Sistemas de comunicación

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistemas de comunicación"

Transcripción

1 Sistemas de comunicación Práctico Repaso de procesos estocásticos Cada ejercicio comienza con un símbolo el cuál indica su dificultad de acuerdo a la siguiente escala: básica, media, avanzada, y difícil. Además puede tener un número, como 3.- que indica el número de ejercicio del libro del curso, Communication Systems, 3th. edition. Bruce A. Carlson. Ejercicio Sea el proceso v(t = x(t cos(ω 0 t + φ donde x es un proceso estacionario de valor medio cero y de autocorrelación R x (t. (a (b Si φ = 0, hallar E(v, R v (t, s y E(v. Averiguar si v es un proceso estacionario. Idem si φ es una variable aleatoria uniformemente distribuida en [0, π], independiente de x(t. Cómo queda G v (f en este caso? Ejercicio Sea una secuencia binaria aleatoria cuyos elementos llamaremos 0 y. Los dígitos tienen una duración, son equiprobables e independientes de los dígitos anteriores. El tiempo de comienzo de la secuencia, u origen de tiempos, es aleatorio y uniformemente distribuido en [0, ]. Si se codifica en código bipolar sin retorno a 0, es decir 0 A, A (A es un nivel de tensión, hallar la autocorrelación de la secuencia y su densidad espectral de potencia. Estimar el ancho de banda necesario para la transmisión. Ejercicio 3 Considerar que en el problema, x es una onda binaria aleatoria, y se cumple que f 0 /. Hallar R v (t, G v (ω y la potencia media de la señal y graficarlas.

2 Ejercicio Solución (a Para ver si es estacionario en sentido amplio debemos ver si la media y la autocorrelación dependen del instante observado. E{v(t} = E{x(t cos(ω 0 t + φ} Como φ = 0, cos(ω 0 t + φ toma un valor constante y por lo tanto: Como E{x(t} = 0, tenemos que: En cuanto a la autocorrelación: E{v(t} = cos(ω 0 t + φe{x(t} E{v(t} = 0 R v (t, t + τ = E{v(tv(t + τ} = E{x(t cos(ω 0 t + φx(t + τ cos(ω 0 (t + τ + φ} De la misma manera que antes, los cosenos toman valores constantes, entonces: R v (t, t + τ = E{v(tv(t + τ} = E{x(tx(t + τ} cos(ω 0 t cos(ω 0 (t + τ ( cos(ω0 τ + cos(ω 0 (t + τ R v (t, t + τ = R x (τ Por lo que la autocorrelación es dependiente de t. Por lo tanto el proceso no es estacionario en sentido amplio y entonces no es estacionario. (b Al ser φ una variable aleatoria, ahora cos(ω 0 t+φ es un proceso. Entonces, planteando el valor medio y la independencia entre los procesos: E{v(t} = E{x(t cos(ω 0 t + φ} = E{x(t}E{cos(ω 0 t + φ} E{v(t} = m x E{cos(ω 0 t + φ} = 0 Planteando la autocorrelacion e independencia entre los procesos entre x y el coseno tenemos: R v (t, t+τ = E{v(tv(t+τ} = E{x(tx(t+τ}E{cos(ω 0 t+φ cos(ω 0 (t+τ+φ} Como x es estacionario: R v (t, t + τ = R x (τ R v (t, t + τ = R x (τ π ( π R v (t, t + τ = R x (τ π π cos(ω 0t + φ cos(ω 0 (t + τ + φdφ cos(ω 0 τ + cos(ω 0 (t + τ + φ dφ cos(ω 0 τ dφ + π cos(ω 0 (t + τ + φ dφ La primera integral, es la integral de una constante y la segunda es la integral de un coseno en una cantidad entera de ciclos, entonces: R v (τ = R x (τ cos(ω 0τ y el proceso es estacionario en sentido amplio.

3 Ejercicio El proceso estocástico que resulta de codificar la secuencia binaria aleatoria puede escribirse como, v(t = k= Ax[k]p(t k + ɛ. Donde x es la secuencia binaria aleatoria, ɛ es el retardo aleatorio de distribución uniforme en el intervalo [0, ] (que representa la dessincrinización entre emisor y receptro y p(t es el pulso con que se codifica. En el caso de este problema p(t es un pulso rectangular que vale uno de en el intervalo [0, ] y cero en el resto. Intentaremos probar que el proceso v(t es estacionario en sentido amplio. Para ello es necesario demostrar que tiene media constante y que su autocorrelación depende únicamente de la diferencia entre los instantes de tiempo comparados. A partir de la linealidad del operador esperanza y dado que x[k] es independiente de ɛ para todo valor de k, la esperanza de v(t puede hallarse como E{v(t} = k= AE{x[k]}E{p(t k + ɛ}. Como x[k] es un proceso IID E{x[k]} = 0 para todo k entero y por lo tanto se deduce que para todo instante t R, E{v(t} = 0. Con esto se tiene que v(t es un proceso de media constante. La autocorrelación está dada por, R v (t, s = E{v(tv(s}. El cálculo de la autocorrelación del proceso v(t se realizará en dos pasos. Primero se estudiará R v (t, s cuando t s >. Luego se estudiara el caso complementario. Caso t s > La autocorrelación del proceso v(t está dada por, R(t, s = k= h= A E{x[k]x[h]}E{p(t k + ɛp(s h + ɛ}. En la ecuación anterior aparece la auto correlación de la secuencia x[k], E{x[k]x[h]} = R x (k h = δ(k h que depende sólo de k h ya que x es estacionaria por ser IID. Por lo tanto en la suma anterior el término que depende de x sólo sera distinto de cero (y valdrá σ x = cuando k y h sean iguales. Por lo tanto la autocorrelación puede escribirse como 3

