Relación 4. Modelos discretos de distribuciones.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Relación 4. Modelos discretos de distribuciones."

Transcripción

1 Relación 4. Modelos discretos de distribuciones. 1. Si se lanzan dos dados diez veces al aire, cuál es la probabilidad de que en más de la mitad de las ocasiones se obtenga una suma par de puntos? 2. Una empresa dedicada a la venta de un determinado tipo de artículo ofrece dos formas de pago: al contado o a plazos. Se sabe que el 20% de las unidades adquiridas lo son al contado. a) Supuesto un número de ventas n, un beneficio de pts. en las ventas al contado y uno de en las ventas a plazos, obtenga el beneficio esperado. b) Si han sido vendidas cinco unidades, obtenga la probabilidad de haber vendido al menos dos al contado. 3. El porcentaje de tabletas de aspirina defectuosas verificadas en una máquina automática es del 1%. a) Si las pastillas se colocan en tubos de 20 tabletas, cuál es la probabilidad de que un tubo contenga x defectuosas? b) Si los tubos se colocan en cajas de 25 unidades, cuál es la probabilidad de que una caja contenga exactamente 20 tubos con ninguna tableta defectuosa? 4. Un cierto proceso de fabricación se considera aceptable si produce un porcentaje de artículos defectuosos inferior al 1%. Para inspeccionar si se mantiene este nivel, se extrae una muestra de n artículos cada hora, se examina y si se encuentra algún artículo defectuoso se detiene la producción. En el caso concreto de que se llegara a producir un 5% de artículos defectuosos, el fabricante desearía que la producción se detuviera con un 95% de probabilidad. Qué valor debe tener n para que se cumplan los deseos del fabricante? 5. Una empresa dedicada a la fabricación de motores desea adquirir una máquina para la fabricación de cierto elemento. Supongamos que la máquina produce una proporción p de artículos defectuosos. Se desea estimar p para contrastar la calidad de la misma. Se propone usar como una aproximación a p, la proporción de piezas defectuosas en una muestra de tamaño n. Determine el valor mínimo de n para asegurar que el error cometido al estimar p sea menor de 0.1, al menos con una confianza del 99%. 6. En la central telefónica de una ciudad se recibe un promedio de 480 llamadas por hora. Si la central tiene una capacidad tal que puede atender a lo sumo doce llamadas por minuto, cuál es la probabilidad de que en un minuto determinado no sea posible dar línea a todos los clientes que lo soliciten? 7. Supongamos que la demanda mensual de televisores de una cierta marca, sigue una distribución de Poisson de parámetro 10, y que el beneficio neto por unidad es de ptas. a) Cuál es la probabilidad de que el beneficio neto mensual que obtenga un comerciante sea, al menos, de ptas.? b) Qué stock debe almacenar el comerciante a principio de mes para tener una probabilidad de 0.95 de satisfacer toda la demanda durante dicho mes? Estadística aplicada a la empresa I. 1

