PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad"

Transcripción

1 PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad 1. Una urna contiene 5 bolas numeradas del 1 al 5. Calcular la probabilidad de que al sacar dos bolas la suma de los números sea impar a) si la extracción de las dos bolas se hace con reemplazamiento b) si la extracción de las dos bolas se hace sin reemplazamiento. 2. Se lanzan dos dados equilibrados simultáneamente. Sean los sucesos: A: La suma de los números es exactamente 8 B: Los números obtenidos son iguales Expresar los sucesos A, B, A B y A B como subconjuntos del espacio muestral Ω y asociar una probabilidad a cada uno de ellos 3. Sean A y B dos sucesos de los que se conocen P (A B) y P (A B). Hallar una fórmula para la probabilidad de que ocurra exactamente uno de esos sucesos. Indicación: Representa mediante diagramas de Venn los sucesos implicados 4. Se tienen dos sucesos A y B con P (A) = 0.4, P (B) = 0.2 y P (A B) = 0.5. ¾Son los sucesos A y B incompatibles?. 5. Dados dos sucesos A y B, con P (A) = 0.5 y P (A B) = 0.7: a) Calcular P (B) suponiendo que A y B son independientes. b) Calcular P (B) suponiendo que A y B son mutuamente excluyentes. c) Calcular P (B) sabiendo que P (A B) = En la fabricación de un cierto artículo se presenta un tipo de defecto con una probabilidad de 0.1 y defectos de un segundo tipo con probabilidad Sabiendo que ambos tipos de defectos son independientes, calcular la probabilidad de que: a) un artículo no tenga ambas clases de defectos. b) un artículo sea defectuoso. c) suponiendo que un artículo sea defectuoso, tenga solo un tipo de defecto. 7. Las probabilidades de los sucesos A y B son P (A) = 0.4 y P (B) = 0.5. a) Calcular P (A B) y P (A B) en cada una de las siguientes situaciones: (i) P (A B) = 0.1, (ii) A B, (iii) A y B son independientes, y (iv) A y B son incompatibles. b) Determina todos los posibles valores que puede tomar P (A B) indicando bajo qué condiciones se alcanza el valor mínimo y el máximo. c) Probar que si A y B son independientes, también lo son A y B. Página: 1

2 8. Dos jugadores de ajedrez A y B se enfrentan en un torneo de tres partidas. Se han establecido a priori las probabilidades para los distintos resultados en una sola partida i, i = 1, 2, 3, siendo estos P (A i ) = 1/2, P (B i ) = 1/3 y P (T i ) = 1/6; donde A i indica el suceso de que gane el jugador A la partida i, B i indica el suceso de que gane el jugador B, y T i indica el suceso de que resulte tablas. a) Utilizando la notación simbólica de operaciones entre sucesos expresar los que se describen a continuación: (i) El jugador A gane las tres partidas. (ii) Resulte tablas en dos partidas. (iii) Los jugadores ganen de forma alternada. (iv) El jugador B gane al menos una partida. b) Calcular las probabilidades de los sucesos anteriores. 9. Comprobar que, para cualesquiera que sean los sucesos A,B y C, se verica: a) P (A B) + P ( A B ) = 1, con P (B) > 0. b) P (A B C) = P (A C) + P (B C) P (A B C), con P (C) > Sean A y B dos sucesos independientes. Comprobar que también lo son los sucesos A y B. Igual para los sucesos A y B, y los sucesos A y B. 11. Supongamos que la corriente pasa por el punto i = {1, 2, 3, 4} si el interruptor que hay en dicho punto está abierto y que éste está abierto con probabilidad p. a) Si todos los interruptores funcionan independientemente, expresa en función de p la probabilidad de que pase corriente de los puntos L a R en el siguiente esquema. b) Expresa, en función de p, la probabilidad de que pase corriente por uno solo de los dos subsistemas. 12. Un conjunto electrónico S consta de dos subsistemas C y D conectados en serie, con componentes que funcionan de forma independiente y ordenados como se aprecia en la siguiente gura. En ella también aparecen las respectivas probabilidades de fallo, en las primeras 100 horas de operación. Calcular las probabilidades de fallo de los subsistemas C y D, antes de las 100 horas de operación. Calcular la probabilidad de que el sistema S funcione después de 100 horas de operación. Página: 2

3 13. El siguiente circuito trabaja si, y sólo si existe un camino de dispositivos en funcionamiento de izquierda a derecha. Supongamos que los dispositivos fallan de manera independiente y es p la probabilidad de fallo de cada uno de ellos. Calcular la probabilidad de que el circuito de la siguiente gura falle. 14. Una urna contiene dos bolas blancas y tres rojas. Efectuadas dos extracciones sucesivas, determinar la probabilidad de extraer una bola blanca y a continuación, una bola roja: a) Cuando habiendo extraído la primera bola ésta es devuelta a la urna para realizar la segunda extracción (con reemplazamiento). b) Cuando habiendo extraído la primera bola ésta no es devuelta a la urna para realizar la segunda extracción (sin reemplazamiento). 15. Una urna contiene 5 bolas blancas 3 verdes y 2 rojas. Se extraen 3 bolas al azar. Se consideran los siguientes sucesos: A: Las 3 bolas seleccionadas son del mismo color. B: De las 3 bolas seleccionadas, 2 de ellas son rojas. C: Alguna de las 3 bolas seleccionadas es verde. Calcula las probabilidades de los sucesos anteriores en los supuestos siguientes: a) Las bolas se eligen una a una con reemplazamiento. b) las bolas se eligen sin reemplazamiento. 16. Dados dos sucesos A y B se sabe que: P (B) = 3 4 ; P (A) = P (A B) = 1 3 Calcula P (A B). 17. En un examen la materia se divide en dos partes con 10 temas teóricos y 20 prácticos. Un estudiante piensa que la probabilidad de que se pregunte un tema teórico es de 1/2 por lo que decide estudiarse 7 temas teóricos y sólo 8 prácticos. ¾Qué probabilidad tiene de saberse el tema elegido para el examen, suponiendo que lo que piensa es cierto y suponiendo que en cualquier caso sólo estudia 15 temas?. ¾Podría haber planicado mejor para que con 15 temas estudiados aumentar la probabilidad de saber el tema? Página: 3

