Tema 7: Procesos Estoca sticos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 7: Procesos Estoca sticos"

Transcripción

1 Tema 7: Procesos Estoca sticos Teorı a de la Comunicacio n Curso

2 Contenido 1 Definición 2 Caracterización Estadística 3 Estadísticos 4 Estacionariedad 5 Ergodicidad 6 Densidad Espectral de Potencia 7 Filtrado de Procesos Estocásticos

3 Contenido 1 Definición 2 Caracterización Estadística 3 Estadísticos 4 Estacionariedad 5 Ergodicidad 6 Densidad Espectral de Potencia 7 Filtrado de Procesos Estocásticos

4 Definición Procesos Estocásticos Definición: Un Proceso Estocástico X(t) es una función que asocia una señal a cada posible resultado de un experimento aleatorio. S Ω X(t, S) R Variable independiente: t T R (T espacio de tiempos) Interpretación Si se fija el suceso: X(t, S 0 ) es una señal Si se fija el tiempo: X(t 0, S) es una variable aleatoria Si se fijan ambos: X(t 0, S 0 ) es un n o real Si ambos varían: X(t, S) es un proceso estocástico

5 Definición Procesos Estocásticos. Ejemplo Realizaciones de un Proceso Estocástico x(t,s 1 ) 10 0 X: 5 Y: Realizaciones de un Proceso Estocástico X: 20 Y: t 10 x(t,s 2 ) 0 X: 5 Y: X: 20 Y: t 10 x(t,s 3 ) 0 X: 5 10 Y: X: Y: t 10 x(t,s 4 ) 0 X: 5 Y: 3.67 X: Y: t

6 Clasificación Clasificación de Procesos Estocásticos En función del Espacio de Tiempos T : T continuo: Proceso Estocástico T discreto: Secuencia Estocástica En función del espacio de estados S = {X(t, S) t T S Ω} S continuo S discreto T continuo Proceso Estocástico Continuo Proceso Estocástico Discreto T discreto Secuencia Estocástica Continua Secuencia Estocástica Discreta Otra Clasificación: Deterministas (o predecibles): Los valores futuros se pueden predecir de manera exacta a partir de los valores anteriores Ejemplo: X(t) = A cos(ωt + Θ) con Θ v.a. uniforme en ( π, π) No Deterministas (impredecibles): No se pueden predecir de manera exacta los valores futuros

7 Contenido 1 Definición 2 Caracterización Estadística 3 Estadísticos 4 Estacionariedad 5 Ergodicidad 6 Densidad Espectral de Potencia 7 Filtrado de Procesos Estocásticos

8 Funciones Distribución y Densidad de Probabilidad de Primer Orden F.D. y fdp de primer orden Fijando t X(t 1) es una v.a. Función Distribución de primer orden: F X(x 1; t 1) = P (X(t 1) x 1) Función Densidad de Probabilidad de primer orden: f X(x 1; t 1) = δfx(x1; t1) δx 1 Observaciones: Ambas funciones se han de conocer para todo t 1 T En general, el proceso estocástico no queda completamente caracterizado por las funciones de primer orden

9 Funciones Distribución y Densidad de Probabilidad de Segundo Orden F.D. y fdp de segundo orden Considerando dos instantes t 1, t 2 v.a. bidimensional (X(t 1), X(t 2)) Función Distribución de segundo orden: F X(x 1, x 2; t 1, t 2) = P (X(t 1) x 1, X(t 2) x 2) Función Densidad de Probabilidad de segundo orden: f X(x 1, x 2; t 1, t 2) = δ2 F X(x 1, x 2; t 1, t 2) δx 1δx 2 Observaciones: Ambas funciones se han de conocer para todo par (t 1, t 2) En general, el proceso estocástico no queda completamente caracterizado por las funciones de segundo orden Obtención de las marginales (funciones de primer orden): F X(x 1; t 1) = F X(x 1, x 2 = ; t 1, t 2) f X(x 1; t 1) = f X(x 1, x 2; t 1, t 2)dx 2

10 Funciones Distribución y Densidad de Probabilidad de Orden n F.D. y fdp de orden n Considerando n instantes t 1, t 2,..., t n Caracterización Conjunta de n variables aleatorias Función Distribución de orden n: F X (x 1, x 2,..., x n; t 1, t 2,..., t n) = P (X(t 1 ) x 1,..., X(t n) x n) Función Densidad de Probabilidad de orden n: f X (x 1, x 2,..., x n; t 1, t 2,..., t n) = δn F X (x 1, x 2,..., x n; t 1, t 2,..., t n) δx 1 δx 2... δx n Observaciones: Un proceso estocástico queda completamente caracterizado a si conocemos su fdp (o F.D.) de orden n n x 1, x 2,..., x n R t 1, t 2,..., t n T a En la práctica, suele bastar con conocer la fdp o F.D. de segundo orden.

11 Contenido 1 Definición 2 Caracterización Estadística 3 Estadísticos 4 Estacionariedad 5 Ergodicidad 6 Densidad Espectral de Potencia 7 Filtrado de Procesos Estocásticos

12 Estadísticos de un Proceso Estocástico Media de un Proceso Estocástico Definición: η X(t) = E[X(t)] = En general, η X(t) depende del tiempo Se requiere la fdp de primer orden xf X(x; t)dx Autocorrelación de un Proceso Estocástico Definición: R X(t 1, t 2) = E[X(t 1)X(t 2)] = x 1x 2f X(x 1, x 2; t 1, t 2)dx 1dx 2 En general, la autocorrelación depende de t 1 y t 2

13 Estadísticos de un Proceso Estocástico Autocovarianza de un Proceso Estocástico Definición: C X(t 1, t 2) = E [(X(t 1) η X(t 1)) (X(t 2) η X(t 2))] = = E[X(t 1)X(t 2)] η X(t 1)η X(t 2) = R X(t 1, t 2) η X(t 1)η X(t 2) Valor Cuadrático Medio (Potencia) de un Proceso Estocástico Es el momento no centrado de orden 2 de la v.a. X(t): m 2(t) = E [ X 2 (t) ] = R X(t, t) Varianza de un Proceso Estocástico Es el momento centrado de orden 2 de la v.a. X(t): µ 2(t) = σ 2 X(t) = Var [X(t)] = E [ X 2 (t) ] η 2 X(t) = C X(t, t)

14 Estadísticos de un Proceso Estocástico Coeficiente de Autocorrelación Definición análoga al caso de 2 variables aleatorias: r X(t 1, t 2) = C X(t 1, t 2) Var [X(t1)] Var [X(t 2)] = C X(t 1, t 2) CX(t 1, t 1)C X(t 2, t 2) 1 r X(t 1, t 2) 1 r X(t 1, t 2) indica el grado de relación lineal entre X(t 1) y X(t 2) Ejemplo X(t) = at + Y con Y v.a. uniforme en (0, 1), a = cte. Media: η X(t) = at + 1/2 Autocorrelación: R X(t 1, t 2) = a 2 t 1t a(t1 + t2) Autocovarianza: C X(t 1, t 2) = 1 12 Varianza: σ 2 X(t) = Var [X(t)] = C X(t, t) = 1 12 Valor Cuadrático Medio: E [ X 2 (t) ] = R X(t, t) = a 2 t 2 + at Coeficiente de Autocorrelación: r X(t 1, t 2) = 1