2 8. Sean X e Y vv.aa. P(λ 1 ) y P(λ 2 ), respectivamente, independientes entre si. Determine la distribución de X condicionada a que X+Y=n. 9. El proceso de fabricación de una pieza puede llevarse a cabo en una cualquiera de las dos cadenas de montaje cuyo funcionamiento es incompatible. La primera opera a un ritmo medio de 1 montaje/hora y la segunda a uno de 2, siguiendo en ambos casos leyes de Poisson las correspondientes variables. a) Si en una jornada de 8 horas se van alternando las cadenas de trabajo de manera que al final del día cada una de ellas ha estado funcionando la misma cantidad de tiempo, cuál es la probabilidad de que en toda la jornada se hayan superado los 20 montajes? b) Cuál sería el coste diario de fabricación esperado si las cadenas se van alternado entre si cada dos horas y el coste de producción de la primera es de u.m. por inicio de funcionamiento y de u.m. por pieza fabricada, mientras que para la segunda es de u.m. por pieza y el mismo que la otra por inicio de funcionamiento? 10. A un hotel llegan dos carreteras A y B. El número de llegadas diarias por cada carretera sigue una distribución de Poisson de parámetro 8 para la primera y 9 para la segunda. Ambas variables son independientes entre si. a) Si un día llegaron 12 personas, cuál es la probabilidad de que 7 llegaran por la carretera A? b) Si el coste de manutención por cliente es de pts., en los días en lo que haya menos de 5, y de 1.500, en los que haya 5 o más, halle el coste total esperado diario. 11 Suponga que el número de llamadas que recibe una operadora entre las 9 y las 9:05 horas de cualquier día sigue una distribución de Poisson de parámetro 5. Determine la probabilidad de que después de dos días, el número total de llamadas recibidas en dicho intervalo de tiempo sea Un proceso de control de calidad se caracteriza porque la inspección implica la destrucción de la pieza examinada. El proceso de inspección se detiene cuando se obtiene una pieza defectuosa. Se sabe de experiencias similares que la probabilidad de encontrar una pieza defectuosa es del 5%. a) Calcule el número medio de piezas que se destruyen en una inspección de calidad. b) Halle la probabilidad de que en el proceso se destruyan más de dos piezas en buen estado. 13. En un proceso de control de calidad se procede a la rotura sucesiva de piezas para comprobar su resistencia. Se conoce que la probabilidad de que una pieza sea correcta es 0,8 y cada pieza cuesta 100 u.m. El proceso de control se detiene cuando se encuentra la primera defectuosa. a) Determine la distribución del número de piezas destruidas en el proceso de control. b) Cuál sería el coste medio del proceso?. c) Cuál sería el coste medio si el proceso se detuviera al encontrar la tercera pieza defectuosa? 14. Sea X una variable aleatoria que sigue una distribución geométrica. Demuestre que P(X>n+m/X>m)=P(X n). 15. La probabilidad de un lanzamiento con éxito es 0,8. Supongamos que se realizan sucesivos ensayos hasta obtener el tercer éxito. Estadística aplicada a la empresa I. 2

3 a) Cuál es la probabilidad de que sean necesarios menos de 6 intentos? b) Si cada uno de los ensayos cuesta u.m. y cada fracaso produce un coste adicional de otras 500 u.m., calcule el coste total esperado de la experiencia. 16. Sean X e Y vv.aa. independientes que siguen distribuciones geométricas de parámetros p y p' respectivamente. Calcule: a) P(X=Y) b) P(X+Y=n) c) P(X=m/X+Y=n) 17. En un departamento de control de calidad se inspeccionan las unidades terminadas que provienen de una línea de ensamblaje. Se piensa que la proporción de unidades defectuosas es de 0,05. a) Cuál es la probabilidad de que la vigésima unidad inspeccionada sea la segunda que se encuentre defectuosa? b) Cuántas unidades se tienen que inspeccionar, por término medio, hasta encontrar cuatro defectuosas? c) Calcule la desviación típica del número de unidades que se deben inspeccionar hasta encontrar la cuarta defectuosa. 18. Un fabricante de chips de silicio los empaqueta en lotes de 25. El comprador inspecciona los lotes antes de aceptarlos. Para ello, toma una muestra de 3 chips de cada lote. Si en la muestra encuentra menos de 2 chips defectuosos, acepta el lote. Al comprador le interesa que los lotes aceptados no contengan demasiados chips defectuosos. a) Sabiendo que en un lote hay M defectuosos, calcule la probabilidad de aceptarlo. b) Es muy grande dicha probabilidad si M=6? c) Se reduce mucho esta última probabilidad si sólo aceptáramos un lote cuando en la muestra no se encontrara ningún chip defectuoso? 19. Una empresa se dedica a forrar tresillos. El porcentaje de tresillos con el forro colocado defectuosamente es del 5%. a) Calcule la probabilidad de que entre 20 no haya ninguno defectuoso. b) Al cargar una partida de 10, se sabe que hay dos defectuosos entre ellos. Cuál es la probabilidad de que examinados 5 al azar, aparezcan los dos defectuosos? 20. Una compañía de transportes por carretera observa que tiene una tasa de averías de 3 camiones/día. El tiempo de reparación necesario por camión es el trabajo de un día de equipo. Cuántos equipos son necesarios para tener una probabilidad, por lo menos del 95%, de que un cierto día, todas las reparaciones demandadas serán atendidas? 21. Sea X una variable aleatoria que mide el número de piezas defectuosas que aparecen en una caja de 20 unidades. La probabilidad de que una pieza sea defectuosa es del 5%. Sobre una muestra de 10 cajas se calcula una nueva variable Z definida como el número medio de piezas defectuosas por caja. a) Determine la distribución de Z. b) Encuentre la expresión P(Z<3). 22. Las cajas de naranjas de una cooperativa tienen una probabilidad del 15% de contener un mínimo de 4 unidades en mal estado. En un embarque de 17 cajas, halle la probabilidad de: Estadística aplicada a la empresa I. 3