4 R v (t, s = A n= E{p(t n + ɛp(s n + ɛ}. La función φ(t, s = p(t n + ɛp(s n + ɛ vale cero para cualquier combinación de t, s y n, ya que la separación entre t y s es mayor que la duración de los pulsos. Por lo tanto, R v (t, s = 0 si t s > Caso t s En este caso los instantes t y s pueden o no pertenecer a un mismo pulso. Llamemos Γ al suceso t y s no son instantes de un mismo pulso (o tiempo de bit, la esperanza que define a la autocorrelación puede calcularse como, R v (t, s = E{v(tv(s Γ}P (Γ + E{v(tv(s Γ c }( P (Γ. La primera esperanza de la ecuación anterior puede calcularse de manera análoga lo que se hizo para el caso t s >, ya que está condicionada a que suceda Γ. eniendo en cuenta de que Γ sólo depende del valor que tome ɛ y operando como se hizo antes, la segunda esperanza puede expresarse como, E{v(tv(s Γ c } = A n= E{p(t n + ɛp(s n + ɛ Γ c }. La condiciónalidad a Γ c implica que el ɛ es tal que t y s caen en un mismo pulso. Por otro lado, dados t y s habrá un único valor de n 0 para el cual φ(t, s sea distinto de cero (el pulso al que pertenecen dichos instantes. Es decir, E{v(tv(s Γ c } = A E{p(t n 0 + ɛp(s n 0 + ɛ Γ c } = A. Donde la última igualdad se deduce de que p(t n 0 + ɛp(s n 0 + ɛ =, es decir es independiente de ɛ. Finalmente queda calcular la probabilidad dé que se de el suceso Γ, es decir que t corresponda a un pulso distinto que s, o dicho de otro modo que haya una transición de pulso entre ellos. Matematicamente hay que calcular la probabilidad de que se cumpla s < n 0 + ɛ < t asumiendo t < s y siendo n 0 el único entero para el cual t n 0 y s n 0 son menores que. La condición anterior puede escribirse de la forma, s n 0 < ɛ < t n 0. Como ɛ tiene distribución U[0, ], la probabilidad puede calcularse como, P (s n 0 < ɛ < t n 0 = t n0 s n 0 dɛ = t s. El caso en que s t se calcula en forma análoga, con lo cual

5 t s P (Γ =. Finalmente, sustituyendo las expresiones halladas en los dos casos estudiados, la autocorrelación de v(t queda dada por, ( R v (t, s = E{v(tv(s} = A t s. Puede verse entonces que la autocorrelación depende únicamente de la diferencia entre los instantes comparados. Por lo tanto el proceso es estacionario en sentido amplio y su autocorrelación puede escribirse de la forma, ( τ R v (τ = A Λ Ejercicio 3 Como vimos en el problema, R v (τ = R x (τ cos(ω 0τ Em este caso tenemos, R x (τ = A Λ( τ. Por lo tanto la ecuación de arriba puede expresarse como, ( τ R v (τ = A cos(ω0 τ Λ La densidad espectral de potencia G v (f es la transformada de fourier de la autocorrelación, es decir: Finalmente: G v (f = A sinc (f δ(f f 0 + δ(f + f 0 G v (f = A [sinc ( (f f 0 + sinc ( (f + f 0 ] La potencia de la señal la podemos obtener evaluando la autocorrelación en 0: ( 0 cos(0 R v (0 = A Λ = A 5

Sistemas de comunicación

Sistemas de comunicación Sistemas de comunicación Práctico Transmisión digital en banda base Cada ejercicio comienza con un símbolo el cuál indica su dificultad de acuerdo a la siguiente escala: básica, media, avanzada, y difícil.

Más detalles

Transmisión digital pasabanda

Transmisión digital pasabanda Transmisión digital pasabanda Modulación y Procesamiento de Señales Ernesto López Pablo Zinemanas, Mauricio Ramos {pzinemanas, mramos}@fing.edu.uy Centro Universitario Regional Este Sede Rocha Tecnólogo

Más detalles

Sistemas de comunicación

Sistemas de comunicación Sistemas de comunicación Práctico 3 Modulación lineal Cada ejercicio comienza con un símbolo el cuál indica su dificultad de acuerdo a la siguiente escala: básica, media, avanzada, y difícil. Además puede