15 Estadísticos de un Proceso Estocástico Ruido Blanco Un Proceso Estocástico es Ruido Blanco sii: C X(t 1, t 2) = 0 R X(t 1, t 2) = η X(t 1)η X(t 2) t 1 t 2 Las variables aleatorias X(t 1), X(t 2) están incorreladas No se puede estimar linealmente X(t 2) a partir de X(t 1) ( t 1 t 2) Realizaciones de Ruido Blanco: Carácter Errático Ruido Blanco Estricto Un Proceso Estocástico es Ruido Blanco Estricto sii: f X(x 1, x 2; t 1, t 2) = f X(x 1; t 1)f X(x 2; t 2) t 1 t 2 Las variables aleatorias X(t 1), X(t 2) son independientes No hay ninguna relación (ni lineal ni no lineal) entre X(t 1) y X(t 2)

16 Estadísticos de un Proceso Estocástico Caracterización de Procesos Estocásticos Discretos en el tiempo Secuencias Estocásticas: Espacio de tiempos T = {..., t 1, t 0, t 1,...} X[n] = X(t n) n Z Definiciones Análogas a las de Procesos Estocásticos Continuos Función Distribución: F X[x; n] = P (X[n] x) fdp: δfx[x; n] f X[x; n] = δx Media: η X[n] = E [X[n]] Autocorrelación: R X[n 1, n 2] = E [X[n 1]X[n 2]] Autocovarianza: C X [n 1, n 2] = R X[n 1, n 2] η X[n 1]η X[n 2] Valor Cuadrático Medio (Potencia): m 2[n] = E [ X 2 [n] ] Varianza: σ 2 X[n] = Var [X[n]] = E [ (X[n] η X[n]) 2] = E [ X 2 [n] ] η 2 X[n] Coeficiente de Autocorrelación: r X[n 1, n 2] = C X [n 1,n 2 ] CX [n 1,n 1 ]C X [n 2,n 2 ]

17 Estadísticos de dos Procesos Estocásticos Caracterización de dos Procesos Estocásticos Procesos Estocásticos X(t), Y (t) Función Distribución Conjunta: F XY (x 1,..., x N, y 1,..., y M ; t 1,..., t N, t 1,..., t M ) fdp Conjunta: f XY (x 1,..., x N, y 1,..., y M ; t 1,..., t N, t 1,..., t M ) Estadísticos de dos Procesos Estocásticos Correlación Cruzada: R XY (t 1, t 2) = E [X(t 1)Y (t 2)] Covarianza Cruzada: C XY (t 1, t 2) = E [(X(t 1) η X(t 1)) (Y (t 2) η Y (t 2))] Propiedades: R X(t 1, t 2) = R X(t 2, t 1) C X(t 1, t 2) = C X(t 2, t 1) R XY (t 1, t 2) = R Y X(t 2, t 1) C XY (t 1, t 2) = C Y X(t 2, t 1) R XY (t 1, t 2) R XY (t 2, t 1) C XY (t 1, t 2) C XY (t 2, t 1)

18 Contenido 1 Definición 2 Caracterización Estadística 3 Estadísticos 4 Estacionariedad 5 Ergodicidad 6 Densidad Espectral de Potencia 7 Filtrado de Procesos Estocásticos

19 Estacionariedad Proceso Estocástico Estacionario de Orden 1 Definición: Se dice que un proceso estocástico es estacionario de orden uno sii: f X(x; t) = f X(x; t + ) t, es decir, la fdp (y F.D.) de orden 1 no dependen de t, lo que implica: η X(t) = η X = cte. σ 2 X(t) = σ 2 X = cte. Proceso Estocástico Estacionario de Orden 2 Definición: Se dice que un proceso estocástico es estacionario de orden dos sii: f X(x 1, x 2; t 1, t 2) = f X(x 1, x 2; t 1 +, t 2 + ) t 1, t 2, Implicaciones: La fdp (y F.D.) de orden dos no depende de los tiempos absolutos t 1, t 2 sino solamente de la diferencia τ = t 1 t 2 Un P.E. estacionario de orden 2 también lo es de orden 1 R X(t 1, t 2) = R X(t 1 t 2) = R X(τ)

20 Estacionariedad Proceso Estocástico Estacionario en Sentido Estricto Definición: Un proceso estocástico es estacionario en sentido estricto sii es estacionario de orden n n Proceso Estocástico Estacionario en Sentido Amplio Definición: Un P.E. es estacionario en sentido amplio a sii: η X(t) = E[X(t)] = η X = cte. R X(t 1, t 2) = R X(t 1 t 2) = R X(τ) = E [X(t + τ)x(t)] En el caso discreto: η X[n] = E[X[n]] = η X = cte. R X[n 1, n 2] = R X[n 1 n 2] = R X[m] = E [X[n + m]x[n]] Observación: Estacionario de orden 2 a WSS: Wide Sense Stationary Estacionario en Sentido Amplio

21 Estacionariedad Ejemplo 1 Tono de fase aleatoria: X(t) = A cos(ωt + Θ) Θ uniforme en ( π, π) f X(x; t) = f X(x) = 1 π A 2 x 2 x A Estacionario orden 1 Media: π η X (t) = E [A cos(ωt + Θ)] = A π Autocorrelación: cos(ωt + θ) 1 dθ = 0 = cte. 2π R X (t 1, t 2 ) = E [X(t 1 )X(t 2 )] = E [ A 2 cos(ωt 1 + Θ) cos(ωt 2 + Θ) ] = = A2 2 E [cos(ω(t 1 + t 2 ) + 2Θ)] +E [cos(ω(t 1 t 2 ))] }{{} = 0 = A2 2 cos(ω(t 1 t 2 )) R X (τ) = A2 2 cos(ωτ)

22 Estacionariedad Ejemplo 1. Continuación X(t) = A cos(ωt + Θ) es estacionario en sentido amplio Realizaciones del Proceso Estocástico 1 Proceso Estocástico Estacionario Realizaciones de X(t) t

23 Estacionariedad Ejemplo 2 X(t) = A cos(ωt + θ) con A v.a. uniforme en ( a, a) X(t) es una v.a uniforme en [ a cos(ωt + θ), a cos(ωt + θ)] Dependencia con t Proceso Estocástico No Estacionario 1 Proceso Estocástico No Estacionario Realizaciones de X(t) t

24 Estacionariedad Procesos Conjuntamente Estacionarios Definición: Los procesos estocásticos X(t), Y (t) son conjuntamente estacionarios en sentido amplio sii: X(t), Y (t) son estacionarios en sentido amplio por separado R XY (t + τ, t) = E [X(t + τ)y (t)] = R XY (τ) Algunas Propiedades de los Procesos Estacionarios Propiedades de R X(τ) R X(τ) = R X( τ) τ R X(τ) R X(0) τ Propiedades de R XY (τ) R XY (τ) = R Y X( τ) τ R XY (τ) R X(0)R Y (0) τ Para Z(t) = X(t) + Y (t) R Z (τ) = E [Z(t + τ)z(t)] = E [(X(t + τ) + Y (t + τ)) (X(t) + Y (t))] R Z (τ) = R X (τ) + R Y (τ) + R XY (τ) + R Y X (τ)

25 Relaciones Entre Procesos Estocásticos Procesos Estocásticos Independientes Definición: Dos procesos estocásticos son independientes sii: f XY (x 1,..., x N, y 1,..., y M ; t 1,..., t N, t 1,..., t M ) = = f X (x 1,..., x N ; t 1,..., t N )f Y (y 1,..., y M ; t 1,..., t M ) N, M Procesos Estocásticos Incorrelados Definición: Dos procesos estocásticos son incorrelados sii: C XY (t + τ, t) = 0 t, τ X(t) no se puede estimar de manera lineal a partir de la observación de Y (t) Procesos Estocásticos Ortogonales Definición: Dos procesos estocásticos son ortogonales sii: R XY (t + τ, t) = 0 t, τ Ejemplo (ruido en RX): Z(t) = X(t) + Y (z) con X(t), Y (t) ortogonales R Z (t + τ, t) = R X (t + τ, t) + R Y (t + τ, t)