4 a) que 3 de ellas contengan 4 o más naranjas defectuosas. b) que 12 de ellas contengan menos de 4 naranjas defectuosas. 23. Una persona hace 5 lanzamientos independientes de un dardo a un blanco. Sea p la probabilidad de dar en el blanco en una tirada. Cuál es la probabilidad de que el primer tiro haya dado en el blanco si se sabe que hizo exactamente tres blancos en las cinco tiradas?. 24. Una compañía de líneas aéreas tiene aviones de 2 y 4 motores. Para todos los aviones, la probabilidad de que falle un determinado motor es p=0,1 y estos fallan independientemente unos de otros. Un vuelo sólo puede finalizar con éxito si al menos la mitad de los motores del avión funcionan. a) Cuál es la probabilidad de que un vuelo finalice con éxito si el avión que lo realiza tiene dos motores?. Y si tiene cuatro? b) Si en una determinada ruta se usan los aviones bimotores el doble de veces que los cuatrimotores, qué proporción de vuelos de esa ruta finalizará con éxito?. Cuál es la probabilidad de que el primer vuelo que no finalice con éxito sea después del décimo? c) En las condiciones del apartado b), si un vuelo llegó sin novedad a su destino, cuál es la probabilidad de que fuera un bimotor? 25. Supongamos que el número de llamadas recibidas en la central telefónica de una cierta empresa sigue una distribución de Poisson de parámetro λ. Supongamos que la probabilidad de que una llamada cualquiera provenga del extranjero es p, con independencia de las demás. Determine la distribución del número total de llamadas recibidas que provienen del extranjero. SOLUCIONES: 1. a) 0, a) 1080n b) 0, a) 0,01 x 0,99 20 x si x=0,1,2,...,20; b) 0,1909 x 4. n n , a) 0,3032 b) B(n,λ 1 /(λ 1 +λ 2 )) 9. a) 0,0116 b) a) 0,1683 b) , , a) 20 b) 0, a) P(X=x)=0,2(0,8) x-1 b) 500 c) a) 0,94208 b) a) (pp )/(1-qq ) b) pp (q n+1 -(q ) n+1 )/(q-q ) c) q m (q ) n m (q-q )/(q n+1 -(q ) n+1 ) 17. a) 0,01887 b) 80 c) ó= 38, a) (25 M)(24 M)(23+2M)/ b) 0,8674; c) P(aceptar)= 0, a) 0,3585 b) 2/9 20. Más de cinco. Estadística aplicada a la empresa I. 4

5 a) p(z=z)= z z si z= 0, 0,1,..., 19,9, 20 b) 10z 0,05 x 0, x x=0 x 22. a) 0,2359 b) 0, /5 24. a) 0,99, b) 0,9921, 0,9238 c) 0, P(λp) Estadística aplicada a la empresa I. 5

RELACIÓN DE PROBLEMAS. Distribuciones de probabilidad

RELACIÓN DE PROBLEMAS. Distribuciones de probabilidad RELACIÓN DE PROBLEMAS Distribuciones de probabilidad 1. Se lanzan al aire dos monedas tres veces consecutivas. Sea X la v.a. que representa el número de veces que se obtiene cara en ambas monedas en los

Más detalles

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma:

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma: TEMA 6: Variables aleatorias Examen Junio 003.- La función de distribución de una variable continua X es de la forma: 3 F ( t) = P( X t) = a + bt ct t, Se sabe que la densidad verifica f(-)=f()=0. [ ]

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

5 DISTRIBUCIONES BINOMIAL Y DE POISSON

5 DISTRIBUCIONES BINOMIAL Y DE POISSON 5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria

Más detalles

Tema 4. Probabilidad Condicionada

Tema 4. Probabilidad Condicionada Tema 4. Probabilidad Condicionada Presentación y Objetivos. En este tema se dan reglas para actualizar una probabilidad determinada en situaciones en las que se dispone de información adicional. Para ello

Más detalles

Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace.

Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. Álgebra lineal. Curso 2007-2008. Tema 5. Hoja 1 Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. 1. Un dado se lanza dos veces. Se pide: (a) Construir el espacio muestral.

Más detalles

PROBLEMA 1 PROBLEMA 2

PROBLEMA 1 PROBLEMA 2 PROBLEMA 1 Dos compañías de taxis atienden a una comunidad. Cada empresa posee dos taxis y se sabe que ambas compañías comparten el mercado al 50%. Las llamadas que llegan a cada una de las respectivas

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

a) Definir un espacio muestral S apropiado para este experimento. b) Consideremos la variable aleatoria

a) Definir un espacio muestral S apropiado para este experimento. b) Consideremos la variable aleatoria 7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).

Más detalles

TALLER N 2. www.siresistemas.com/clases www.fundacionsire.org www.siresistemas.com

TALLER N 2. www.siresistemas.com/clases www.fundacionsire.org www.siresistemas.com TALLER N 2 1. Supóngase que los nueve valores siguientes, representan observaciones aleatorias provenientes de una población normal: 1, 5, 9, 8, 4, 0, 2, 4, 3. Constrúyase un intervalo de confianza de

Más detalles

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados.

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados. El diámetro de los tubos de cartón para un envase ha de estar entre 19 y 21mm. La maquina prepara tubos cuyos diámetros están distribuidos como una manual de media 19 5mm y desviación típica 1 2mm. Qué

Más detalles

Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b).

Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b). Hoja 2 Probabilidad 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, se define A A = {B Ω : B = A C con C A}. Demostrar que A A P(A) es σ-álgebra. 2.- Sea {A n : n 1} A una sucesión

Más detalles

b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7

b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7 EJERCICIOS T12-MODELOS MULTIVARIANTES ESPECÍFICOS 1. Un determinado estadístico J se distribuye según un modelo jhi-dos de parámetro (grados de libertad) 14. Deseamos saber la probabilidad con la que dicho

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Relación 1. Sucesos y probabilidad. Probabilidad condicionada.

Relación 1. Sucesos y probabilidad. Probabilidad condicionada. Relación. Sucesos y probabilidad. Probabilidad condicionada.. Sean A, B y C tres sucesos cualesquiera. Determine expresiones para los siguientes sucesos: Ocurre sólo A. Ocurren A y B pero no C. c) Ocurren

Más detalles

La distribución de Probabilidad normal, dada por la ecuación:

La distribución de Probabilidad normal, dada por la ecuación: La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA 3: VARIABLES ALEATORIAS DISCRETAS Profesores: Jaime Arrué A. - Hugo S. Salinas. Primer Semestre

Más detalles

TALLER 3 ESTADISTICA I

TALLER 3 ESTADISTICA I TALLER 3 ESTADISTICA I Profesor: Giovany Babativa 1. Un experimento consiste en lanzar un par de dados corrientes. Sea la variable aleatoria X la suma de los dos números. a. Determine el espacio muestral

Más detalles

Condiciones para una distribución binomial

Condiciones para una distribución binomial ESTADÍSTICA INFERENCIAL FUNCIONES DE PROBABILIDAD DISCRETAS: BINOMIAL y POISSON EJERCICIOS RESUELTOS DE FUNCIÓN DE PROBABILIDAD BINOMIAL USANDO TABLAS y EXCEL Prof.: MSc. Julio R. Vargas A. Fórmulas de

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 1) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = x y z y B = 1, se pide: 1 1 3 1 k, X = 1.