4 18. Un persona debe introducir nueve bolas blancas y una negra en dos urnas. Ninguna urna quedará vacía. Posteriormente se elegirá una de estas urnas al azar extrayéndose una bola de la urna elegida. Si la bola resulta blanca recibirá un premio. ¾Cómo debe distribuirlas? 19. Un taller adquiere dos cajas de piezas de repuestos de un suministrador que le asegura que en la primera caja hay n piezas defectuosas y m buenas, mientras que la segunda caja contiene p piezas defectuosas y q buenas. Un empleado necesita utilizar una pieza, en primer lugar saca una pieza cualquiera de la primera caja y la deposita en la segunda, y posteriormente utiliza una pieza cualquiera de la segunda caja. Calcular la probabilidad de que la pieza que utiliza sea defectuosa. 20. Se disponen dos urnas, con 3 bolas blancas y 2 negras la primera y con 2 bolas blancas y 3 negras la segunda. Se lanza un dado, extrayéndose una bola de la primera urna si sale 1, 2 ó 3; extrayéndose de la segunda si sale 4 ó 5 y volviéndose a tirar si sale un 6. a) Calcular la probabilidad de obtener bola negra. b) Calcular la probabilidad de que la bola provenga de la primera urna sabiendo que la bola resultó ser negra. c) ¾Son independientes los sucesos sacar bola negra y la bola se extrae de la primera urna? 21. Un PC tiene integrados dos discos duros. El 10 % de los cheros del disco A son defectuosos, mientras que sólo son defectuosos el 5 % de los cheros del disco B. También conocemos que el disco A tiene guardados el doble de cheros que el disco B. Si un chero es defectuoso ¾cuál es la probabilidad de que estuviera guardado en el disco A?. 22. A dice la verdad 9 de cada 10 veces y B dice la verdad 7 de cada 9. Se extrajo una bola al azar de una urna que contenía 5 bolas blancas y 20 negras. Tanto A como B dijeron que la bola extraída era blanca. ¾Cual es la probabilidad de que la bola extraída fuera blanca?. 23. En un taller de reparación de ordenadores trabajan Luis, Juan y Antonio; atendiendo al 20 %, 35 % y 45 % de los clientes, respectivamente. Luis es el más eciente reparando el 80 % de las averías, mientras que Juan solo soluciona el 60 % y Antonio el 50 %. a) ¾Cuál es la probabilidad de que un cliente quede satisfecho?. b) ¾Cual es la probabilidad de que una reparación haya sido hecha por Luis?. 24. Una urna contiene dos bolas blancas y una negra y una segunda urna contiene dos negras y una blanca. Se lanza una moneda y si sale cara se extrae una bola de la primera urna, mientras que si sale cruz se extrae de la segunda. Calcular las siguientes probabilidades: a) La bola extraída sea blanca b) La bola extraída provenga de la segunda urna, sabiendo que fue blanca c) La bola extraída no se devuelve y se extrae una segunda bola. Si se sabe que la primera fue blanca, ¾cuál es la probabilidad de que esta segunda sea también blanca?. ¾Y si no se sabe el color de la primera bola? 25. Tres dados equilibrados se lanzan simultáneamente. Si no hay dos de entre ellos que muestren la misma cara, ¾cuál es la probabilidad de que uno de ellos y sólo uno muestre la cara 6?. Página: 4

5 26. Se considera un dado imperfecto en el que la probabilidad de que salga la cara i en un lanzamiento cualquiera es i 21, para i = 1, 2,..., 6. a) ¾La asignación de probabilidades a las distintas caras es una función de probabilidad? b) Si la respuesta es armativa, ¾son independientes los sucesos A = {par} y B ={ menor o igual que cuatro}?. c) Responder a la misma cuestión si el dado fuese equilibrado. 27. Se sabe que la prevalencia de la diabetes en una población es del 2 %, pero también que sólo la mitad de los afectados son conscientes de ello. Se pide. a) Si escogemos un individuo al azar y al preguntarle arma no ser diabético, ¾Cual es la probabilidad de que en realidad sí lo sea?. b) Si escogemos 10 individuos de la población al azar y al ser preguntados todos arman no ser diabéticos, ¾cuál es la probabilidad de que alguno de ellos sí lo sea?. 28. (*) Supongamos el siguiente concurso: hay tres puertas cerradas y detrás de una de ellas hay un coche. El concursante elige una de las tres pero el presentador después le muestra una puerta vacía y le da la oportunidad de cambiar de puerta. ¾Cuáles son las probabilidades de ganar el coche ahora, si se queda con la primera elección o si se cambia?. ¾Qué debe de hacer, por tanto, el concursante?. Página: 5

PROBABILIDADES Trabajo Práctico 3

PROBABILIDADES Trabajo Práctico 3 PROBABILIDADES Trabajo Práctico 3 1. Se arroja un dado dos veces. Calcular la probabilidad de que la suma de los puntos sea 7 dado que: i. la suma es impar. ii. la suma es mayor que 6. iii. el resultado

Más detalles

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales 2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos

Más detalles

Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b).

Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b). Hoja 2 Probabilidad 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, se define A A = {B Ω : B = A C con C A}. Demostrar que A A P(A) es σ-álgebra. 2.- Sea {A n : n 1} A una sucesión

Más detalles

JUN Tres hombres A, B y C disparan a un objetivo. Las probabilidades de que cada uno de ellos alcance el objetivo son 1 6, 1 4 y 1 3

JUN Tres hombres A, B y C disparan a un objetivo. Las probabilidades de que cada uno de ellos alcance el objetivo son 1 6, 1 4 y 1 3 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. 1 SEP 2008. El 70% de los estudiantes aprueba una asignatura A y un 60% aprueba otra asignatura B. Sabemos, además, que un 35% del total aprueba ambas.

Más detalles

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10 1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:

Más detalles

NOMBRE: a) Sacar par al tirar un dado a) Sacar impar al tirar un dado b) Al lanzar el dado dos veces, se obtenga una suma de puntos igual a 7.

NOMBRE: a) Sacar par al tirar un dado a) Sacar impar al tirar un dado b) Al lanzar el dado dos veces, se obtenga una suma de puntos igual a 7. (espacios muestrales, sucesos compatibles e incompatibles) 1 1. Consideremos el experimento que consiste en la extracción de tres bombillas de una caja que contiene bombillas buenas y defectuosas. Se pide

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 1

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 1 1 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 1 1. Se arroja dos veces un dado equilibrado. Sean los sucesos: A: la suma de los números obtenidos es exactamente 8. B: los números obtenidos son iguales. a)

Más detalles

Probabilidades y Estadística (M) Práctica 2 (2 cuatrimestre 2003) Paseos al azar y Probabilidad Condicional

Probabilidades y Estadística (M) Práctica 2 (2 cuatrimestre 2003) Paseos al azar y Probabilidad Condicional Probabilidades y Estadística (M) Práctica 2 (2 cuatrimestre 2003) Paseos al azar y Probabilidad Condicional 1. Sean x>0 e y dos enteros. Un paseo al azar (s 0,s 1,...,s x ) del origen al punto (x, y) es

Más detalles

PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B:

PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B: Ejercicios y problemas 2º Bachillerato C.C.S.S. PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con

Más detalles

Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace.

Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. Álgebra lineal. Curso 2007-2008. Tema 5. Hoja 1 Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. 1. Un dado se lanza dos veces. Se pide: (a) Construir el espacio muestral.

Más detalles

Práctica 2: Probabilidades A (a) Suponiendo que todos los resultados son igualmente probables. Encuentre P (A), P (B), P (A

Práctica 2: Probabilidades A (a) Suponiendo que todos los resultados son igualmente probables. Encuentre P (A), P (B), P (A 1 Mediante diagramas de Venn probar que: (a) A = (b) A = A (c) A A = (d) A A = S (e) S = (f) = S (g) ( A ) = A (h) (A B) = A B (i) (A B) = A B : Probabilidades 2 El siguiente diagrama de Venn describe

Más detalles

ESTADÍSTICA. Kilómetros recorridos: x i Número de bicicletas: f i

ESTADÍSTICA. Kilómetros recorridos: x i Número de bicicletas: f i ESTADÍSTICA 1.- Un equipo ciclista quiere estudiar el estado de las bicicletas a lo largo de cuatro años. Toma una muestra de 20 bicicletas y mira los Kilómetros que han recorrido: Kilómetros recorridos:

Más detalles

EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE

EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE 1) Se considera el experimento aleatorio de lanzar un dado. Se pide la probabilidad de obtener a) Número par b) Número par c) Múltiplo de 3 d) Múltiplo de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA : PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva, Ejercicio

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica Se arroja dos veces un dado equilibrado, registrándose los resultados obtenidos.

PROBABILIDADES Y ESTADÍSTICA (C) Práctica Se arroja dos veces un dado equilibrado, registrándose los resultados obtenidos. PROBABILIDADES Y ESTADÍSTICA (C) Práctica 1 1. Se arroja dos veces un dado equilibrado, registrándose los resultados obtenidos. a) Definir un espacio muestral S apropiado para este experimento. b) Describir

Más detalles

RELACIÓN DE EJERCICIOS DE PROBABILIDAD

RELACIÓN DE EJERCICIOS DE PROBABILIDAD RELACIÓN DE EJERCICIOS DE PROBABILIDAD 1. A una reunión llegan Carmen, Lola, Mercedes, Juan, Fernando y Luis. Se eligen dos personas al azar sin importar el orden: a) Obtén el espacio muestral de este

Más detalles

Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales.

Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales. Combinatoria Principio multiplicativo Un elemento se puede elegir de formas diferentes, un elemento se puede elegir de formas diferentes hasta un elemento enésimo que puede ser elegido de formas diferentes.