26 Contenido 1 Definición 2 Caracterización Estadística 3 Estadísticos 4 Estacionariedad 5 Ergodicidad 6 Densidad Espectral de Potencia 7 Filtrado de Procesos Estocásticos

27 Ergodicidad Procesos Estocásticos Ergódicos Pregunta: Dada una realización de un proceso estocástico... Podemos caracterizarlo estadísticamente? Intuición: Un proceso estocástico es ergódico si se puede caracterizar estadísticamente a partir de una realización Promedio Temporal y Autocorrelación Temporal Dada una realización X(t, S 0) de un P.E. se define Promedio Temporal: 1 T M X(S 0) = lím X(t, S 0)dt T 2T T Autocorrelación Temporal: 1 T A X(τ, S 0) = lím X(t + τ, S 0)X(t, S 0)dt T 2T T En general, M X(S) es una v.a. y A X(τ, S) es un proceso estocástico

28 Ergodicidad Ergodicidad Respecto a la Media Definición: Un P.E. X(t) es ergódico respecto a la media sii: X(t) es estacionario en sentido amplio El promedio temporal es igual a la media M X(S) = η X S Condiciones para que X(t) (WSS) sea ergódico respecto a la media Teorema 1: Condición Necesaria y Suficiente 1 2T ( lím 1 τ ) C X (τ)dτ = 0 T 2T 2T 2T Teorema 2: Condición Suficiente Teorema 3: Condición Suficiente C X (τ) dτ < C X (0) < lím C X(τ) = 0 τ

29 Ergodicidad Ejemplo 1 X(t) = A con A variable aleatoria uniforme en (0, 1) Promedio estadístico ( vertical ): η X = E[X(t)] = E[A] = 1/2 1 T Promedio temporal ( horizontal ): M X = lím T Adt = A 2T T η X M X no es ergódico respecto a la media Ejemplo 2 Lanzamiento de una moneda y dos formas de onda X(t, cara ) = cos(ωt) X(t, cruz ) = e ct η X(t) No es WSS No es ergódico respecto a la media

30 Ergodicidad Ejemplo 3 X(t) = A cos(ωt + Θ) Θ uniforme en ( π, π) X(t) es estacionario en sentido amplio: Promedio Temporal: η X = 0 R X(τ) = A2 2 cos(ωτ) M X = lím T = lím T = lím T 1 T A cos(ωt + Θ)dt = lím 2T T T A (sin(ωt + Θ) sin( ωt + Θ)) = 2T ω A sin(ωt ) cos(θ) = 0 = ηx T ω A 2T ω sin(ωt + Θ) T T = WSS y η X = M X Ergódico respecto a la media

31 Ergodicidad Ergodicidad Respecto a la Autocorrelación Definición: Un P.E. X(t) es ergódico respecto a la autocorrelación sii: X(t) es estacionario en sentido amplio La Autocorrelación Temporal es igual a la Autocorrelación A X(τ, S) = R X(τ) τ, S Ejemplo X(t) = A cos(ωt + Θ) Θ uniforme en ( π, π) η X = 0 R X(τ) = A2 2 cos(ωτ) Autocorrelación Temporal: 1 T A X(τ) = lím A cos(ω(t + τ) + Θ)A cos(ωt + Θ)dt = T 2T T = A2 2 cos(ωτ) = RX(τ) Ergódico resp. Autocorrelación

32 Contenido 1 Definición 2 Caracterización Estadística 3 Estadísticos 4 Estacionariedad 5 Ergodicidad 6 Densidad Espectral de Potencia 7 Filtrado de Procesos Estocásticos

33 Densidad Espectral de Potencia Caracterización Espectral de Procesos Estocásticos WSS Objetivo: Caracterización frecuencial de un proceso estocástico WSS Herramienta: Transformada de Fourier X(ω) = X(f) = x(t)e jωt dt x(t) = 1 2π x(t)e j2πft dt x(t) = X(ω)e jωt dω X(f)e j2πft df Primera Aproximación Obtención de la T.F. de cada Realización x(t) = X(t, S) Problemas: En general, x(t) puede no tener Transformada de Fourier Cond. suficiente para T.F. x(t) dt < Buscamos el espectro del P.E., no de una realización

34 Densidad Espectral de Potencia Segunda Aproximación Consideración de una ventana temporal { X(t, S) T < t < T X T (t, S) = X 0 resto T (ω, S) = X T (t, S)e jωt dt Ventajas: Energía finita Existe Transformada de Fourier. T a de Parseval: T E T (S) = (X T (t, S)) 2 dt = 1 X T (ω, S) 2 dω T 2π Inconvenientes: Seguimos considerando realizaciones Sólo consideramos un intervalo temporal (T E T (S) ) P T (S) = 1 2T T T (X T (t, S)) 2 dt = 1 2π X T (ω, S) 2 dω 2T

35 Densidad Espectral de Potencia Solución: Densidad Espectral de Potencia Consideramos la Potencia P X = lím E[P T (S)] = lím T T 1 T E[XT 2 2T (t, S)]dt = R X(0) = T = 1 lím 2π T Densidad Espectral de Potencia (DEP) E [ X T (ω, S) 2] 2T E [ X T (ω, S) 2] S X(ω) = lím T 2T Además, la DEP y la Función de Autocorrelación satisfacen la relación: S X(ω) = TF [R X(τ)] = R X(τ) = TIF [S X(ω)] = 1 2π R X(τ)e jωτ dτ dω S X(ω)e jωτ dω

36 Densidad Espectral de Potencia Densidad Espectral de Potencia de P.E. Discretos en el tiempo Definición análoga S X(Ω) = TF [R X[m]] = m= R X[m] = TIF [S X(Ω)] = 1 2π 2π R X[m]e jωm S X(Ω)e jωm dω En este caso, la DEP es periódica de periodo 2π P X = R X[0] = 1 S X(ω)dω 2π 2π

37 Densidad Espectral de Potencia Densidad Espectral de Potencia Ejemplo 1: DEP y Función de Autocorrelación de un Proceso Estocástico S X (f) Frecuencia (Hz) 10 5 R X (τ) τ (s)

38 Densidad Espectral de Potencia Densidad Espectral de Potencia Ejemplo 1: Realizaciones del Proceso Estocástico t (s) t (s) t (s) t (s) t (s) t (s) t (s) t (s)

39 Densidad Espectral de Potencia Densidad Espectral de Potencia Ejemplo 2: DEP y Función de Autocorrelación de un Proceso Estocástico S X (f) Frecuencia (Hz) R X (τ) τ (s)

40 Densidad Espectral de Potencia Densidad Espectral de Potencia Ejemplo 2: Realizaciones del Proceso Estocástico t (s) t (s) t (s) t (s) t (s) t (s) t (s) t (s)

41 Densidad Espectral de Potencia Densidad Espectral de Potencia Propiedades: S X(ω) es una función real La DEP es no negativa: S X(ω) 0 Para P.E. reales, la DEP es par: S X( ω) = S X(ω) S X(ω) = TF [R X(τ)] Analogía con una fdp: La DEP indica como se distribuye la potencia de un P.E. con la frecuencia Ejemplo 1 X(t) = A cos(ω 0t + Θ), con Θ uniforme en ( π, π) Función de Autocorrelación: R X(τ) = A2 2 cos(ω0τ) Densidad Espectral de Potencia: S X(ω) = TF [R X(τ)] = A2 π [δ(ω ω0) + δ(ω + ω0)] 2 Potencia: P X = R X(0) = 1 A2 SX(ω)dω = 2π 2