Más detalles

5. MODELOS PROBABILISTICOS.

5. MODELOS PROBABILISTICOS. 5. MODELOS PROBABILISTICOS. 5.1 Experimento de Bernoulli Un modelo probabilístico, es la forma que pueden tomar un conjunto de datos obtenidos aleatoriamente. Pueden ser modelos probabilísticos discretos

Más detalles

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 Ejercicio 1 Una empresa de selección de personal llama a 12 postulantes para una entrevista de empleo. Se sabe por experiencia

Más detalles

III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios

III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios Esta lista contiene ejercicios y problemas tanto teóricos como de modelación. El objetivo

Más detalles

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 ) Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)

Más detalles

Objetivos. Epígrafes 3-1. Francisco José García Álvarez

Objetivos. Epígrafes 3-1. Francisco José García Álvarez Objetivos Entender el concepto de variabilidad natural de un procesos Comprender la necesidad de los gráficos de control Aprender a diferenciar los tipos de gráficos de control y conocer sus limitaciones.

Más detalles

Probabilidad Condicional

Probabilidad Condicional Cómo actualizar la probabilidad de un evento dado que ha sucedido otro? o Cómo cambia la probabilidad de un evento cuando se sabe que otro evento ha ocurrido? Ejemplo: Una persona tiene un billete de lotería

Más detalles

Propuesta A B = M = (

Propuesta A B = M = ( Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (016) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A ó B. Se

Más detalles

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello:

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: (a). Modelar matemáticamente la situación planteada. (b). Graficar, en un mismo sistema de coordenadas, todas las restricciones

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

CHECKLIST INSPECCIÓN BALDOSAS CERÁMICAS

CHECKLIST INSPECCIÓN BALDOSAS CERÁMICAS Rev. 08 Página: 1 de 13 SOLICITANTE/EXPORTADOR: PRODUCTO A EMBARCAR: BALDOSAS CERAMICAS: FORMATOS: MARCA COMERCIAL: REGLAMENTO TÉCNICO ECUATORIANO - RTE INEN 033 (1R) BALDOSAS CERÁMICAS Y SU MODIFICATORIA

Más detalles

S = N λ = 5 5 = 1 hora.

S = N λ = 5 5 = 1 hora. Teoría de Colas / Investigación Operativa 1 PROBLEMAS DE INVESTIGACIÓN OPERATIVA. Hoja 5 1. Al supercomputador de un centro de cálculo llegan usuarios según un proceso de Poisson de tasa 5 usuarios cada

Más detalles

Análisis de Datos Práctica 1

Análisis de Datos Práctica 1 Análisis de Datos 2013 - Práctica 1 1. Sea = f1; 2; 3; 4; 5; 6; 7g, E = f1; 3; 5; 7g, F = f7; 4; 6g, G = f1; 4g. Describir: a) E \ F c) E \ G 0 e) E 0 \ (F [ G) b) E [ (F \ G) d) (E \ F 0 ) [ G f) (E \

Más detalles

Ejercicio 2. Sean A, B dos sucesos tales que P (A) = 0 4, P (B) = 0 65 y P ( (A B) (A B) ) = Hallar P (A B).

Ejercicio 2. Sean A, B dos sucesos tales que P (A) = 0 4, P (B) = 0 65 y P ( (A B) (A B) ) = Hallar P (A B). Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Hoja 2, curso 2006 2007. Ejercicio 1. Dados cuatro sucesos A, B, C y D, la probabilidad de que ocurra al menos uno

Más detalles

Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM

Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Universidad Católica del Norte Escuela de Negocios Mineros Magíster en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Antofagasta, Junio de 2014 Freddy

Más detalles

Distribuciones de probabilidad discretas

Distribuciones de probabilidad discretas Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

Soluciones Examen de Estadística

Soluciones Examen de Estadística Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 15 de Febrero, 5 Cuestiones horas C1. Un programa se ejecuta desde uno cualquiera de cuatro periféricos A, B, C y D con arreglo

Más detalles

Hemos visto que si se tira una moneda (con p = P (cruz)) n veces, entonces el número de cruces se distribuye como binomial.