Más detalles

Hoja 4 Variables aleatorias multidimensionales

Hoja 4 Variables aleatorias multidimensionales Hoja 4 Variables aleatorias multidimensionales 1.- Estudiar si F (x, y) = 1, si x + 2y 1, 0, si x + 2y < 1, es una función de distribución en IR 2. 2.- Dada la variable aleatoria 2-dimensional (X, Y )

Más detalles

Sistemas de comunicación

Sistemas de comunicación Sistemas de comunicación Práctico 5 Ruido Pasabanda Cada ejercicio comienza con un símbolo el cuál indica su dificultad de acuerdo a la siguiente escala: básica, media, avanzada, y difícil. Además puede

Más detalles

Procesos estocásticos

Procesos estocásticos Teoría de la comunicación Comunicaciones - U.A.H. Indice Probabilidad. Variables Aleatorias. Procesos Estocásticos. Comunicaciones - U.A.H. Probabilidad Probabilidad. Dado un experimento ε del tipo que

Más detalles

Comunicaciones Digitales

Comunicaciones Digitales Trabajo Práctico Codificación de Fuente Comunicaciones Digitales E.1 Una fuente tiene un alfabeto {a1,a, a3, a4, a5, a6} con sus correspondientes probabilidades {0.1,0.,0.3,0.05,0.15,0.}. Encontrar la

Más detalles

IDENTIFICACIÓN DE SISTEMAS SISTEMAS LINEALES Y PROCESOS ESTOCÁSTICOS

IDENTIFICACIÓN DE SISTEMAS SISTEMAS LINEALES Y PROCESOS ESTOCÁSTICOS IDENTIFICACIÓN DE SISTEMAS SISTEMAS LINEALES Y PROCESOS ESTOCÁSTICOS Ing. Fredy Ruiz Ph.D. ruizf@javeriana.edu.co Maestría en Ingeniería Electrónica Pontificia Universidad Javeriana 2013 Sistema Un sistema

Más detalles

Transmisión digital por canales con ruido

Transmisión digital por canales con ruido Ingeniería Informática Medios de Transmisión (MT) Problemas del tema 8 Transmisión digital por canales con ruido Curso 008-09 18/1/008 Enunciados 1. Un sistema de transmisión binario con se nalización

Más detalles

Sistemas de comunicación

Sistemas de comunicación Sistemas de comunicación Práctico 1 Técnicas avanzadas de codificación Cada ejercicio comienza con un símbolo el cuál indica su dificultad de acuerdo a la siguiente escala: básica, media, avanzada, y difícil.

Más detalles

Sistemas de Comunicación Examen

Sistemas de Comunicación Examen Sistemas de Comunicación Examen Instituto de Ingeniería Eléctrica 30 de julio de 2015 Indicaciones: La prueba tiene una duración total de 4 horas. Cada hoja entregada debe indicar nombre, número de C.I.,

Más detalles

Repaso de Teoría de la Probabilidad

Repaso de Teoría de la Probabilidad Repaso de Teoría de la Probabilidad Luis Mendo Tomás Escuela Politécnica Superior Universidad Autónoma de Madrid Febrero de 2008 1. Introducción Este documento contiene, de forma esquemática, los conceptos

Más detalles

CODIFICACIO DE LI EA:

CODIFICACIO DE LI EA: CODIFICACIO DE LI EA: eniendo ya la señal discretizada en tiempo (muestreo) y discretizada en amplitud (cuantificación), se dispone de una señal de M símbolos cuya tasa de transmisión se mide en baudios.

Más detalles

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES Departamento de Matemática Aplicada a las T.I.C. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EAMEN FINAL Otoño 25-6 FECHA: 5 de Enero de 26 Fecha publicación notas: 22 de Enero de 26 Fecha revisión

Más detalles

Sistemas de comunicación

Sistemas de comunicación Sistemas de comunicación Práctico Modulación digital pasabanda Cada ejercicio comienza con un símbolo el cuál indica su dificultad de acuerdo a la siguiente escala: básica, media, avanzada, y difícil.

Más detalles

Sistemas de Comunicaciones

Sistemas de Comunicaciones Sistemas de Comunicaciones Tema 2: Señales aleatorias Grado en Ingeniería de Sistemas de Telecomunicación Departamento de Ingeniería de Comunicaciones Universidad de Málaga Curso 202/203 Tema 2: Señales

Más detalles

Procesos Estocásticos. Procesos Estocásticos. Procesos Estocásticos. 1 Introducción y conceptos básicos. Al final del tema el alumno será capaz de:

Procesos Estocásticos. Procesos Estocásticos. Procesos Estocásticos. 1 Introducción y conceptos básicos. Al final del tema el alumno será capaz de: Procesos Estocásticos Procesos Estocásticos Referencias: Capítulo 8 de Introducción a los Sistemas de Comunicación. Stremler, C.G. (993 Estadísticos de un proceso estocástico Apuntes de la Universidad

Más detalles

REPRESENTACIÓN DE SEÑALES PASABANDA. Prof. Germán González Depto de Electrónica USB Junio 2002

REPRESENTACIÓN DE SEÑALES PASABANDA. Prof. Germán González Depto de Electrónica USB Junio 2002 REPRESENTACIÓN DE SEÑALES PASABANDA Prof. Germán González Depto de Electrónica USB Junio 2002 Los organismos encargados de regular el uso del espectro radioeléctrico dividen a éste en porciones a ser utilizadas

Más detalles

Clase 3. Procesos estocásticos en Teoría de la señal.