42 Densidad Espectral de Potencia Ejemplo 2 Ruido Blanco con media cero: Densidad Espectral de Potencia: S X(ω) = N0 2 Watt/Hz Autocorrelación: R X(τ) = C X(τ) = TIF [S X(ω)] = N 0 2 δ(τ) Potencia en una Ancho de Banda BW (en Hercios): P BW = BW N 0 = σ 2 Caso discreto: Ruido Blanco de media cero y varianza σ 2 Autocorrelación: R X[m] = C X[m] = { 0 m 0 σ 2 m = 0 Densidad Espectral de Potencia: S X(Ω) = TF [R X[m]] = σ 2 Ω

43 Densidad Espectral de Potencia Densidad Espectral de Potencia Cruzada Definición: Sean X(t), Y (t) dos procesos estocásticos conjuntamente estacionarios, se define la DEP cruzada como En el caso discreto: S XY (ω) = TF [R XY (τ)] = R XY (τ) = TIF [S XY (ω)] = 1 2π S XY (Ω) = TF [R XY [m]] = m= R XY [m] = TIF [S XY (Ω)] = 1 2π R XY (τ)e jωτ dτ 2π S XY (ω)e jωτ dω R XY [m]e jωm Particularidades: S XY (ω) puede ser compleja y puede no ser par S XY (ω) = S Y X( ω) S XY (Ω)e jωm dω

44 Contenido 1 Definición 2 Caracterización Estadística 3 Estadísticos 4 Estacionariedad 5 Ergodicidad 6 Densidad Espectral de Potencia 7 Filtrado de Procesos Estocásticos

45 Transformación de Señales Aleatorias Sistemas con Entradas Aleatorias Planteamiento General: Supongamos que un proceso estocástico X(t) es la entrada a un determinado sistema T [ ]. Nuestro objetivo consiste en caracterizar el proceso estocástico de salida Y (t) X(t) T [ ] Y (t) En general, Y (t) se podría caracterizar a partir de la estadística de X(t) y del conocimiento del sistema T [ ] (determinista) Para simplificar el problema, aquí nos centraremos en dos tipos particulares de sistemas: Sistemas sin Memoria (Transformación de Procesos Estocásticos) Sistemas LTI (Filtrado de Procesos Estocásticos)

46 Sistemas sin Memoria Sistemas sin Memoria Sistemas del tipo Y (t) = g (X(t)) La salida en el instante t sólo depende de la entrada en el instante t Equivale a una función de una variable aleatoria Obtención de la fdp de primer orden: A partir de f X(x; t) y de la función g( ) Teorema Fundamental Obtención de la media: η Y (t) = E[Y (t)] = E[g(X(t))] = g(x)f X(x; t)dx

47 Sistemas sin Memoria Sistemas sin Memoria (Continuación) Obtención de la fdp de segundo orden: } Y (t 1 ) = g(x(t 1 )) Funciones de 2 variables aleatorias Y (t 2 ) = g(x(t 2 )) Teorema Fundamental: f Y (y 1, y 2; t 1, t 2) = i f X(x 1i, x 2i; t 1, t 2) J(x 1i, x 2i) = i f X(x 1i, x 2i; t 1, t 2) g (x 1i)g (x 2i) Obtención de la Función de Autocorrelación R Y (t 1, t 2) = E [Y (t 1)Y (t 2)] = g(x 1)g(x 2)f X (x 1, x 2; t 1, t 2)dx 1dx 2 Observaciones sobre la Estacionariedad X(t) est. sentido estricto Y (t) est. sentido estricto X(t) est. de (hasta) orden n Y (t) est. de (hasta) orden n X(t) WSS Y (t) WSS

48 Sistemas sin Memoria Ejemplo Detector Cuadrático: Y (t) = X 2 (t) fdp de primer orden: Raíces: y = g(x) = x 2 x 1 = y, x 2 = y (y 0) Derivada: g (x) = 2x fdp: f Y (y; t) = f X ( y;t) 2 + f X ( y;t) y 2 y fdp de orden 2: Y (t 1 ) = X 2 (t 1 ) Y (t 2 ) = X 2 (t 2 ) Raíces (y 1 0,y 2 0): y 1 = x 2 } 1 y 2 = x 2 x 1 2 x 2 = ± y 1 = ± y 2 4 parejas de soluciones!! Jacobiano: J(x 1, x 2 ) = 4x 1 x 2 fdp: f Y (y 1, y 2 ; t 1, t 2 ) = 4 f X (± y 1,± y 2 ;t 1,t 2 ) i=1 4 y 1 y 2

49 Sistemas Lineales e Invariantes en el Tiempo Sistemas Lineales e Invariantes en el Tiempo X(t) L[ ] Y (t) Utilizaremos L[X(t)] (en lugar de T [X(t)]) para distinguir que se trata de un operador lineal Características: Permiten un estudio general Se pueden caracterizar en el dominio de la frecuencia Aparecen con frecuencia en aplicaciones prácticas

50 Sistemas Lineales e Invariantes en el Tiempo Sistemas Lineales e Invariantes en el Tiempo Repaso: [ N ] Linealidad: L i=1 a ix i (t) Invarianza temporal: = N i=1 a il [x i (t)] y(t) = L[x(t)] y(t + c) = L[x(t + c)] c Respuesta al impulso y convolución: h(t) = L[δ(t)] y(t) = L[x(t)] = x(t) h(t) = x(t α)h(α)dα Caracterización Frecuencial: L [ e jω 0t ] = H(ω 0 )e jω 0t H(ω) = TF [h(t)] = h(t)e jωt dt Causalidad: x(t) = 0 t < t 0 y(t) = 0 t < t 0 Estabilidad: x(t) < M t K y(t) < K t h(t) dt <

51 Sistemas Lineales e Invariantes en el Tiempo Caracterización Estadística de Sistemas LTI Teorema: Los operadores E[ ] y L[ ] son intercambiables E [L [x(t)]] = L [E [x(t)]] La demostración es directa a partir de la linealidad de E[ ] y L[ ] Media del Proceso Estocástico de Salida Obtención de la media η Y (t) = E [Y (t)] = E [L[X(t)]] = L [E[X(t)]] = L[η X(t)] η Y (t) = η X(t α)h(α)dα = η X(t) h(t) Caso particular: X(t) est. en sentido amplio (η X(t) = η X) η Y (t) = η Xh(α)dα = η X h(α)dα η Y = η XH(0)

52 Sistemas Lineales e Invariantes en el Tiempo Autocorrelación del Proceso Estocástico de Salida Asumiendo que X(t) es estacionario en sentido amplio R Y (τ) = E [Y (t + τ)y (t)] = R X(τ) h(τ) h( τ) R X (τ) h( τ) R XY (τ) h(τ) R Y (τ) Correlación Cruzada Entrada-Salida R XY (τ) = R X(τ) h( τ) R Y X(τ) = R X(τ) h(τ) Densidad Espectral de Potencia A partir de la definición: S Y (ω) = TF [R Y (τ)] Y teniendo en cuenta: TF [h(τ)] = H(ω), TF [h( τ)] = H( ω) Además, para h(τ) real: H( ω) = H (ω) Obtenemos: S Y (ω) = S X(ω)H (ω)h(ω) = S X(ω) H(ω) 2

53 Sistemas Lineales e Invariantes en el Tiempo Ejemplo Filtrado de Ruido Blanco con Media Cero: Autocorrelación de la Entrada: R X(τ) = N 0 2 δ(τ) DEP de la entrada: S X(ω) = N 0 2 Sistema LTI: h(t) H(ω) Autocorrelación de la salida: R Y (τ) = N0 N0 δ(τ) h(τ) h( τ) = (h(τ) h( τ)) 2 2 DEP de la salida: S Y (ω) = N0 2 H(ω) 2

54 Sistemas Lineales e Invariantes en el Tiempo Ejemplo Promediador de Media Móvil: Respuesta del Sistema: Y (t) = 1 T X(t)dt 2T T Función de trasferencia: DEP de la salida: H(ω) = sin(ωt ) ωt S Y (ω) = S X(ω) sin2 (ωt ) (ωt ) 2

Ejercicios de Procesos Estocásticos

Ejercicios de Procesos Estocásticos Ejercicios de Procesos Estocásticos Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO MAGISTRAL GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES Otros Ejemplo Considerar

Más detalles

Tema 4: Variable Aleatoria Bidimensional

Tema 4: Variable Aleatoria Bidimensional Curso 2016-2017 Contenido 1 Definición de Variable Aleatoria Bidimensional 2 Distribución y fdp Conjunta 3 Clasificación de Variables Aleatorias Bidimensionales 4 Distribuciones Condicionales 5 Funciones

Más detalles

SEÑALES ALEATORIAS Y RUIDO. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid.

