con 60 empleados, 25 son personal de fábrica y están cobrando unos sueldos semanales (en euros) en función a su antigüedad de: 300

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1)

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1) PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0,75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:

Más detalles

Estadística aplicada al Periodismo

Estadística aplicada al Periodismo Estadística aplicada al Periodismo Temario de la asignatura Introducción. Análisis de datos univariantes. Análisis de datos bivariantes. Series temporales y números índice. Probabilidad y Modelos probabilísticos.

Más detalles

Tema 5 Modelos de distribuciones de Probabilidad

Tema 5 Modelos de distribuciones de Probabilidad Tema 5 Modelos de distribuciones de Probabilidad Variable aleatoria unidimensional Dado un espacio de Probabilidad (E, F, P), una variable aleatoria es una aplicación del espacio muestral E al conjunto

Más detalles

Distribución de Probabilidad

Distribución de Probabilidad Distribución de Probabilidad Variables discretas Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Modelos probabilísticos Un modelo es una

Más detalles

Tema 6: Modelos probabilísticos

Tema 6: Modelos probabilísticos Tema 6: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable

Más detalles

Estadística. Convocatoria ordinaria. Mayo de Nombre. Titulación Grupo

Estadística. Convocatoria ordinaria. Mayo de Nombre. Titulación Grupo Estadística. Convocatoria ordinaria Mayo de 2015 Nombre. Titulación Grupo Problema 1 (1.75 puntos) En una ciudad, el 40% de las personas son rubias, el 30% tiene los ojos azules y el 10% son rubios con

Más detalles

Generalidades 1. Sea X una variable aleatoria continua con función densidad dada por

Generalidades 1. Sea X una variable aleatoria continua con función densidad dada por Generalidades 1. Sea X una variable aleatoria continua con función dendad dada por kt f ( t ) = 0 1 t en otro caso Determine a) el valor de la constante k b) E(X) y V(X) c) la función de distribución acumulada

Más detalles

= = Al final del estudio se decide ajustar una recta de regresión de sobre con la ayuda del programa Rcmdr: =2 52 +

= = Al final del estudio se decide ajustar una recta de regresión de sobre con la ayuda del programa Rcmdr: =2 52 + Grado en IIAA y Grado en IHJ Asignatura: Estadística Aplicada. Curso 2012-2013 SEPTIEMBRE 2013 NOMBRE:...APELLIDOS:... ESPECIALIDAD:... 1. [0.5 puntos] Un ingeniero estudia la relación existente entre

Más detalles

Probabilidad, Variables Aleatorias y Distribuciones

Probabilidad, Variables Aleatorias y Distribuciones Prueba de Evaluación Continua Grupo B 8-X-5.- Un ladrón perseguido por la policía llega a un garaje que tiene dos puertas: una conduce al recinto A en la que hay coches de los que sólo tienen gasolina

Más detalles

0 en otro caso. P (X > 0) P ( 0.5 < X < 0.5) P ( X > 0.25) x 3 si 0 x < 2. 1 si 2 x P(X 1) P(0.5 X 1) P(0.5 < X 1 X < 1) f X (x) = (1+αx) 2

0 en otro caso. P (X > 0) P ( 0.5 < X < 0.5) P ( X > 0.25) x 3 si 0 x < 2. 1 si 2 x P(X 1) P(0.5 X 1) P(0.5 < X 1 X < 1) f X (x) = (1+αx) 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0.75(1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:

Más detalles

ESTADÍSTICA (Química) PRÁCTICA 4 Sumas de variables aleatorias

ESTADÍSTICA (Química) PRÁCTICA 4 Sumas de variables aleatorias ESTADÍSTICA (Química) PRÁCTICA 4 Sumas de variables aleatorias 1. Se realizan mediciones independientes del volumen inicial y final en una bureta. Supongamos que las mediciones inicial y final siguen el

Más detalles

Tema 5: Modelos probabilísticos

Tema 5: Modelos probabilísticos Tema 5: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable

Más detalles

DISTRIBUCIONES DE VARIABLE CONTINUA

DISTRIBUCIONES DE VARIABLE CONTINUA DISTRIBUCIONES DE VARIABLE CONTINUA Página 63 REFLEXIONA Y RESUELVE Tiempos de espera Los trenes de una cierta línea de cercanías pasan cada 0 minutos. Cuando llegamos a la estación, ignoramos cuándo pasó

Más detalles

PROBABILIDAD. 8. En una bolsa hay 7 bolas blancas y 3 negras. Cuál es la probabilidad de que al extraer