Clase 3. Procesos estocásticos en Teoría de la señal. 1 Introducción Clase 3. Procesos estocásticos en Teoría de la señal. Como ya se comentó en la clase anterior, el ruido es una señal inherente a cualquier transmisión de telecomunicación. El ruido es una

Más detalles

TEMA 5. PROCESOS ESTOCÁSTICOS.-CURSO 2017/18

TEMA 5. PROCESOS ESTOCÁSTICOS.-CURSO 2017/18 TEMA 5. PROCESOS ESTOCÁSTICOS.-CURSO 2017/18 5.1. Concepto de proceso estocástico. Tipos de procesos. Realización de un proceso. 5.2. Características de un proceso estocástico. 5.3. Ejemplos de procesos

Más detalles

Tema 1. Introducción a las señales y los sistemas

Tema 1. Introducción a las señales y los sistemas SISTEMAS LINEALES Tema. Introducción a las señales y los sistemas de septiembre de F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Definiciones. Clasificación de señales. Transformaciones de la

Más detalles

Sistemas de comunicación

Sistemas de comunicación Sistemas de comunicación Práctico 4 Modulación Exponencial Cada ejercicio comienza con un símbolo el cuál indica su dificultad de acuerdo a la siguiente escala: básica, media, avanzada, y difícil. Además

Más detalles

Teoría de la Comunicación. a) Si X es una variable aleatoria con una distribución uniforme en el intervalo [ 2, 2], calcule las probabilidades

Teoría de la Comunicación. a) Si X es una variable aleatoria con una distribución uniforme en el intervalo [ 2, 2], calcule las probabilidades .6. Ejercicios Ejercicio.1 Se tiene una variable aleatoria X. a) Si X es una variable aleatoria con una distribución uniforme en el intervalo [, ], calcule las probabilidades i) P (X >1) ii) P (X > 1)

Más detalles

POTENCIA DE UN PROCESO ALEATORIO. Análisis Espectral 1 / 30

POTENCIA DE UN PROCESO ALEATORIO. Análisis Espectral 1 / 30 POTENCIA DE UN PROCESO ALEATORIO Análisis Espectral 1 / 30 POTENCIA DE UN PROCESO ALEATORIO Recordemos: Para señales determinísticas.... la potencia instantánea es Para una señal aleatoria, es una VA para

Más detalles

Receptor de Correlación. Sistemas de Comunicación

Receptor de Correlación. Sistemas de Comunicación Receptor de Correlación Sistemas de Comunicación Facundo Mémoli * -Versión 2.- mayo, 22 * memoli@iie.edu.uy Índice. Introducción 3 2. Hipótesis y Planteo del Problema 3 3. Procedimiento 4 3.. Hipótesis

Más detalles

EL4005 Principios de Comunicaciones Clase No.22: Señalización Ortogonal

EL4005 Principios de Comunicaciones Clase No.22: Señalización Ortogonal EL4005 Principios de Comunicaciones Clase No.22: Señalización Ortogonal Patricio Parada Departamento de Ingeniería Eléctrica Universidad de Chile 29 de Octubre de 2010 1 of 34 Contenidos de la Clase (1)

Más detalles

Ejercicios de Procesos Estocásticos

Ejercicios de Procesos Estocásticos Ejercicios de Procesos Estocásticos Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO MAGISTRAL GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES Otros Ejemplo Considerar

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

Examen de Estadística

Examen de Estadística Examen de Estadística Grado en Ingeniería de Telecomunicación 6 de Mayo de 6 Cuestiones solución h 45m C (.5 puntos). Considera tres eventos A, B, C S tales que P (A) = P (B) =.5, P (A B) =.5, y P (C)

Más detalles

Modulación por codificación de pulsos

Modulación por codificación de pulsos Modulación por codificación de pulsos Modulación y Procesamiento de Señales Ernesto López Pablo Zinemanas, Mauricio Ramos {pzinemanas, mramos}@fing.edu.uy Centro Universitario Regional Este Sede Rocha

Más detalles

Transmisión. Transmision de Datos

Transmisión. Transmision de Datos Transmisión Transmision de Datos 1 El éxito en la transmisión depende fundamentalmente de dos factores La calidad de la señal Las características del medio de transmisión 2 Medio de Transmisión No guiado

Más detalles

4. Códigos de Línea *

4. Códigos de Línea * OpenStax-CNX module: m35716 1 4. Códigos de Línea * Mariangela Mezoa Translated By: Mariangela Mezoa This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0

Más detalles

Medios de Transmisión Práctica Final Simulación de un Sistema de Transmisión Digital Banda Base

Medios de Transmisión Práctica Final Simulación de un Sistema de Transmisión Digital Banda Base Medios de Transmisión Práctica Final Simulación de un Sistema de Transmisión Digital Banda Base Curso 28-29. Introducción El objetivo de esta práctica es realizar un programa en Matlab que simule el funcionamiento