Más detalles

HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD

HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD pág.45 HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD 1.- De una baraja española de 40 cartas se extrae una al azar, cuál es la probabilidad de que sea bastos o menor que 5? 2.- Dos jugadores (A y B) inician

Más detalles

Curs MAT CFGS-17

Curs MAT CFGS-17 Curs 2015-16 MAT CFGS-17 Sigue la PROBABILIDAD Resumen de Probabilidad Teoría de probabilidades: La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir

Más detalles

Tema 4. Probabilidad Condicionada

Tema 4. Probabilidad Condicionada Tema 4. Probabilidad Condicionada Presentación y Objetivos. En este tema se dan reglas para actualizar una probabilidad determinada en situaciones en las que se dispone de información adicional. Para ello

Más detalles

Ejercicios elementales de Probabilidad

Ejercicios elementales de Probabilidad Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.

Más detalles

Guía Matemática NM 4: Probabilidades

Guía Matemática NM 4: Probabilidades Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof.: Ximena Gallegos H. Guía Matemática NM : Probabilidades Nombre: Curso: Aprendizaje Esperado: Determinar la probabilidad de ocurrencia de

Más detalles

TEMA 1: PROBABILIDAD

TEMA 1: PROBABILIDAD TEMA 1: PROBABILIDAD Ejercicios 1- alcular el espacio muestral asociado a los siguientes experimentos: a) Lanzar una moneda b) Tirar un dado c) Lanzar un dado de quinielas d) Extraer una bola de una caja

Más detalles

R E S O L U C I Ó N. Hacemos un diagrama de árbol. 5 B 3 N 2 R 4 B 4 B 6 N = =

R E S O L U C I Ó N. Hacemos un diagrama de árbol. 5 B 3 N 2 R 4 B 4 B 6 N = = Dos urnas A y B, que contienen bolas de colores, tienen la siguiente composición: A : blancas, 3 negras y rojas; B : blancas y negras También tenemos un dado que tiene caras marcadas con la letra A y las

Más detalles

Relación de Problemas. Probabilidad

Relación de Problemas. Probabilidad Relación de Problemas. Probabilidad 1. Se lanza una moneda tres veces y se observa si sale cara o cruz. b). Escribe los elementos que constituyen estos sucesos: 1) A=por lo menos dos caras, 2)B= las primeros

Más detalles

Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior.

Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. Curso ON LINE Tema 01 SÓLO ENUNCIADOS. PROBABILIDADES I Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. 001 002 003 004 005 Lanzamos 1 dado y comprobamos cuál es el

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES 1. Regla de Laplace. Ejercicio 1. (2005) Ejercicio 2. (2004) María y Laura idean el siguiente juego: cada una lanza un dado, si en los dos dados sale el mismo número, gana Laura;

Más detalles

EJERCICIOS DE PROBABILIDAD.

EJERCICIOS DE PROBABILIDAD. EJERCICIOS DE PROBABILIDAD. 1. a) Se escoge al azar una letra de la palabra PROBABILIDAD. Indica la probabilidad del suceso A = sea la letra A y del suceso B = sea una consonante. b) Halla la probabilidad

Más detalles

PROBLEMAS RESUELTOS DE PROBABILIDAD

PROBLEMAS RESUELTOS DE PROBABILIDAD PROBLEMAS RESUELTOS DE PROBABILIDAD D A B y B 1. Sean A y B subconjuntos del conjunto U y sea C A B E A. a) Dibuje diagramas de Venn separados para representar los conjuntos C, D y E. b) Utilizando las

Más detalles

PROBLEMAS DE PROBABILIDAD. BOLETIN II..1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado.

PROBLEMAS DE PROBABILIDAD. BOLETIN II..1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado. PROBLEMAS DE PROBABILIDAD. BOLETIN II.1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado. 2. Hallar la probabilidad de sacar por suma o bien 4, o bien 11 al lanzar dos dados. 3.

Más detalles

Ejercicio 2. Sean A, B dos sucesos tales que P (A) = 0 4, P (B) = 0 65 y P ( (A B) (A B) ) = Hallar P (A B).

Ejercicio 2. Sean A, B dos sucesos tales que P (A) = 0 4, P (B) = 0 65 y P ( (A B) (A B) ) = Hallar P (A B). Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Hoja 2, curso 2006 2007. Ejercicio 1. Dados cuatro sucesos A, B, C y D, la probabilidad de que ocurra al menos uno

Más detalles

PROBABILIDAD. Espacio muestral. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles de un experimento.

PROBABILIDAD. Espacio muestral. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles de un experimento. PROBABILIDAD. CONTENIDOS: Experimentos aleatorios. Espacio muestral. Sucesos. Operaciones con sucesos. Suceso contrario y sucesos incompatibles. Idea intuitiva del concepto de probabilidad. Propiedades.

Más detalles

Cálculo de probabilidades. Probabilidad condicionada. Independencia.

Cálculo de probabilidades. Probabilidad condicionada. Independencia. MTEMÁTICS PLICDS LS CIENCIS SOCILES II 2 o Bachillerato. Grupos D y E. Curso 2009/2010. Hoja de ejercicios III Cálculo de probabilidades. Probabilidad condicionada. Independencia. 1 Se lanzan dos dados

Más detalles

EJERCICIOS PROBABILIDAD

EJERCICIOS PROBABILIDAD EJERCICIOS PROBABILIDAD 0. Razona y di si los siguientes experimentos son aleatorios o deterministas: Dejar caer una moneda desde una altura determinada y medir el tiempo que tarda en llegar al suelo.

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

Espacio muestral. Operaciones con sucesos

Espacio muestral. Operaciones con sucesos Matemáticas CCSS. 1º Bachiller Tema 12. Probabilidad Espacio muestral. Operaciones con sucesos 1. Determina el espacio muestral de los siguientes experimentos a) Lanzar una moneda y anotar el resultado

Más detalles

Calcúlense: a) b) c) b)

Calcúlense: a) b) c) b) Probabilidad 1º) Lanzamos dos dados y sumamos las puntuaciones obtenidas. Describe el espacio muestral. 2º) Lanzamos dos dados, sumamos las puntuaciones obtenidas y hallamos el resto de dividir por cinco

Más detalles

1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200.