PROBABILIDAD. 8. En una bolsa hay 7 bolas blancas y 3 negras. Cuál es la probabilidad de que al extraer PROBABILIDAD 1. Lanzamos dos monedas al aire (primero una y luego la otra). Calcular la probabilidad de obtener: a) Una sola cara b) Al menos una cara c) Dos caras Sol: a) 1/2; b) 3/4; c) 1/4 2. Un lote

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

INFERENCIA ESTADÍSTICA SELECTIVIDAD CyL

INFERENCIA ESTADÍSTICA SELECTIVIDAD CyL INFERENCIA ESTADÍSTICA SELECTIVIDAD CyL 1. Se quiere estimar la media de la nómina mensual que reciben los directivos de las compañías multinacionales que operan en Europa. a. Si la varianza de la nómina

Más detalles

Probabilidad. Probabilidad

Probabilidad. Probabilidad Espacio muestral y Operaciones con sucesos 1) Di cuál es el espacio muestral correspondiente a las siguientes experiencias aleatorias. Si es finito y tiene pocos elementos, dilos todos, y si tiene muchos,

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad ½ 0.75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 6)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 6) TEMA Nº 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Ser capaz de definir correctamente una o más variables aleatorias sobre los resultados de un experimento aleatorio y determinar

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 Ejercicio 1 Una empresa de selección de personal llama a 12 postulantes para una entrevista de empleo. Se sabe por experiencia

Más detalles

DISTRIBUCIONES DE VARIABLE CONTINUA

DISTRIBUCIONES DE VARIABLE CONTINUA DISTRIBUCIONES DE VARIABLE CONTINUA Página 63 REFLEXIONA Y RESUELVE Tiempos de espera Los trenes de una cierta línea de cercanías pasan cada 0 minutos. Cuando llegamos a la estación, ignoramos cuándo pasó

Más detalles

TALLER DISTRIBUCIONES DE PROBABILIDAD Y VARIABLES ALEATORIAS

TALLER DISTRIBUCIONES DE PROBABILIDAD Y VARIABLES ALEATORIAS TALLER DISTRIBUCIONES DE PROBABILIDAD Y VARIABLES ALEATORIAS 1. Sea X la variable aleatoria nivel de colesterol, en mg/dl, de los varones de 40 años. Escribir los siguientes sucesos, con notación abreviada,

Más detalles

Departamento de Matemática Aplicada a las T.I.C.

Departamento de Matemática Aplicada a las T.I.C. Departamento de Matemática Aplicada a las T.I.C. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS PRIMERA PRUEBA (Otoño 2015 Duración: 1 hora y 45 min. FECHA: 26 de Octubre de 2015 APELLIDOS: NOMBRE: DNI:

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace.

Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. Álgebra lineal. Curso 2007-2008. Tema 5. Hoja 1 Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. 1. Un dado se lanza dos veces. Se pide: (a) Construir el espacio muestral.

Más detalles

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 7 de Septiembre, 25 Cuestiones 2 horas C. A partir de los procesos estocásticos X(t e Y (t incorrelados y de media cero, con funciones

Más detalles

Estadística I Ejercicios Tema 4 Curso 2015/16

Estadística I Ejercicios Tema 4 Curso 2015/16 Estadística I Ejercicios Tema 4 Curso 2015/16 1. En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar y observamos el número que tiene. a) Describe los sucesos, escribiendo todos sus

Más detalles

Probabilidad del suceso imposible

Probabilidad del suceso imposible º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I TEMA 6.- ESTADÍSTICA INFERENCIAL PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

85.-Si el 0,5 % de las piezas que fabrica una máquina son defectuosas. Cuál es la probabilidad de obtener alguna pieza defectuosa de 20?

85.-Si el 0,5 % de las piezas que fabrica una máquina son defectuosas. Cuál es la probabilidad de obtener alguna pieza defectuosa de 20? Ejercicios T10a- MODELOS ESPECÍFICOS UNIVARIANTES A 85.-Si el 0,5 % de las piezas que fabrica una máquina son defectuosas. Cuál es la probabilidad de obtener alguna pieza defectuosa de 20? X= número de

Más detalles

1. Una variable aleatoria X sigue una distribución binomial con parámetros m = 3 y p =0.2.

1. Una variable aleatoria X sigue una distribución binomial con parámetros m = 3 y p =0.2. Ejercicios y Problemas. Capítulo III 1. Una variable aleatoria X sigue una distribución binomial con parámetros m = 3 y p =0.2. (a) Calcular P (X = 0), P (X = 1), P (X = 2), P (X = 3), utilizando la función

Más detalles