SEÑALES ALEATORIAS Y RUIDO. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. SEÑALES ALEATORIAS Y RUIDO. Marcos Martín Fernández E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. CONTENIDOS INDICE. DE FIGURAS VII 1. PROBABILIDAD. 1 2. VARIABLES ALEATORIAS.

Más detalles

Clase 3. Procesos estocásticos en Teoría de la señal.

Clase 3. Procesos estocásticos en Teoría de la señal. 1 Introducción Clase 3. Procesos estocásticos en Teoría de la señal. Como ya se comentó en la clase anterior, el ruido es una señal inherente a cualquier transmisión de telecomunicación. El ruido es una

Más detalles

IDENTIFICACIÓN DE SISTEMAS SISTEMAS LINEALES Y PROCESOS ESTOCÁSTICOS

IDENTIFICACIÓN DE SISTEMAS SISTEMAS LINEALES Y PROCESOS ESTOCÁSTICOS IDENTIFICACIÓN DE SISTEMAS SISTEMAS LINEALES Y PROCESOS ESTOCÁSTICOS Ing. Fredy Ruiz Ph.D. ruizf@javeriana.edu.co Maestría en Ingeniería Electrónica Pontificia Universidad Javeriana 2013 Sistema Un sistema

Más detalles

Procesos Estocásticos. Procesos Estocásticos. Procesos Estocásticos. 1 Introducción y conceptos básicos. Al final del tema el alumno será capaz de:

Procesos Estocásticos. Procesos Estocásticos. Procesos Estocásticos. 1 Introducción y conceptos básicos. Al final del tema el alumno será capaz de: Procesos Estocásticos Procesos Estocásticos Referencias: Capítulo 8 de Introducción a los Sistemas de Comunicación. Stremler, C.G. (993 Estadísticos de un proceso estocástico Apuntes de la Universidad

Más detalles

Guía 3 - Densidad espectral de potencia, transformación de procesos, ergodicidad

Guía 3 - Densidad espectral de potencia, transformación de procesos, ergodicidad Guía 3 - Densidad espectral de potencia, transformación de procesos, ergodicidad Nivel de dificultad de los ejercicios Estrellas Dificultad Normal Intermedio Desafío Densidad espectral de potencia, transformación

Más detalles

Representación de Señales y Sistemas en Frecuencia

Representación de Señales y Sistemas en Frecuencia Representación de Señales y Sistemas en Frecuencia Patricio Parada Material de Apoyo para el curso EL4005 Universidad de Chile Primavera 010 1 de agosto de 010 1. Series de Fourier Comenzaremos nuestra

Más detalles

Tema 3: Funcio n de Variable Aleatoria

Tema 3: Funcio n de Variable Aleatoria Tema 3: Funcio n de Variable Aleatoria Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Función de una Variable Aleatoria 2 3 Cálculo de la fdp 4 Generación de Números Aleatorios 5 Momentos de una

Más detalles

Procesado con Sistemas Lineales Invariantes en el Tiempo

Procesado con Sistemas Lineales Invariantes en el Tiempo Procesado con Sistemas Lineales Invariantes en el Tiempo March 9, 2009 Sistemas Lineales Invariantes en el Tiempo (LTI). Caracterización de los sistemas LTI discretos Cualquier señal discreta x[n] puede

Más detalles

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Curso 2016-2017 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Procesado Lineal Bidimensional

Procesado Lineal Bidimensional Procesado Lineal Bidimensional Santiago Aja-Fernández Universidad de Valladolid S. Aja-Fernández (ETSI Telecomunicación) Introducción al Procesado de Imagen 1 / 36 Contenidos 1 Señales bidimensionales

Más detalles

Tema 2. Introducción a las señales y los sistemas (Sesión 1)

Tema 2. Introducción a las señales y los sistemas (Sesión 1) SISTEMAS LINEALES Tema. Introducción a las señales y los sistemas (Sesión ) 7 de octubre de F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Representación de señales discretas en términos de impulsos

Más detalles

Tema 9. Transformada de Fourier. Prof. William La Cruz Bastidas

Tema 9. Transformada de Fourier. Prof. William La Cruz Bastidas Tema 9. Transformada de Fourier Prof. William La Cruz Bastidas 28 de junio de 2002 Tema 9 Transformada de Fourier A continuación introduciremos el concepto de transformada de Fourier continua. De ahora

Más detalles

Tratamiento Digital de Señales TEMA 2 : DFT (I)

Tratamiento Digital de Señales TEMA 2 : DFT (I) Tratamiento Digital de Señales TEMA 2 : DFT (I) Universidade de Vigo ETSE Telecomunicación CONTENIDOS 1. Repaso de conceptos asociados con la TF 2. Formulación de la DFT 3. Propiedades de la DFT 4. Métodos

Más detalles

Si conocemos x(n) y obtenemos la salida del sistema podemos determinar la respuesta al impulso del sistema obteniendo en primer lugar H(z) con: = n(

Si conocemos x(n) y obtenemos la salida del sistema podemos determinar la respuesta al impulso del sistema obteniendo en primer lugar H(z) con: = n( 58 Funciones de transferencia de sistemas LTI Como ya conocemos la salida de un sistema LTI en el tiempo (en reposo) para una secuencia de entrada x(n) se podía obtener como la convolución de esa secuencia

Más detalles

Tema 2: Variables Aleatorias Unidimensionales

Tema 2: Variables Aleatorias Unidimensionales Tema 2: Variables Aleatorias Unidimensionales Teorı a de la Comunicacio n Curso 27-28 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función

Más detalles

Series y Transformada de Fourier

Series y Transformada de Fourier Series y Transformada de Fourier Series de Fourier Transformada de Fourier Series de Fourier Las series de Fourier describen señales periódicas como una combinación de señales armónicas (sinusoides). Con

Más detalles

UNIDAD 1: SEÑALES Y SISTEMAS CONTINUOS - TEORÍA

UNIDAD 1: SEÑALES Y SISTEMAS CONTINUOS - TEORÍA CURSO: SEÑALES Y SISTEMAS UNIDAD 1: SEÑALES Y SISTEMAS CONTINUOS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA P. 1. DEFINICIONES SEÑAL: Matemáticamente es una variable que contiene información y representa

Más detalles

Variables aleatorias y procesos estocásticos

Variables aleatorias y procesos estocásticos Variables aleatorias y procesos estocásticos Modulación y Procesamiento de Señales Ernesto López Pablo Zinemanas, Mauricio Ramos {pzinemanas, mramos}@fing.edu.uy Centro Universitario Regional Este Sede

Más detalles

Capítulo 2. Métodos estadísticos Simulación estadística. Simulación univariante

Capítulo 2. Métodos estadísticos Simulación estadística. Simulación univariante Capítulo 2 Métodos estadísticos 21 Simulación estadística La simulación estadística consiste en generar realizaciones de variables aleatorias que siguen unas distribuciones concretas Si esas variables

Más detalles

Sistemas Lineales. Tema 5. La Transformada Z. h[k]z k. = z n (

Sistemas Lineales. Tema 5. La Transformada Z. h[k]z k. = z n ( La transformada Z Sistemas Lineales Tema 5. La Transformada Z Las señales exponenciales discretas de la forma z n con z = re jω son autosoluciones de los sistemas LTI. Para una entrada x[n] = z0 n la salida

Más detalles

Material introductorio

Material introductorio Material introductorio Nombre del curso: Teoría Moderna de la Detección y Estimación Autores: Vanessa Gómez Verdejo Índice general. Variables aleatorias unidimensionales..................................