1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200. 1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200. 2. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras esté entre 180 y 220.

Más detalles

Cálculo de probabilidad. Tema 1: Combinatoria y probabilidad

Cálculo de probabilidad. Tema 1: Combinatoria y probabilidad Cálculo de probabilidad Tema 1: Combinatoria y probabilidad Guión Guión 1.1. Análisis combinatorio Regla de multiplicación Este es el método de conteo más sencillo que existe. Supongamos que realizamos

Más detalles

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,

Más detalles

Colegio SSCC Concepción - Depto. de Matemáticas. Aprendizajes Esperados: Calcular probabilidades condicionales en situaciones problemáticas

Colegio SSCC Concepción - Depto. de Matemáticas. Aprendizajes Esperados: Calcular probabilidades condicionales en situaciones problemáticas Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: PROBABILIDAD Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes: Respeto,

Más detalles

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos

Más detalles

este será el espacio muestral, formado por todos los sucesos individuales o casos posibles caso

este será el espacio muestral, formado por todos los sucesos individuales o casos posibles caso EXPERIENCIA ALEATORIA: aquella cuyo resultado no podemos prever porque éste depende del azar. Cada uno de los resultados obtenidos en la experiencia aleatoria se llama CASO y al conjunto de todos los casos

Más detalles

PROBLEMAS DE PROBABILIDAD 2º DE BACHILLERATO COLEGIO MARAVILLAS

PROBLEMAS DE PROBABILIDAD 2º DE BACHILLERATO COLEGIO MARAVILLAS PROBLEMAS DE PROBABILIDAD 2º DE BACHILLERATO COLEGIO MARAVILLAS DEPARTAMENTO DE MATEMÁTICAS TERESA GONZÁLEZ 1) El 60% de los habitantes de una ciudad lee el periódico A, el 45% leen el B y el 20% de los

Más detalles

Probabilidad condicional

Probabilidad condicional Probabilidades y Estadística (M) Práctica 2: Probabilidad Condicional e Independencia 2 cuatrimestre 2008 Tiempo estimado: 3 clases Probabilidad condicional 1. Hay 3 cajas A, B y C con 20 piezas cada una,

Más detalles

Relación 2 de problemas: Probabilidad

Relación 2 de problemas: Probabilidad Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Curso 04/05 Relación 2 de problemas: Probabilidad 1. Describe el espacio muestral asociado a cada uno de los siguientes experimentos

Más detalles

EJERCICIOS DE PROBABILIDADES

EJERCICIOS DE PROBABILIDADES Ejercicios : 1. Se lanza un dado y se observa que número de aparece en la cara superior. 2. Se lanza una moneda cuatro veces y se cuenta el número total de caras obtenidas 3. El ala de un aeroplano se

Más detalles

Ejercicios de probabilidad

Ejercicios de probabilidad 1. Dos personas juegan con una moneda, a cara (C) o escudo (E). La que apuesta por la cara gana cuando consiga dos caras seguidas o, en su defecto, tres caras; análogamente con el escudo. El juego acaba

Más detalles

6 resultados posibles en total. Llamaremos suceso elemental de un experimento aleatorio a cada uno de los resultados posibles

6 resultados posibles en total. Llamaremos suceso elemental de un experimento aleatorio a cada uno de los resultados posibles TEMA Probabilidad * Experimento aleatorio: Es aquel cuyo resultado es impredecible. Ej. Lanzar un dado, lanzar una moneda. Una reacción química, realizada siempre en las mismas condiciones, no sería un

Más detalles

Probabilidad. 1º) Lanzamos dos dados y sumamos las puntuaciones obtenidas. Describe el espacio muestral.

Probabilidad. 1º) Lanzamos dos dados y sumamos las puntuaciones obtenidas. Describe el espacio muestral. Probabilidad 1º) Lanzamos dos dados y sumamos las puntuaciones obtenidas. Describe el espacio muestral. 2º) Lanzamos dos dados, sumamos las puntuaciones obtenidas y hallamos el resto de dividir por cinco

Más detalles

ALGUNOS PROBLEMAS DE PROBABAILIDAD PROPUESTOS EN LAS PRUEBAS DE EvAU EBAU DE 2017

ALGUNOS PROBLEMAS DE PROBABAILIDAD PROPUESTOS EN LAS PRUEBAS DE EvAU EBAU DE 2017 PROBABILIDAD (EvAU EBAU 2017) 1 ALGUNOS PROBLEMAS DE PROBABAILIDAD PROPUESTOS EN LAS PRUEBAS DE EvAU EBAU DE 2017 Publicado el día 29 de junio de 2017. El presente documento se actualizará cuando se disponga

Más detalles

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos:

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos: 1.- CÁLCULO DE PROBABILIDADES. Un experimento aleatorio es aquel que puede dar lugar a varios resultados, sin que pueda ser previsible enunciar con certeza cuál de éstos va a ser observado en la realización

Más detalles

Tema 6: Probabilidad

Tema 6: Probabilidad Tema 6: Probabilidad 1. Experimentos aleatorios. Espacio muestral.... 2 2. Sucesos. Operaciones con sucesos.... 3 3 Definición de Probabilidad. Propiedades.... 6 4. Probabilidad condicionada... 7 5. Dependencia