Hemos visto que si se tira una moneda (con p = P (cruz)) n veces, entonces el número de cruces se distribuye como binomial. La distribución geométrica Hemos visto que si se tira una moneda (con p = P (cruz)) n veces, entonces el número de cruces se distribuye como binomial. Consideramos otro experimento relacionado. Vamos a

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

REGLA DE LA MULTIPLICACIÓN

REGLA DE LA MULTIPLICACIÓN REGLA DE LA MULTIPLICACIÓN REGLA DE LA MULTIPLICACIÓN Cuando empleamos las reglas de la adición se determinaba la probabilidad de combinar dos eventos ( que suceda uno u otro o los dos) Cuando queremos

Más detalles

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN INTERVALO DE CONFIANZA PARA LA PROPORCIÓN Si deseamos estimar la proporción p con que una determinada característica se da en una población, a partir de la proporción p' observada en una muestra de tamaño

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.

Más detalles

GESTIÓN DE INVENTARIOS

GESTIÓN DE INVENTARIOS GESTIÓN DE Septiembre 2011 1 Generalidades 2 1 - Qué son los inventarios? Materias Primas. Partes y Piezas. Insumos y Herramientas de Producción. Insumos y Materiales de Oficina. Trabajos en Proceso. Productos

Más detalles

Edad (en años) Más de 57 Nº de personas

Edad (en años) Más de 57 Nº de personas 1. Una productora de cine quiere pasar una encuesta por el método de muestreo estratificado entre las 918 personas asistentes a la proyección de una de sus películas. La muestra de tamaño 54 ha de ser

Más detalles

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES.

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES. Nombre y apellidos : Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 2ª entrega Fecha: Curso: 1º BACHILLERATO INSTRUCCIONES: Para la realización del primer examen deberás entregar en un cuaderno

Más detalles

CUADERNILLO DE TRABAJO DE LA MATERIA PROBABILIDAD Y ESTADÍSTICA CAPÍTULO 2.- PROBABILIDAD

CUADERNILLO DE TRABAJO DE LA MATERIA PROBABILIDAD Y ESTADÍSTICA CAPÍTULO 2.- PROBABILIDAD CUADERNILLO DE TRABAJO DE LA MATERIA PROBABILIDAD Y ESTADÍSTICA CAPÍTULO 2.- PROBABILIDAD SECCIÓN 2.1.- ESPACIOS MUESTRALES Y EVENTOS 1.- Se selecciona una muestra de tres calculadoras de una línea de

Más detalles

Relación de Problemas. Tema 6

Relación de Problemas. Tema 6 Relación de Problemas. Tema 6 1. En una urna hay 5 bolas blancas y 2 negras y se sacan tres bolas sin reemplazamiento. a) Calcular la distribución conjunta del número de bolas blancas y negras de entre

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

Ingeniería de Sistemas. Teoría de colas y juegos

Ingeniería de Sistemas. Teoría de colas y juegos Ingeniería de Sistemas Teoría de colas y juegos DEFINICIÓN Estudio analítico del comportamiento de líneas de espera. DEFINICIÓN OBJETIVOS DE LA TEORÍA DE COLAS Identificar el nivel óptimo de capacidad

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 011-01 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

Unidad 7: Muestreo de aceptación

Unidad 7: Muestreo de aceptación Unidad 7: Muestreo de aceptación Cap 12. Gutiérrez Liliana Recchioni Unidad 7: 7.1. Tipos de planes de muestreo. 7.2. Variabilidad y curvas características (CO). 7.3. Diseño de un plan de muestreo simple

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

Más detalles

Cantidad de producto en preempacados. Presentador: Lic. Douglas Arias Molina Laboratorio Costarricense de Metrología

Cantidad de producto en preempacados. Presentador: Lic. Douglas Arias Molina Laboratorio Costarricense de Metrología Cantidad de producto en preempacados Presentador: Lic. Douglas Arias Molina Laboratorio Costarricense de Metrología RTCA 01.01.11:06 Cantidad de Producto Pre-empacado Decreto 33371-COMEX-MEIC Gaceta N

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante

Más detalles

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación

Más detalles

Para hacer frente a esa demanda la empresa dispone de varias alternativas:

Para hacer frente a esa demanda la empresa dispone de varias alternativas: PLAN DE DEMANDA AGREGADA EJERCICIO 2.1 Una empresa fabricante de materiales para tejados ha establecido las siguientes previsiones mensuales de tejas para el periodo comprendido entre los meses de enero