Más detalles

SISTEMAS LINEALES. Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace

SISTEMAS LINEALES. Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace SISTEMAS LINEALES Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace 2 de octubre de 200 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 3 Contenidos. Autofunciones

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2)

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2) SISTEMAS LINEALES Tema. Sistemas Lineales e Invariantes en el Tiempo (Sesión ) 4 de octubre de 00 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Representación de señales discretas en términos

Más detalles

TEORÍA DE LAS TELECOMUNICACIONES

TEORÍA DE LAS TELECOMUNICACIONES DEPARTAMENTO DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD NACIONAL DE QUILMES Roque Sáenz Peña 8 (B876BD) Bernal Buenos Aires Argentina TEORÍA DE LAS TELECOMUNICACIONES CLASIFICACIÓN DE LAS SEÑALES Básicamente

Más detalles

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción Señales y Clasificación de Señales Señales Periódicas y No Periódicas 6

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción Señales y Clasificación de Señales Señales Periódicas y No Periódicas 6 CAPÍTULO UNO SEÑALES Y SISTEMAS 1.1 Introducción 1 1.2 Señales y Clasificación de Señales 2 1.3 Señales Periódicas y No Periódicas 6 1.4 Señales de Potencia y de Energía 8 1.5 Transformaciones de la Variable

Más detalles

Tema 1. Introducción a las señales y los sistemas

Tema 1. Introducción a las señales y los sistemas SISTEMAS LINEALES Tema. Introducción a las señales y los sistemas de septiembre de F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Definiciones. Clasificación de señales. Transformaciones de la

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

1.2. Tratamiento digital de señales bidimensionales

1.2. Tratamiento digital de señales bidimensionales 1.2. Tratamiento digital de señales Procesamiento de imágenes digitales Contenidos Señales Transformada de Fourierde señales Filtrado de señales Periodicidad 1 Función con más de una variable independiente

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Primavera 15 FECHA: de Junio de 15 Fecha publicación notas: 11 de Junio de 15 Fecha revisión

Más detalles

INGENIERO DE TELECOMUNICACION (Troncal) Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación 2543 TEORIA DE LA COMUNICACION

INGENIERO DE TELECOMUNICACION (Troncal) Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación 2543 TEORIA DE LA COMUNICACION 1. DATOS IDENTIFICATIVOS DE LA ASIGNATURA Título/s Centro Módulo / materia Código y denominación Créditos ECTS 6 Curso / Cuatrimestre Web Idioma de impartición Forma de impartición INGENIERO DE TELECOMUNICACION

Más detalles

Ruido en los sistemas de comunicaciones

Ruido en los sistemas de comunicaciones Capítulo 2 Ruido en los sistemas de comunicaciones Cuando una señal se transmite a través de un canal de comunicaciones hay dos tipos de imperfecciones que hacen que la señal recibida sea diferente de

Más detalles

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES Departamento de Matemática Aplicada a las T.I.C. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EAMEN FINAL Otoño 25-6 FECHA: 5 de Enero de 26 Fecha publicación notas: 22 de Enero de 26 Fecha revisión

Más detalles

EL4005 Principios de Comunicaciones Clase No.15: Ruido Blanco y Procesos Gaussianos

EL4005 Principios de Comunicaciones Clase No.15: Ruido Blanco y Procesos Gaussianos EL4005 Principios de Comunicaciones Clase No.15: Ruido Blanco y Procesos Gaussianos Patricio Parada Departamento de Ingeniería Eléctrica Universidad de Chile 6 de Octubre de 2010 1 of 21 Contenidos de

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

Sistemas de Comunicaciones

Sistemas de Comunicaciones Sistemas de Comunicaciones Tema 1: Introducción Grado en Ingeniería de Sistemas de Telecomunicación Departamento de Ingeniería de Comunicaciones Universidad de Málaga Curso 2012/2013 Tema 1: Introducción

Más detalles

Análisis de procesos estocásticos en el dominio de

Análisis de procesos estocásticos en el dominio de Análisis de procesos estocásticos en el dominio de la frecuencia F. Javier Cara ETSII-UPM Curso 202-203 Contenido Función de densidad espectral Definición Relación con la transformada de Fourier Propiedades

Más detalles

ANÁLISIS FRECUENCIAL DE SEÑALES

ANÁLISIS FRECUENCIAL DE SEÑALES UNIVERSIDAD DE LOS ANDES POSGRADO INGENIERÍA BIOMÉDICA ENERO 2007 ANÁLISIS FRECUENCIAL DE SEÑALES LUIS ENRIQUE MENDOZA AGENDA INTRODUCCIÓN. DEFINICIÓN. SEÑALES ESTACIONARIAS Y NO ESTACIONARIAS. TRANSFORMADA

Más detalles

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación Estadística Tema 3 Esperanzas 31 Esperanza Propiedades 32 Varianza y covarianza Correlación 33 Esperanza y varianza condicional Predicción Objetivos 1 Medidas características distribución de VA 2 Media

Más detalles

Tema II. Señales, sistemas y perturbaciones.

Tema II. Señales, sistemas y perturbaciones. Tema II. Señales, sistemas y perturbaciones. II.1. INTRODUCCIÓN. CARACTERIZACIÓN DE SEÑALES. II.2. PERTURBACIONES EN LOS SISTEMAS DE TRANSMISIÓN. II.3. SEÑALES PASO BANDA DE BANDA ESTRECHA. Teoría de la

Más detalles

APUNTES DE CONTROL DE SISTEMAS II

APUNTES DE CONTROL DE SISTEMAS II UNIVERSIDAD CARLOS III DE MADRID Departamento de Ingenieria de Sistemas y Automatica APUNTES DE CONTROL DE SISTEMAS II L. Moreno, S. Garrido, C. Balaguer IV Índice general 1.. Introducción..............................

Más detalles

Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo.

Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo. Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo. 205-206 Tema 3. Análisis de Fourier de tiempo continuo 205-206 / 23 Índice Introducción 2 Respuesta de sistemas LTI a exponenciales

Más detalles

PROCESOS ALEATORIOS. Capítulo AXIOMAS DE PROBABILIDAD

PROCESOS ALEATORIOS. Capítulo AXIOMAS DE PROBABILIDAD Capítulo 2 PROCESOS ALEATORIOS Los procesos aleatorios son importantes porque en casi todos los aspectos de la vida se presentan este tipo de situaciones en donde el comportamiento de un fenómeno o evento

Más detalles

Sistemas de comunicación

Sistemas de comunicación Sistemas de comunicación Práctico 5 Ruido Pasabanda Cada ejercicio comienza con un símbolo el cuál indica su dificultad de acuerdo a la siguiente escala: básica, media, avanzada, y difícil. Además puede

Más detalles

Transmisión digital por canales con ruido

Transmisión digital por canales con ruido Ingeniería Informática Medios de Transmisión (MT) Problemas del tema 8 Transmisión digital por canales con ruido Curso 008-09 18/1/008 Enunciados 1. Un sistema de transmisión binario con se nalización