Más detalles

Comunicaciones Digitales

Comunicaciones Digitales rabajo Práctico 5 ransmisión pasabanda Comunicaciones Digitales E1 Dos portadoras en cuadratura cos πf c t y senπf ct son utilizadas para transmitir información digital a través de un canal AWGN a dos

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS CONVOCATORIA: ENERO 22/23 FECHA: 9 de Enero de 23 Duración del examen: 3 horas Fecha publicación

Más detalles

PROBLEMA 1. Comunicaciones II UCAB Quiz 2 Diciembre 2006 Richard Marcano y Jesús Martínez

PROBLEMA 1. Comunicaciones II UCAB Quiz 2 Diciembre 2006 Richard Marcano y Jesús Martínez PROBLEMA 1. Comunicaciones II UCAB Quiz 2 Diciembre 2006 Richard Marcano y Jesús Martínez Se tiene una señal binaria equiprobable NRZ polar que se transmite por varios sistemas numerados del 1 al 4 como

Más detalles

Comunicaciones Digitales - Capítulo 3 - Ejercicios

Comunicaciones Digitales - Capítulo 3 - Ejercicios CAPÍTULO 4. COMUNICACIONES DIGITALES. PROBLEMAS 1 Comunicaciones Digitales - Capítulo 3 - Ejercicios 1. Ejercicio 6.9 del libro: A. Artés, et al.: Comunicaciones Digitales. Pearson Educación, 007.. Ejercicio

Más detalles

Muestreo y Procesamiento Digital

Muestreo y Procesamiento Digital Muestreo y Procesamiento Digital Práctico N+ Problemas surtidos El propósito de este repartido de ejercicios es ayudar en la preparación del examen. Dadas las variadas fuentes de los ejercicios aquí propuestos,

Más detalles

A502 - Teoría de Sistemas y Señales

A502 - Teoría de Sistemas y Señales A50 - Teoría de Sistemas y Señales Transparencias Densidad Espectral de Energía de Señales Aperiódicas Autor: Dr. Juan Carlos Gómez Señales de Potencia Verifican TD: TC: Algunas Definiciones N 1 < P lim

Más detalles

IDENTIFICACION DE SISTEMAS IDENTIFICACION NO PARAMETRICA

IDENTIFICACION DE SISTEMAS IDENTIFICACION NO PARAMETRICA IDENTIFICACION DE SISTEMAS IDENTIFICACION NO PARAMETRICA Ing. Fredy Ruiz Ph.D. ruizf@javeriana.edu.co Maestría en Ingeniería Electrónica Pontificia Universidad Javeriana 2013 SISTEMAS LTI En general un

Más detalles

Radiación y Radiocomunicación. Radio Digital. Carlos Crespo Departamento de Teoría de la Señal y Comunicaciones

Radiación y Radiocomunicación. Radio Digital. Carlos Crespo Departamento de Teoría de la Señal y Comunicaciones Radiación y Radiocomunicación Tema 6 Radio Digital Carlos Crespo Departamento de Teoría de la Señal y Comunicaciones ccrespo@us.es 17/3/26 Carlos Crespo RRC-4IT 1 Índice 1. Modulaciones digitales 2. Modulaciones

Más detalles

Tema IV. Transformada de Fourier. Contenido. Desarrollo de la Transformada de Fourier en Tiempo Continuo. Propiedades de las transformadas de Fourier

Tema IV. Transformada de Fourier. Contenido. Desarrollo de la Transformada de Fourier en Tiempo Continuo. Propiedades de las transformadas de Fourier Tema IV Transformada de Fourier Contenido Desarrollo de la Transformada de Fourier en Tiempo Continuo Transformadas coseno y seno de Fourier Propiedades de las transformadas de Fourier Transformada de

Más detalles

SEÑALES Y SISTEMAS Clase 7

SEÑALES Y SISTEMAS Clase 7 SEÑALES Y SISTEMAS Clase 7 Carlos H Muravchik 22 de Marzo de 208 / 43 Habíamos visto: Procesos Estocásticos Motivación Y se vienen: Procesos y Realizaciones Repaso Distribución, densidad Independencia

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad ½ 0.75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:

Más detalles

Guía de Ejercicios 2 Receptor Óptimo para Canal Gaussiano

Guía de Ejercicios 2 Receptor Óptimo para Canal Gaussiano Guía de Ejercicios 2 Receptor Óptimo para Canal Gaussiano Ejercicio 1-2-PAM Se desea transmitir un mensaje a una tasa R b = 7200kbps a través de un canal AWGN con varianza N 0 /2 = 10 10 utilizando señalización

Más detalles

Tema 7: Procesos Estoca sticos

Tema 7: Procesos Estoca sticos Tema 7: Procesos Estoca sticos Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Definición 2 Caracterización Estadística 3 Estadísticos 4 Estacionariedad 5 Ergodicidad 6 Densidad Espectral de Potencia

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Guía 3 - Densidad espectral de potencia, transformación de procesos, ergodicidad

Guía 3 - Densidad espectral de potencia, transformación de procesos, ergodicidad Guía 3 - Densidad espectral de potencia, transformación de procesos, ergodicidad Nivel de dificultad de los ejercicios Estrellas Dificultad Normal Intermedio Desafío Densidad espectral de potencia, transformación

Más detalles

Modelado de Canal Inalámbrico Sistemas de Comunicación

Modelado de Canal Inalámbrico Sistemas de Comunicación Modelado de Canal Inalámbrico Sistemas de Comunicación Germán Capdehourat * Versión v.1 Marzo, 2013 * gcapde@fing.edu.uy 1 Índice 1. Canal inalámbrico 3 1.1. Repaso del modelo de canal...................