Más detalles

Ejercicios de probabilidad

Ejercicios de probabilidad 1. Dos personas juegan con una moneda, a cara (C) o escudo (E). La que apuesta por la cara gana cuando consiga dos caras seguidas o, en su defecto, tres caras; análogamente con el escudo. El juego acaba

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,... Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

JUNIO Opción A

JUNIO Opción A Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se

Más detalles

Posible solución al examen de Investigación Operativa de Sistemas de junio de 2002

Posible solución al examen de Investigación Operativa de Sistemas de junio de 2002 Posible solución al examen de Investigación Operativa de Sistemas de junio de 00 Problema (,5 puntos): Resuelve el siguiente problema utilizando el método Simplex o variante: Una compañía fabrica impresoras

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Universidad de Zaragoza

Universidad de Zaragoza Nº L.E. Nº L.A.D.E. PUBLICACIONES DE 2º CURSO SECCIÓN: L.A.D.E y L.E. ASIGNATURA: ESTADÍSTICA II TEMA: GRUPO: Problemas de muestreo TODOS DEPARTAMENTO DE MÉTODOS ESTADÍSTICOS Curso Académico 2004/2005

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

CDEE. Cuestiones 3er Ejercicio. 0 si x 1. k(x + 1) + x2 1. k(x + 1) x si x > 1

CDEE. Cuestiones 3er Ejercicio. 0 si x 1. k(x + 1) + x2 1. k(x + 1) x si x > 1 CUESTIÓN 1: El tiempo de retraso, medido en minutos, del AVE Madrid-Sevilla sigue una variable aleatoria continua con función de distribución: 0 si x 1 F (x) = k(x + 1) + x2 1 2 si 1 < x 0 k(x + 1) x2

Más detalles

2 4. c d. Se verifica: a + 2b = 1

2 4. c d. Se verifica: a + 2b = 1 Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 2012-2013 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

PROBLEMAS DE CÁLCULO DE PROBABILIDADES

PROBLEMAS DE CÁLCULO DE PROBABILIDADES PROBLEMAS DE CÁLCULO DE PROBABILIDADES Rosario Cintas del Río Escuela Universitaria de Estadística Universidad Complutense CÁLCULO DE PROBABILIDADES HOJA 1 1. Supongamos que los tiempos de los corredores

Más detalles

Muestreo y estimación: problemas resueltos

Muestreo y estimación: problemas resueltos Muestreo y estimación: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

Probabilidad condicional

Probabilidad condicional Probabilidades y Estadística (M) Práctica 2: Probabilidad Condicional e Independencia 2 cuatrimestre 2008 Tiempo estimado: 3 clases Probabilidad condicional 1. Hay 3 cajas A, B y C con 20 piezas cada una,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 2 Probabilidad condicional e independencia Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Distinguir los eventos condicionales de los eventos independientes.

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

MODELADO Y SIMULACIÓN. Febrero de Primera semana

MODELADO Y SIMULACIÓN. Febrero de Primera semana Febrero de 2016 - Primera semana PREGUNTA 1 (3 puntos) Se pretende estudiar mediante simulación el funcionamiento de una lavandería industrial dedicada a la limpieza y planchado de manteles y servilletas.

Más detalles

4. NÚMEROS PSEUDOALEATORIOS.

4. NÚMEROS PSEUDOALEATORIOS. 4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José

Más detalles

X = beneficio del jugador = (ganancia neta) (recursos invertidos) Cuántos euros debo poner yo para que el juego sea justo?