Más detalles

a) la primera de las monedas es cara. b) por lo menos una de las monedas es cara.

a) la primera de las monedas es cara. b) por lo menos una de las monedas es cara. Estadística II Ejercicios Instrucciones: Resolver los siguientes problemas. Entregar un trabajo por grupo el día del primer parcial, el trabajo deberá tener carátula con los nombres de los integrantes

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD POBLEMS ESUELTOS SELECTIVIDD NDLUCÍ 2006 MTEMÁTICS PLICDS LS CIENCIS SOCILES TEM 5: POBBILIDD Junio, Ejercicio 3, Parte I, Opción Junio, Ejercicio 3, Parte I, Opción B eserva 1, Ejercicio 3, Parte I, Opción

Más detalles

Si dos sucesos A y B son incompatibles, P(A"B) = 0 P(AUB) = P(A) + P(B)

Si dos sucesos A y B son incompatibles, P(AB) = 0 P(AUB) = P(A) + P(B) RESUMEN PROBABILIDAD OPERACIONES CON SUCESOS: Unión Intersección Diferencia Diferencia Diferencia simétrica (A o B) (A y B) (Sólo suceso A) (Sólo suceso B) (Sólo suceso A o B) PROPIEDADES DE SUCESOS: Distributiva:

Más detalles

14. En una tienda de electrodomésticos se venden dos marcas, A y B. Se ha comprobado que un tercio de los clientes elige un electrodoméstico de la

14. En una tienda de electrodomésticos se venden dos marcas, A y B. Se ha comprobado que un tercio de los clientes elige un electrodoméstico de la PROBABILIDAD 1. El año pasado el 60% de los veraneantes de una cierta localidad eran menores de 30 años y el resto mayores. Un 25% de los menores de 30 años y un 35% de los mayores eran nativos de esa

Más detalles

A) Solo I B) Solo II C) Solo III D) Solo I y III E) Solo II y III

A) Solo I B) Solo II C) Solo III D) Solo I y III E) Solo II y III GUIA DOS P.S.U. PROBABILIDADES ) La probabilidad de extraer una bola roja de una caja es. Cuál es la probabilidad de sacar una bola que no sea roja? Falta Información ) Se lanzan dos dados de distinto

Más detalles

Ejercicios (Probabilidades) 1) Una carta se extrae aleatoriamente de una baraja de 52. Encontrar la probabilidad de que sea: a. Un as.

Ejercicios (Probabilidades) 1) Una carta se extrae aleatoriamente de una baraja de 52. Encontrar la probabilidad de que sea: a. Un as. Ejercicios (Probabilidades) 1) Una carta se extrae aleatoriamente de una baraja de 52. Encontrar la probabilidad de que sea: a. Un as 1/13 b. Diez de corazones 1/52 c. Un 3 de tréboles o un 6 de diamantes

Más detalles

REGLAS DE PROBABILIDAD

REGLAS DE PROBABILIDAD Capítulo 4 Probabilidad REGLAS DE PROBABILIDAD 4.1-1 Evento Compuesto Un evento compuesto es cualquier evento que combina 2 o más eventos simples. Ejemplo: Al lanzar un dado justo de 6 caras, cuál es la

Más detalles

Métodos estadísticos y numéricos Probabilidad 1 EJERCICIOS PROPUESTOS DE PROBABILIDAD

Métodos estadísticos y numéricos Probabilidad 1 EJERCICIOS PROPUESTOS DE PROBABILIDAD Métodos estadísticos y numéricos Probabilidad 1 EJERCICIOS PROPUESTOS DE PROBABILIDAD 1. Una bolsa contiene tres bolas (1 roja, 1 azul, 1 blanca). Se sacan dos bolas con reemplazo, es decir, se saca una

Más detalles

Tema 10 Cálculo de probabilidades

Tema 10 Cálculo de probabilidades Tema Cálculo de probabilidades Para realizar las actividades de este tema, indicar que Wiris tiene una pestaña de combinatoria que se puede utilizar para resolver estos problemas, aunque se resolverán

Más detalles

el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD

el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD Pág.1 PROBABILIDAD EXPERIMENTOS ALEATORIOS. SUCESOS. Experimento determinista es aquel en que se puede predecir el resultado, siempre que se realice en las mismas condiciones. (Ejemplo: medir el tiempo

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página PRACTICA Sucesos Lanzamos tres veces una moneda y anotamos si sale cara o cruz. a) Escribe el espacio muestral. b) Escribe el suceso A la primera vez salió cara. c) Cuál es el suceso contrario

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD EJERCICIOS DE ROBABILIDAD Ejercicio nº 1.- Lanzamos dos dados sobre la mesa y anotamos los dos números obtenidos. a) Cuántos elementos tiene el espacio muestral? b) Describe los sucesos: A "Obtener al

Más detalles

1. Combinatoria Sucesos aleatorios...

1. Combinatoria Sucesos aleatorios... PROBABILIDAD Índice: Página. Combinatoria..... Sucesos aleatorios...... Experimento aleatorio...... Tipos de sucesos....3. Operaciones con sucesos..... Sistema completo de sucesos....5. Experimentos compuestos...

Más detalles

Relación 1. Sucesos y probabilidad. Probabilidad condicionada.