Más detalles

Señales y Sistemas de Tiempo Discreto

Señales y Sistemas de Tiempo Discreto Capítulo Señales y Sistemas de Tiempo Discreto Una señal es cualquier magnitud que sufre variaciones que contienen información de cualquier tipo, matemáticamente se representan por funciones de una o más

Más detalles

1. Sistemas Muestreados

1. Sistemas Muestreados . Sistemas Muestreados. Sistemas Muestreados.. Introducción 2.2. Secuencias 5.3. Sistema Discreto 5.4. Ecuaciones en Diferencias 6.5. Secuencia de Ponderación de un Sistema. 7.6. Estabilidad 9.7. Respuesta

Más detalles

Concepto de VA bidimensional. Tema 3: VARIABLE ALEATORIA BIDIMENSIONAL. Concepto de VA bidimensional. Concepto de VA bidimensional

Concepto de VA bidimensional. Tema 3: VARIABLE ALEATORIA BIDIMENSIONAL. Concepto de VA bidimensional. Concepto de VA bidimensional Concepto de VA bidimensional Tema 3: VARIABLE ALEATORIA BIDIMENSIONAL Carlos Alberola López Lab. rocesado de Imagen, ETSI Telecomunicación Despacho D04 caralb@tel.uva.es, jcasasec@tel.uva.es, http://www.lpi.tel.uva.es/sar

Más detalles

5. Distribuciones de probabilidad multivariadas

5. Distribuciones de probabilidad multivariadas 5. Distribuciones de probabilidad multivariadas Sobre un dado espacio muestral podemos definir diferentes variables aleatorias. Por ejemplo, en un experimento binomial, X 1 podría ser la variable binomial

Más detalles

Otras distribuciones multivariantes

Otras distribuciones multivariantes Trabajo A Trabajos Curso -3 Otras distribuciones multivariantes Clase esférica de distribuciones en R p Definición. Dado un vector aleatorio X = X,..., X p t, se dice que se distribuye en la clase esférica

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

Vectores Aleatorios. Vectores Aleatorios. Vectores Discretos. Vectores Aleatorios Continuos

Vectores Aleatorios. Vectores Aleatorios. Vectores Discretos. Vectores Aleatorios Continuos Definición Dado un espacio muestral S, diremos que X =(X 1, X 2,, X k ) es un vector aleatorio de dimension k si cada una de sus componentes es una variable aleatoria X i : S R, para i = 1, k. Notemos

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Transformada de Laplace) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Verano 2010, Resumen clases Julio López EDO 1/30 Introducción

Más detalles

TEMA4: Implementación de Filtros Discretos

TEMA4: Implementación de Filtros Discretos TEMA4: Implementación de Filtros Discretos Contenidos del tema: El muestreo y sus consecuencias Relaciones entre señales y sus transformadas: Especificaciones de filtros continuos y discretos Aproximaciones

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS CONVOCATORIA: ENERO 22/23 FECHA: 9 de Enero de 23 Duración del examen: 3 horas Fecha publicación

Más detalles

Variables aleatorias bidimensionales discretas

Variables aleatorias bidimensionales discretas Universidad de San Carlos de Guatemala Facultad de Ingeniería Área de Estadística VARIABLES ALEATORIAS BIDIMENSIONALES Concepto: Sean X e Y variables aleatorias. Una variable aleatoria bidimensional (X,

Más detalles

3. Señales. Introducción y outline

3. Señales. Introducción y outline 3. Señales Introducción y outline Outline Señales y Sistemas Discretos: SLIT, Muestreo, análisis tiempo-frecuencia, autocorrelación, espectro, transformada Z, DTFT, DFT, FFT Filtros y Estimación: Filtros

Más detalles

Participantes. Comité para el Diseño de Especialidad DIET. Academia de Comunicaciones DIET. Comité de Investigación DIET

Participantes. Comité para el Diseño de Especialidad DIET. Academia de Comunicaciones DIET. Comité de Investigación DIET .- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Carrera: Teoría de las Comunicaciones. Ingeniería Electrónica Clave de la asignatura: TEB 080 Horas teoría-horas práctica-créditos: 4 0 8.- HISTORIA

Más detalles

Transformada de Laplace (material de apoyo)

Transformada de Laplace (material de apoyo) Transformada de Laplace (material de apoyo) André Luiz Fonseca de Oliveira Michel Hakas Resumen En este artículo se revisará los conceptos básicos para la utilización de la transformada de Laplace en la

Más detalles

Distribuciones de probabilidad multivariadas

Distribuciones de probabilidad multivariadas Capítulo 3 Distribuciones de probabilidad multivariadas Sobre un dado espacio muestral podemos definir diferentes variables aleatorias. Por ejemplo, en un experimento binomial, X 1 podría ser la variable

Más detalles

Sistemas Lineales e Invariantes en el Tiempo (LTI)

Sistemas Lineales e Invariantes en el Tiempo (LTI) Sistemas Lineales e Invariantes en el Tiempo (LTI) Dr. Ing. Leonardo Rey Vega Señales y Sistemas (66.74 y 86.05) Facultad de Ingeniería Universidad de Buenos Aires Agosto 2013 Señales y Sistemas (66.74

Más detalles

Análisis de señales biomédicas

Análisis de señales biomédicas Análisis de señales biomédicas Objetivo La adquisición y procesado de las variables fisiológicas del paciente para realizar una recomendación diagnóstica y/o un plan terapéutico utico. La bioengeniería

Más detalles

1. Modelo de Perturbaciones. 1. Modelo de Perturbaciones 1

1. Modelo de Perturbaciones. 1. Modelo de Perturbaciones 1 . Modelo de Perturbaciones. Modelo de Perturbaciones.. Introducción 3.. Reducción del efecto de las Perturbaciones 4.3. Modelo de Perturbaciones 8.4. Perturbaciones Determísticas a Tramos.4.. Modelo en

Más detalles

Muestreo y Procesamiento Digital

Muestreo y Procesamiento Digital Muestreo y Procesamiento Digital Práctico N+ Problemas surtidos El propósito de este repartido de ejercicios es ayudar en la preparación del examen. Dadas las variadas fuentes de los ejercicios aquí propuestos,

Más detalles

Problemas del tema 3. Sistemas lineales e invariantes en el tiempo

Problemas del tema 3. Sistemas lineales e invariantes en el tiempo Ingeniería Informática Medios de ransmisión (M) Problemas del tema Sistemas lineales e invariantes en el tiempo Curso 8-9 7//8 Enunciados. Considere el sistema de la figura Retardo de segundo ( ) x(t)

Más detalles

Vibraciones aleatorias en sistemas con un grado de libertad

Vibraciones aleatorias en sistemas con un grado de libertad Vibraciones aleatorias en sistemas con un grado de libertad F. Javier Cara ETSII-UPM Curso 212-213 1 Contenido Señales y sistemas Cálculo de la respuesta mediante la ecuación diferencial Cálculo de la

Más detalles

Matemática Computacional

Matemática Computacional Matemática Computacional Filtrado en el dominio de la Frecuencia MATEMÁTICA COMPUTACIONAL - MA475 1 Logro El alumno, al término de la sesión, será capaz de entender el filtrado en el dominio de la frecuencia

Más detalles

Práctico 2 Análisis de proceso autorregresivo de orden 2 Proceso WSS filtrado

Práctico 2 Análisis de proceso autorregresivo de orden 2 Proceso WSS filtrado Práctico Análisis de proceso autorregresivo de orden Proceso WSS filtrado Tratamiento Estadístico de Señales Pablo Musé, Ernesto López & Luís Di Martino {pmuse, elopez, dimartino}@fing.edu.uy Departamento