Más detalles

Apuntes de Series Temporales

Apuntes de Series Temporales Apuntes de Series Temporales David Rodríguez 7 de Noviembre de 2009. Modelos de Series Temporales Modelo AR() El modelo AutoRegresivo AR() es un proceso aleatorio de la forma X t = ϕx t + σϵ t, ϵ t N (0,

Más detalles

Notas sobre convergencia y funciones generatrices

Notas sobre convergencia y funciones generatrices Notas sobre convergencia y funciones generatrices Universidad Carlos III de Madrid Abril 2013 Para modelar un fenómeno aleatorio que depende del tiempo, podemos considerar sucesiones de variables X 1,X

Más detalles

TEMA 2. MMC (UC3M) Comunicaciones Digitales Modulaciones Lineales 1 / 43 N 1. A j [n] φ j (t nt)

TEMA 2. MMC (UC3M) Comunicaciones Digitales Modulaciones Lineales 1 / 43 N 1. A j [n] φ j (t nt) EMA 2 MODULACIONES DIGIALES: LINEALES, DE FASE Y FRECUENCIA MMC UC3M) Comunicaciones Digitales Modulaciones Lineales 1 / 43 Modulaciones lineales Modulación lineal en espacio multidimensional N) st) =

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1)

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1) PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0,75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:

Más detalles

Comunicaciones Digitales - Ejercicios Tema 2

Comunicaciones Digitales - Ejercicios Tema 2 Comunicaciones Digitales - Ejercicios ema Considere un sistema PAM en banda base tal que la respuesta combinada transmisorreceptor, p(t), es un pulso triangular de la forma { t p(t) =, t 0, t

Más detalles

Capítulo 1. Transformaciones de Procesos sin memoria 1.2. SLIT

Capítulo 1. Transformaciones de Procesos sin memoria 1.2. SLIT Capítulo 1 Transformaciones de Procesos 1.1. sin memoria 1.2. SLIT 1 Capítulo 2 Representación Espectral de Procesos 2.1. Motivación Hasta el momento hemos caracterizado los procesos aleatorios en el dominio

Más detalles

Modulación y Detección en Canales Gaussianos

Modulación y Detección en Canales Gaussianos 2 de noviembre de 2009 Índice Modelo de Comunicaciones Digitales 1 Modelo de Comunicaciones Digitales 2 3 4 5 6 7 Modelo General Info. Formato (e.g. A/D) Codif. Fuente Encriptado Codif. Canal Modulador

Más detalles

transmisión de señales

transmisión de señales Introducción al análisis y transmisión de señales La transmisión de información La información se puede transmitir por medio físico al variar alguna de sus propiedad, como el voltaje o la corriente. Este

Más detalles

TEORÍA DE COMUNICACIONES - AÑO 2004 Cálculo del espectro de señales PAM

TEORÍA DE COMUNICACIONES - AÑO 2004 Cálculo del espectro de señales PAM EORÍA DE COMUNICACIONES - AÑO 2004 Cálculo del espectro de señales PAM. Repaso de DEE y DEP - Señales de energía En las señales con energía finita, el módulo cuadrado de su transformada de Fourier (F)

Más detalles

LECTURA 03: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT. MANEJO DE TABLAS ESTADISTICAS.

LECTURA 03: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT. MANEJO DE TABLAS ESTADISTICAS. LECTURA 3: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT MANEJO DE TABLAS ESTADISTICAS 1 INTRODUCCION Se dice que una variable aleatoria T tiene una distribución t de

Más detalles

Teoría de la Comunicación

Teoría de la Comunicación Teoría de la Comunicación Práctica 2: Modulación y detección en canales gausianos Curso Académico 10/11 Objetivos En esta práctica el alumno aprenderá los elementos de un sistema básico de comunicación

Más detalles

Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados.

Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados. Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados. Ejercicio 1 Ver ejemplo 7.1 del capítulo 7 de las notas del curso (página 158). El resultado final de dicha

Más detalles

A502 - Teoría de Sistemas y Señales

A502 - Teoría de Sistemas y Señales A50 - Teoría de Sistemas y Señales Transparencias Densidad Espectral de Energía de Señales Aperiódicas Autor: Dr. Juan Carlos Gómez Señales de Potencia Verifican TD: TC: Algunas Definiciones < P lim (n)

Más detalles

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 7 de Septiembre, 25 Cuestiones 2 horas C. A partir de los procesos estocásticos X(t e Y (t incorrelados y de media cero, con funciones

Más detalles

PAM de doble banda lateral (PAM-DSB)

PAM de doble banda lateral (PAM-DSB) PAM paso banda - Modulación AM Generar una PAM banda base st) = n A[n] gt nt) Modular st) en amplitud PAM de doble banda lateral PAM-DSB) PAM de banda lateral única PAM-SSB) Banda lateral inferior. Banda

Más detalles

Sistemas de Comunicación Primer Parcial

Sistemas de Comunicación Primer Parcial Sistemas de Comunicación Primer Parcial Instituto de Ingeniería Eléctrica 6 de mayo de 216 Indicaciones: La prueba tiene una duración total de 3 horas y 3 minutos. Cada hoja entregada debe indicar nombre,

Más detalles

Comunicaciones Digitales - Ejercicios Tema 1

Comunicaciones Digitales - Ejercicios Tema 1 Comunicaciones Digitales - Ejercicios Tema Considere un sistema PAM en banda base tal que la respuesta combinada transmisorreceptor, p(t), es un pulso triangular de la forma { t T p(t) =, t T 0, t > T,

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Duración: horas Fecha: de Julio de Fecha publicación notas: -7- Fecha revisión examen: 8-7-

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Otoño 3 Duración: 3 horas FECHA: 9 de Enero de 4 Fecha publicación notas: 6--4 Fecha revisión

Más detalles

f = 0 = n A n + n B = n A + n B n

f = 0 = n A n + n B = n A + n B n 1. Para todo suceso A, f A es el cociente de dos números positivos tal que el numerador es menor o igual que el denominador, luego se tiene que 0 f A 1 2. Debido a que el suceso seguro, Ω, se verifica

Más detalles

Introducción a la Teoría de la Información

Introducción a la Teoría de la Información Introducción a la Teoría de la Información Entropía diferencial. Facultad de Ingeniería, UdelaR (Facultad de Ingeniería, UdelaR) Teoría de la Información 1 / 19 Definición Definición (Entropía diferencial)

Más detalles

Lección 4: Formato y Modulación en Banda Base. Parte II

Lección 4: Formato y Modulación en Banda Base. Parte II Lección 4: Formato y Modulación en Banda Base. Parte II Gianluca Cornetta, Ph.D. Dep. de Ingeniería de Sistemas de Información y Telecomunicación Universidad San Pablo-CEU Contenido Modulación por Impulsos

Más detalles

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE Estudiamos algunos ejemplos de distribuciones de variables aleatorias continuas. De ellas merecen especial mención las derivadas de la distribución normal (χ, t de Student y F de Snedecor), por su importancia

Más detalles

El momento de orden n de una variable aleatoria X es el valor esperado de X elevado a la n, es decir,

El momento de orden n de una variable aleatoria X es el valor esperado de X elevado a la n, es decir, 1 CLASES DE ESTADÍSTICA II CLASE 4) MOMENTOS. FUNCIÓN GENERATRIZ DE MOMENTOS CONJUNTA. El concepto de Momentos ya se conocía en el análisis de una variable aleatoria y es bueno recordarlo ahora para generalizarlo

Más detalles

Tema II. Señales, sistemas y perturbaciones.

Tema II. Señales, sistemas y perturbaciones. Tema II. Señales, sistemas y perturbaciones. II.1. INTRODUCCIÓN. CARACTERIZACIÓN DE SEÑALES. II.2. PERTURBACIONES EN LOS SISTEMAS DE TRANSMISIÓN. II.3. SEÑALES PASO BANDA DE BANDA ESTRECHA. Teoría de la

Más detalles

Soluciones Examen febrero 2014 E = A partir de 2 determino la diferencia de potencial entre las placas (que es V 1 ): q = V 1

Soluciones Examen febrero 2014 E = A partir de 2 determino la diferencia de potencial entre las placas (que es V 1 ): q = V 1 Soluciones Examen febrero 2014 Ejercicio 1 Parte a Supongo una carga q en las placas del capacitor. Aplicando Ley de Gauss: E. ds = q 1 kɛ 0 S E = q 2πrdkɛ 0 2 A partir de 2 determino la diferencia de

Más detalles

Tema 1. Introducción a los conceptos básicos de señales y sistemas. Parte 1. Señales

Tema 1. Introducción a los conceptos básicos de señales y sistemas. Parte 1. Señales Tema. Introducción a los conceptos básicos de señales y sistemas. Parte. Señales Señales y Sistemas 05-06 Señales y Sistemas Tema. Parte. Señales 05-06 / 6 Índice Introducción Definiciones básicas Tipos

Más detalles

3. Método de Rayleigh-Ritz

3. Método de Rayleigh-Ritz 3. Método de Rayleigh-Ritz La solución del problema de elasticidad consiste en encontrar la función desplazamiento u válida para todo el dominio y que verifique las condiciones de contorno. El método de

Más detalles

Introducción a los Procesos de Poisson *

Introducción a los Procesos de Poisson * Introducción a los Procesos de Poisson * Victor M. Pérez Abreu C. Departamento de Probabilidad y Estadística, CIMAT David Reynoso Valle Licenciatura en Matemáticas, DEMAT, Universidad de Guanajuato 22