Relación 1. Sucesos y probabilidad. Probabilidad condicionada. Relación. Sucesos y probabilidad. Probabilidad condicionada.. Sean A, B y C tres sucesos cualesquiera. Determine expresiones para los siguientes sucesos: Ocurre sólo A. Ocurren A y B pero no C. c) Ocurren

Más detalles

Álgebra de sucesos

Álgebra de sucesos 0.0.1. Álgebra de sucesos 1. Se sacan sucesivamente dos bolas de una urna que contiene una bola blanca, otra roja, otra verde y otra negra. Describir el espacio muestral cuando: a) La primera bola se devuelve

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 4. Probabilidad Condicionada: Teoremas de la Probabilidad Total y de Bayes 4.1. Probabilidad Condicionada Vamos a estudiar como cambia la probabilidad de un suceso A cuando sabemos que ha ocurrido otro

Más detalles

ESCUELA SECUNDARIA FEDERAL 327 JORNADA AMPLIADA GUIA DE MATEMÁTICAS III MAESTRA MÓNICA VÁZQUEZ MARTÍNEZ NOMBRE: GRUPO: N.L.

ESCUELA SECUNDARIA FEDERAL 327 JORNADA AMPLIADA GUIA DE MATEMÁTICAS III MAESTRA MÓNICA VÁZQUEZ MARTÍNEZ NOMBRE: GRUPO: N.L. ESCUELA SECUNDARIA FEDERAL 327 JORNADA AMPLIADA GUIA DE MATEMÁTICAS III MAESTRA MÓNICA VÁZQUEZ MARTÍNEZ NOMBRE: GRUPO: N.L. RECUERDA VI. CONOCIMIENTO DE LA ESCALA DE LA PROBABILIDAD Evento Independiente:

Más detalles

TEMA De una baraja de 40 cartas se extraen consecutivamente y sin reemplazamiento dos cartas. ¾Cuál es la probabilidad de sacar dos ases?

TEMA De una baraja de 40 cartas se extraen consecutivamente y sin reemplazamiento dos cartas. ¾Cuál es la probabilidad de sacar dos ases? TEMA 1. De una baraja de 40 cartas se extraen consecutivamente y sin reemplazamiento dos cartas. ¾Cuál es la probabilidad de sacar dos ases?. De un lote de 10 artículos iguales en apariencia, se sabe que

Más detalles

EJERCICIOS DEL BLOQUE DE PROBABILIDAD.

EJERCICIOS DEL BLOQUE DE PROBABILIDAD. EJERCICIOS DEL BLOQUE DE PROBABILIDAD. 1.- Cuál es la probabilidad de sacar los dos ases al lanzar dos dados? 2.- Cuál es la probabilidad de obtener tres caras, lanzando al aire una moneda tres veces?.

Más detalles

1.- Hallar la probabilidad de obtener al menos una cara al tirar n veces una moneda.

1.- Hallar la probabilidad de obtener al menos una cara al tirar n veces una moneda. .- Hallar la probabilidad de obtener al menos una cara al tirar n veces una moneda. Si A sacar al menos una cara en n lanzamientos entonces A no sacar ninguna cara en n lanzamientos. Si A i sacar cara

Más detalles

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Son los experimentos de los que podemos predecir el resultado antes de que se realicen. PROBABILIDAD La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio. Experimentos deterministas

Más detalles

Probabilidad Condicional

Probabilidad Condicional Cómo actualizar la probabilidad de un evento dado que ha sucedido otro? o Cómo cambia la probabilidad de un evento cuando se sabe que otro evento ha ocurrido? Ejemplo: Una persona tiene un billete de lotería

Más detalles

Apuntes de Probabilidad Curso 2017/2018 Esther Madera Lastra

Apuntes de Probabilidad Curso 2017/2018 Esther Madera Lastra 1. EXPERIMENTO ALEATORIO Un experimento aleatorio es aquel que al ser realizado en idénticas condiciones, no se puede predecir el resultado que se va a obtener en una relación concreta, aunque se conozcan

Más detalles

ESTADÍSTICA-PROBABILIDAD- DISTRIBUCIÓN BINOMIAL

ESTADÍSTICA-PROBABILIDAD- DISTRIBUCIÓN BINOMIAL ESTADÍSTICA-PROBABILIDAD- DISTRIBUCIÓN BINOMIAL 139 - En un taller trabajan 12 operarios. La siguiente tabla da el tiempo empleado por cada uno de ellos, durante la jornada de mañana (x) y de la tarde

Más detalles

( ) = ( i) ( i) 1 Probabilidad P A P A B P B. Teorema de la probabilidad total y Teorema de Bayes

( ) = ( i) ( i) 1 Probabilidad P A P A B P B. Teorema de la probabilidad total y Teorema de Bayes 1 Probabilidad Teorema de la probabilidad total y Teorema de Bayes S: Espacio muestral A,B,..: Cualquier subconjunto de S, eventos que pueden ocurrir. AXIOMAS 1. P(A) 0 2. P(S)=1 3. {A 1,A 2, } A i A J

Más detalles

2) Una persona tiene 6 chaquetas y 10 pantalones. De cuántas formas distintas puede combinar estas prendas?.