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

SISTEMAS LINEALES. Tema 6. Transformada Z

SISTEMAS LINEALES. Tema 6. Transformada Z SISTEMAS LINEALES Tema 6. Transformada Z 6 de diciembre de 200 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 3 Contenidos. Autofunciones de los sistemas LTI discretos. Transformada Z. Región de convergencia

Más detalles

transmisión de señales

transmisión de señales Introducción al análisis y transmisión de señales La transmisión de información La información se puede transmitir por medio físico al variar alguna de sus propiedad, como el voltaje o la corriente. Este

Más detalles

Tema 2: Modelos probabilísticos de series

Tema 2: Modelos probabilísticos de series Tema 2: Modelos probabilísticos de Tema 2: Modelos probabilísticos de 1 2 3 4 5 6 Definición Un proceso estocástico con conjunto de índices T es una colección de variables aleatorias {X t } t T sobre (Ω,

Más detalles

Germán Bassi. 9 de septiembre de X(i) = 1 N 1T X. i=1

Germán Bassi. 9 de septiembre de X(i) = 1 N 1T X. i=1 . Estimación de la Media Germán Bassi 9 de septiembre de 00 Dada la variable aleatoria X, podemos estimar el valor esperado de la misma mediante la siguiente fórmula: µ X = X(i) = T X. Ambas representaciones

Más detalles

Introducción a la Teoría de la Información

Introducción a la Teoría de la Información Introducción a la Teoría de la Información Entropía diferencial. Facultad de Ingeniería, UdelaR (Facultad de Ingeniería, UdelaR) Teoría de la Información 1 / 19 Definición Definición (Entropía diferencial)

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

Transformada Discreta de Fourier.

Transformada Discreta de Fourier. Transformada Discreta de Fourier. Hasta ahora se ha visto Importancia de la respuesta en frecuencia de un sistema Transformada de Fourier de una señal discreta Tenemos otra forma de caracterizar los sistemas

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 5 Esperanza y momentos Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Sistemas Lineales. Sistemas

Sistemas Lineales. Sistemas Sistemas Lineales Sistemas Un sistema opera con señales en una ó más entradas para producir señales en una ó más salidas. Los representamos mediante diagrama en bloques Señal de entrada ó excitación Señal

Más detalles

Función Característica

Función Característica Germán Bassi 21 de marzo de 211 1. Variable Aleatoria Continua Para una variable aleatoria escalar y continua X, la función característica se define como el valor esperado de e jωx, donde j es la unidad

Más detalles

Caracterización del canal de radio

Caracterización del canal de radio Caracterización del canal de radio Segunda Parte Propagación en Entornos Urbanos Matías Mateu IIE mmateu@fing.edu.uy Temario Resumen Primera Parte Modelos de canal: AWGN Banda angosta (Rayleigh, Ricean)

Más detalles

Tema 4: VARIABLE ALEATORIA N-DIMENSIONAL

Tema 4: VARIABLE ALEATORIA N-DIMENSIONAL Tema 4: VARIABLE ALEATORIA N-DIMENSIONAL Carlos Alberola López Lab. Procesado de Imagen, ETSI Telecomunicación Despacho D04 caralb@tel.uva.es, jcasasec@tel.uva.es, http://www.lpi.tel.uva.es/sar Concepto

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA ANALISIS DE SISTEMAS Y SEÑALES TAREA. TRANSFORMADAS LAPLACE, FOURIER, Z

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA ANALISIS DE SISTEMAS Y SEÑALES TAREA. TRANSFORMADAS LAPLACE, FOURIER, Z UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA ANALISIS DE SISTEMAS Y SEÑALES TAREA. TRANSFORMADAS LAPLACE, FOURIER, Z ALUMNOS: CRUZ NAVARRO JESUS ALBARRÁN DÍAZ KARLA GRUPO: 4 SEMESTRE:

Más detalles

ELECTIVA I PROGRAMA DE FISICA Departamento de Física y Geología Universidad de Pamplona Marzo de 2010 NESTOR A. ARIAS HERNANDEZ - UNIPAMPLONA

ELECTIVA I PROGRAMA DE FISICA Departamento de Física y Geología Universidad de Pamplona Marzo de 2010 NESTOR A. ARIAS HERNANDEZ - UNIPAMPLONA ELECTIVA I PROGRAMA DE FISICA Departamento de Física y Geología Universidad de Pamplona Marzo de 2010 PDS Señal Analoga Señal Digital Estabilidad y Repetibilidad condiciones externa) Inmunidad al ruido

Más detalles

Señales y Sistemas. Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas. 5º Curso-Tratamiento Digital de Señal

Señales y Sistemas. Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas. 5º Curso-Tratamiento Digital de Señal Señales y Sistemas Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas Señales El procesamiento de señales es el objeto de la asignatura, así que no vendría mal comentar

Más detalles

Econometría Aplicada para Bancos Centrales

Econometría Aplicada para Bancos Centrales Econometría Aplicada para Bancos Centrales Módulo 3: Filtrando series de tiempo Instructores: Randall Romero y Luis Ortíz San José, Costa Rica, 21-25 de agosto de 2017 Contenidos 1. Introducción 2. Algunos

Más detalles

Estadística. Soluciones ejercicios: Procesos estocásticos. Versión 8. Emilio Letón

Estadística. Soluciones ejercicios: Procesos estocásticos. Versión 8. Emilio Letón Estadística Soluciones ejercicios: Procesos estocásticos Versión 8 Emilio Letón. Nivel. Calcular la media del proceso estocástico X (t) = A+t con A U (0; ). Utilizar dos métodos distintos: propiedades

Más detalles

Teoría de Telecomunicaciones

Teoría de Telecomunicaciones El Ruido y su Filtraje Universidad del Cauca Teoría de Telecomunicaciones 1 Introducción El Ruido Las señales eléctricas no deseadas suelen ser generadas por diversas fuentes, generalmente clasificadas

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:

Más detalles

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 7 de Septiembre, 25 Cuestiones 2 horas C. A partir de los procesos estocásticos X(t e Y (t incorrelados y de media cero, con funciones

Más detalles

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido Tema 4 Variables aleatorias En este tema se introduce el concepto de variable aleatoria y se estudian los distintos tipos de variables aleatorias a un nivel muy general, lo que nos permitirá manejar los

Más detalles

Sistemas Lineales e Invariantes PRÁCTICA 2

Sistemas Lineales e Invariantes PRÁCTICA 2 Sistemas Lineales e Invariantes PRÁCTICA 2 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 2 Sistemas Lineales e Invariantes 1. Objetivo Los objetivos de esta práctica son: Revisar los sistemas

Más detalles

Clase 2. Herramientas de representación tiempo frecuencia IIE. May 2, 2017

Clase 2. Herramientas de representación tiempo frecuencia IIE. May 2, 2017 Clase 2 Herramientas de representación tiempo frecuencia IIE 1 Facultad de Ingeniería Universidad de la República May 2, 2017 IIE (Facultad de Ingeniería) Herramientas de representación tiempo frecuenciamay

Más detalles

Capítulo 6: Variable Aleatoria Bidimensional

Capítulo 6: Variable Aleatoria Bidimensional Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el

Más detalles

Sistemas continuos. Francisco Carlos Calderón PUJ 2010

Sistemas continuos. Francisco Carlos Calderón PUJ 2010 Sistemas continuos Francisco Carlos Calderón PUJ 2010 Objetivos Definir las propiedades básicas de los sistemas continuos Analizar la respuesta en el tiempo de un SLIT continuo Definición y clasificación

Más detalles

Procesos autorregresivos

Procesos autorregresivos Capítulo 3 Procesos autorregresivos Los procesos autorregresivos deben su nombre a la regresión y son los primeros procesos estacionarios que se estudiaron. Proceso autorregresivo: Un proceso autorregresivo

Más detalles