X = beneficio del jugador = (ganancia neta) (recursos invertidos) Cuántos euros debo poner yo para que el juego sea justo? Ejemplo: el valor esperado y los juegos justos. En los juegos de azar es importante la variable aleatoria X = beneficio del jugador = (ganancia neta) (recursos invertidos) El juego consiste en una caja

Más detalles

UNIVERSIDAD TECNOLÓGICA DE JALISCO

UNIVERSIDAD TECNOLÓGICA DE JALISCO TITULO DE LA PRACTICA: Ecuaciones limeales de Primer grado. ASIGNATURA: Matemáticas I HOJA: 1 DE: 6 UNIDAD TEMÁTICA: 2 FECHA DE REALIZACIÓN: Junio de 2007 NUMERO DE PARTICIPANTES RECOMENDABLE: 1 ELABORO:

Más detalles

MATEMÁTICAS APLICADAS CCSS II. EJERCICIOS: ESTADISTICA: Probabilidad (SELECTIVIDAD) Profesora: Domitila de la Cal Vázquez Página 1

MATEMÁTICAS APLICADAS CCSS II. EJERCICIOS: ESTADISTICA: Probabilidad (SELECTIVIDAD) Profesora: Domitila de la Cal Vázquez Página 1 Profesora: Domitila de la Cal Vázquez Página 1 Profesora: Domitila de la Cal Vázquez Página 2 3A-El 35% de los créditos de un banco son para vivienda, el 50% para industrias y el 15% para consumo diverso.

Más detalles

CAPÍTULO 4 TÉCNICA PERT

CAPÍTULO 4 TÉCNICA PERT 54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con

Más detalles

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades PROGRAMACIÓN LINEAL 1. Imaginemos que las necesidades semanales mínimas de una persona en proteínas, hidratos de carbono y grasas son, respectivamente, 8, 12 y 9 unidades. Supongamos que debemos obtener

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

PROBABILIDAD CONDICIONAL E INDEPENDENCIA

PROBABILIDAD CONDICIONAL E INDEPENDENCIA PROBABILIDAD CONDICIONAL E INDEPENDENCIA Definición Si A y B son dos eventos, se define la probabilidad de A dado B como la probabilidad de que ocurra el evento A cuando el evento B ya ocurrió o se tiene

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Planteamiento del problema del servidor de video

Planteamiento del problema del servidor de video Universidad Politécnica de Cartagena Escuela Técnica Superior de IngenieI ería de Telecomunicación PRÁCTICAS DE REDES DE ORDENADORES Propuesta del Trabajo de Prácticas 2011 Evaluación de políticas de admisión

Más detalles

Probabilidad Colección C.1. MasMates.com Colecciones de ejercicios

Probabilidad Colección C.1. MasMates.com Colecciones de ejercicios 1. Un monedero contiene 2 monedas de plata y 3 de cobre y otro contiene 4 de plata y 3 de cobre. Si se elige un monedero al azar y se extrae una moneda, cuál es la probabilidad de que sea de plata? 2.

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

UNIVERSIDAD SIMON BOLIVAR LINEAS DE ESPERA USB PS4161 GESTION DE LA PRODUCCION I LINEAS DE ESPERA

UNIVERSIDAD SIMON BOLIVAR LINEAS DE ESPERA USB PS4161 GESTION DE LA PRODUCCION I LINEAS DE ESPERA UNIVERSIDAD SIMON BOLIVAR LINEAS DE ESPERA 1 Contenido Características de un sistema de líneas de espera Características de las llegadas Características de la línea de espera Características del dispositivo

Más detalles

Mantenimiento y Fiabilidad UCA 2010

Mantenimiento y Fiabilidad UCA 2010 Mantenimiento y Fiabilidad UCA 2010 1 NASA Mantenimiento de los transbordadores espaciales. Columbia: 86.000.000 millas de velocidad. 3 motores, cada uno del tamaño de un VW. Se estima que se hagan 77

Más detalles

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0 Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución

Más detalles

Conceptos de Probabilidad (II)

Conceptos de Probabilidad (II) Conceptos de Probabilidad (II) Jhon Jairo Padilla A., PhD. Necesidad Es común escuchar frases como: Juan Probablemente ganará el torneo de tenis Tengo posibilidad de ganarme la lotería esta noche La mayoría

Más detalles

Práctica 3: Distribuciones de Probabilidad Binomial, Poisson y Normal

Práctica 3: Distribuciones de Probabilidad Binomial, Poisson y Normal Práctica 3: Distribuciones de Probabilidad Binomial, Poisson y Normal Ejercicio 1: Todos los días se seleccionan de manera aleatoria 12 unidades de un proceso de manufactura, con el propósito de verificar

Más detalles