2) Una persona tiene 6 chaquetas y 10 pantalones. De cuántas formas distintas puede combinar estas prendas?. ACTIVIDADES COMBINATORIA 1) Se distribuyen tres regalos distintos entre cinco chicos. De cuántas formas pueden hacerlo si: a) cada chico sólo puede recibir un regalo b) a cada chico le puede tocar más

Más detalles

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque

Más detalles

el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD

el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD Pág.1 PROBABILIDAD EXPERIMENTOS ALEATORIOS. SUCESOS. Experimento determinista es aquel en que se puede predecir el resultado, siempre que se realice en las mismas condiciones. (Ejemplo: medir el tiempo

Más detalles

Probabilidad Condicional

Probabilidad Condicional Otro ejemplo: Suponga que se lanzan dos dados (distinguibles) y se observa que la suma X es un número impar Cuál es la probabilidad de que X sea menor que 8? Regla de multiplicación para probabilidades

Más detalles

EJERCICIOS UNIDAD 9: PROBABILIDAD

EJERCICIOS UNIDAD 9: PROBABILIDAD EJERCICIOS UNIDAD 9: PROBABILIDAD 1. (2012-M1-A-3) En un congreso de 200 jóvenes profesionales se pasa una encuesta para conocer los hábitos en cuanto a contratar los viajes por Internet. Se observa que

Más detalles

Probabilidad del suceso imposible

Probabilidad del suceso imposible 2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 4.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD

BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD EJERCICIO 1 Considera el siguiente conjunto de datos bidimensionales: X 1 1 2 3 4 4 5 6 6 y 2.1 2.5 3.1 3.0 3.8 3.2 4.3 3.9 4.4 a)sin efectuar cálculos

Más detalles

Probabilidad. Contenidos. Objetivos. 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos compatibles, incompatibles

Probabilidad. Contenidos. Objetivos. 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos compatibles, incompatibles CUADERNO Nº 12 NOMBRE: FECHA: / / Probabilidad Contenidos 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos compatibles, incompatibles 2. Probabilidad de un suceso La

Más detalles

Probabilidad Condicional

Probabilidad Condicional Cómo actualizar la probabilidad de un evento dado que ha sucedido otro? o Cómo cambia la probabilidad de un evento cuando se sabe que otro evento ha ocurrido? Ejemplo: Una persona tiene un billete de lotería

Más detalles

EJERCICIOS DE PROBABILIDAD (REPASO)

EJERCICIOS DE PROBABILIDAD (REPASO) EJERCICIOS DE PROBABILIDAD (REPASO) A). Experimento aleatorio. Espacio muestral. Operaciones con sucesos 1. Dar dos ejemplos de experimentos aleatorios. Indica cuáles son sus sucesos elementales. 2. Encuentra

Más detalles

GUIA PARA PRIMER EXAMEN PARCIAL DE PROBABILIDAD Y ESTADISTICA

GUIA PARA PRIMER EXAMEN PARCIAL DE PROBABILIDAD Y ESTADISTICA GUIA PARA PRIMER EXAMEN PARCIAL DE PROBABILIDAD Y ESTADISTICA Deberán apoyarse en los ejercicios resueltos en clase marcados con el símbolo E Los conceptos de probabilidad, fenómeno aleatorio, determinista,

Más detalles

Probabilidad Condicional

Probabilidad Condicional Cómo actualizar la probabilidad de un evento dado que ha sucedido otro? o Cómo cambia la probabilidad de un evento cuando se sabe que otro evento ha ocurrido? Ejemplo: Una persona tiene un billete de lotería

Más detalles

ELEMENTOS DE ESTADÍSTICA (0260)

ELEMENTOS DE ESTADÍSTICA (0260) ELEMENTOS DE ESTADÍSTICA (0260) Tema. Introducción a la Probabilidad Guía de Problemas Propuestos Mayo 203. Sea E el conjunto con todos los posibles resultados del experimento elegir una persona al azar.

Más detalles

TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL.

TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. 10.1 Experimentos aleatorios. Sucesos. 10.2 Frecuencias relativas y probabilidad. Definición axiomática. 10.3 Distribuciones de

Más detalles

Probabilidad. a) Determinista. c) Aleatorio. e) Determinista. b) Aleatorio. d) Aleatorio.

Probabilidad. a) Determinista. c) Aleatorio. e) Determinista. b) Aleatorio. d) Aleatorio. Probabilidad 08 Clasifica estos experimentos en aleatorios o deterministas. a) Lanzar una piedra al aire y verificar si cae al suelo o no. b) Hacer una quiniela y comprobar los resultados. c) Predecir

Más detalles

19y20 Cálculo de probabilidades.

19y20 Cálculo de probabilidades. ACTIVIDADES DE REFUERZO 9y20 Cálculo de probabilidades. Probabilidad compuesta. Consideremos el experimento consistente en extraer una carta de una baraja española y anotar su palo. Sean los sucesos A:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,

Más detalles

Tema 6 Probabilidad. 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y

Tema 6 Probabilidad. 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y Tema 6 Probabilidad 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.

Más detalles

Guía de actividades. PROBABILIDAD Profesor Fernando Viso

Guía de actividades. PROBABILIDAD Profesor Fernando Viso Guía de actividades PROBABILIDAD Profesor Fernando Viso GUIA DE TRABAJO Materia: Matemáticas Guía #4. Tema: Probabilidades. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,

Más detalles

Asignatura: Probabilidad y Estadística (LM-PM)

Asignatura: Probabilidad y Estadística (LM-PM) FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA Asignatura: Probabilidad y Estadística (LM-PM) - 2016 Docentes a cargo: Pablo Torres

Más detalles

GUÍA NÚMERO 20 PROBABILIDADES:

GUÍA NÚMERO 20 PROBABILIDADES: aint Gaspar ollege MIIONERO DE LA PREIOA ANGRE Formando Personas Íntegras Departamento de Matemática REUMEN PU MATEMATIA GUÍA NÚMERO 0 PROBABILIDADE: A. PROBABILIDAD LAIA: uando la ocurrencia de un suceso

Más detalles