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Primavera 15 FECHA: de Junio de 15 Fecha publicación notas: 11 de Junio de 15 Fecha revisión

Más detalles

Examen de Estadística Grado en Ingeniería de Telecomunicación

Examen de Estadística Grado en Ingeniería de Telecomunicación Cuestiones Examen de Estadística Grado en Ingeniería de Telecomunicación 3 de Junio de 5 solución h 45m C (.5 puntos). Una multinacional realiza operaciones comerciales en 3 mercados (A, B y C). El % de

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles

SOLUCIONES TEMA 1. Ejercicio 1

SOLUCIONES TEMA 1. Ejercicio 1 Ejercicio SOLUCIONES EMA a) En el dominio temporal, p[n] = pn ) = δ[n]. Aunque con esto bastaría para demostrarlo, y es la opción más sencilla en este caso, también se puede ver en el dominio frecuencial

Más detalles

Examen de Estadística

Examen de Estadística Examen de Estadística Grado en Ingeniería de Telecomunicación 4 de Junio de 03 Cuestiones solucion h 30m C. (p) Un sistema de comunicación está compuesto por los componentes A, B, C, D y E, donde cada

Más detalles

SEÑALES ALEATORIAS Y RUIDO. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid.

SEÑALES ALEATORIAS Y RUIDO. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. SEÑALES ALEATORIAS Y RUIDO. Marcos Martín Fernández E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. CONTENIDOS INDICE. DE FIGURAS VII 1. PROBABILIDAD. 1 2. VARIABLES ALEATORIAS.

Más detalles

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona Kolmogorov y la teoría de la la probabilidad David Nualart Academia de Ciencias y Universidad de Barcelona 1 La axiomatización del cálculo de probabilidades A. N. Kolmogorov: Grundbegriffe des Wahrscheinlichkeitsrechnung

Más detalles

Sistemas Lineales. Examen de Septiembre Soluciones

Sistemas Lineales. Examen de Septiembre Soluciones Sistemas Lineales Examen de Septiembre 25. Soluciones. (2.5 pt.) La señal y(t) [sinc( t)] 4 puede escribirse como y(t) [sinc( t)] 4 [ ] sin(o πt) 4 o πt [ sin(o πt) ] 4 4 πt 4 [y (t)] 4 4 y (t) y (t) y

Más detalles

RECEPTOR OPTIMO PARA TRANSMISION DE PULSOS POR CANALES AWGN

RECEPTOR OPTIMO PARA TRANSMISION DE PULSOS POR CANALES AWGN RECEPTOR OPTIMO PARA TRANSMISION DE PULSOS POR CANALES AWGN El receptor óptimo se determina bajo las siguientes premisas: Se asume que a la entrada del receptor llega una señal que es el pulso modificado

Más detalles

Cálculo de Probabilidades y Estadística. Segunda prueba. 1

Cálculo de Probabilidades y Estadística. Segunda prueba. 1 08231. Cálculo de Probabilidades y Estadística. Segunda prueba. 1 Problema 1. En una circunferencia de radio 1 se toman tres puntos, al azar e independientemente. Hallar la probabilidad de que el triángulo

Más detalles

MATEMÁTICAS ESPECIALES I PRÁCTICA 8 - CLASE 1 Sucesiones y series de funciones. x n, si 0 x 1 1, si x 1. 0, si 0 x < 1

MATEMÁTICAS ESPECIALES I PRÁCTICA 8 - CLASE 1 Sucesiones y series de funciones. x n, si 0 x 1 1, si x 1. 0, si 0 x < 1 PRÁCTICA 8 - CLASE Sucesiones y series de funciones.. Considere la sucesión de funciones reales ϕ n (x) = x n, si 0 x, si x, n. (a) Demostrar que converge puntualmente a ϕ(x) = 0, si 0 x

Más detalles

Capítulo 2 Análisis espectral de señales

Capítulo 2 Análisis espectral de señales Capítulo 2 Análisis espectral de señales Objetivos 1. Se pretende que el alumno repase las herramientas necesarias para el análisis espectral de señales. 2. Que el alumno comprenda el concepto de espectro

Más detalles

Conceptos de Señales

Conceptos de Señales Conceptos de Señales ELO 313 Procesamiento Digital de Señales con Aplicaciones Primer semestre - 2012 Matías Zañartu, Ph.D. Departamento de Electrónica Universidad Técnica Federico Santa María Conceptos

Más detalles

CREDITOS CONCLUSION GLOSARIO INTRODUCCION SEÑALES SISTEMAS SEÑALES C SEÑALES D TIPOS DIFERENCIA

CREDITOS CONCLUSION GLOSARIO INTRODUCCION SEÑALES SISTEMAS SEÑALES C SEÑALES D TIPOS DIFERENCIA CREDITOS CONCLUSION GLOSARIO INTRODUCCION SEÑALES SISTEMAS SEÑALES C SEÑALES D TIPOS DIFERENCIA INTRODUCCION Una señal es cualquier fenómeno que puede ser representado de manera cuantitativa mediante una

Más detalles