EJERCICIOS Y PROBLEMAS PROPUESTOS EN LA PAU 2004 (ÁLGEBRA) + 3y

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS Y PROBLEMAS PROPUESTOS EN LA PAU 2004 (ÁLGEBRA) + 3y"

Transcripción

1 EJERCICIOS Y PROBLEMAS PROPUESTOS EN LA PAU 004 (ÁLGEBRA) 1.- Sea el sistema de inecuaciones x+ y 6 3x y 13 x + 3y 3 x 0 a) Dibuje el recinto cuyos puntos son las soluciones del sistema y obtenga sus vértices. b) Halle los puntos del recinto en los que la función F( x, y) = x y toma los valores máximo y mínimo, y determine éstos. (ANDALUCÍA JUNIO 004 MATEMÁTICAS APLICADAS II) Sean las matrices A=, B=, C = t t a) Calcule la matriz P que verifica B P A= C. ( C, indica transpuesta de C) b) Determine la dimensión de la matriz M para que pueda efectuarse el producto AM C. t c) Determine la dimensión de la matriz N para que C N sea una matriz cuadrada. (ANDALUCÍA JUNIO 004 MATEMÁTICAS APLICADAS II) 3.- Discute y resuelve el siguiente sistema según los valores de λ : x+ λ y+ z = 0 λx+ y+ z = 0 x + y + λz = 0 (ANDALUCÍA JUNIO 004 MATEMÁTICAS II) 4.- Resuelve la ecuación matricial: A X = B, siendo: A= y B= (ANDALUCÍA JUNIO 004 MATEMÁTICAS II) 5.- Encontrar tres números A, B y C, tales que su suma sea 10, la mitad de la suma del primero y del último más la cuarta parte del otro sea 95 y la media de los dos últimos sea 80. (MURCIA JUNIO 004 MATEMÁTICAS APLICADAS II) 6.- Un autobús Madrid-París ofrece plazas para fumadores al precio de 100 euros y para no fumadores al precio de 60 euros. Al no fumador se le deja llevar 50 kg de peso y al fumador 0 kg. Si el autobús tiene 90 plazas y admite un equipaje de hasta 3000 kg, cuál debe ser la oferta de plazas de la compañía para optimizar el beneficio? (MURCIA JUNIO 004 MATEMÁTICAS APLICADAS II)

2 7.- Estudiar, según los valores del parámetro a, el siguiente sistema de ecuaciones lineales: x + ay z = a ax y + az 3x y+ z = 0 Resolverlo, si es posible, utilizando la regla de Cramer para el valor a = -1. (MURCIA JUNIO 004 MATEMÁTICAS II) Dados los vectores de e1=(1,1,), e=(,5,1), e3=(0,1,1) y e4=(-1,1,0), encontrar tres de 3 ellos que formen una base de y escribir el otro como combinación lineal de esa base. (MURCIA JUNIO 004 MATEMÁTICAS II) 9.- La suma de las tres cifras de un número es 18, siendo la cifra de las decenas igual a la media de las otras dos. Si se cambia la cifra de las unidades por la de las centenas, el número aumenta en 108 unidades. Calcula dicho número. (CASTILLA LEÓN JUNIO 004 MATEMÁTICAS APLICADAS II) x Sea A = 1 y a) Calcula A b) Calcula todos los valores de x e y para los que se verifica que x + 1 A = 1 (CASTILLA LEÓN JUNIO 004 MATEMÁTICAS APLICADAS II) 11.- Se tiene una matriz M cuadrada de orden 3, cuyas columnas son respectivamente C 1, C y C 3 y cuyo determinante vale. Se considera la matriz A cuyas columnas son C, C 3 +C y 3C 1. Calcúlese razonadamente el determinante de 1 A en caso de que exista es matriz. (CASTILLA LEÓN JUNIO 004 MATEMÁTICAS II) x+ y+ z = 1.- Se considera el sistema x + y + λz x + λ y + z a) Discútase según los valores del parámetro λ b) Resuélvase para λ =-3 c) Resuélvase para λ =1 λ (CASTILLA LEÓN JUNIO 004 MATEMÁTICAS II) 13.- Dada la matriz XB+ B= B B = hállese una matriz X que verifique la ecuación 3 1 (CASTILLA LEÓN JUNIO 004 MATEMÁTICAS II) 14.- Se tiene una matriz M cuadrada de orden 3, cuyas columnas son respectivamente C 1, C y C 3 y cuyo determinante vale. Se considera la matriz A cuyas columnas son C, C 3 +C y 3C 1. Calcúlese razonadamente el determinante de 1 A en caso de que exista es matriz. (CASTILLA LEÓN JUNIO 004 MATEMÁTICAS II)

3 15.- Un producto se compone de la mezcla de otros dos A y B. Se tienen 500 kg de A y 500 kg de B. En la mezcla, el peso de B debe ser menor o igual que 1,5 veces el de A. Para satisfacer la demanda, la producción debe ser mayor o igual que 600 kg. Sabiendo que cada kg de A cuesta 5 euros y cada kg de B cuesta 4 euros, calcular los kg de A y B que deben emplearse para hacer una mezcla de coste mínimo, que cumpla los requisitos anteriores. Obtener dicho coste mínimo. (MADRID JUNIO 004 MATEMÁTICAS APLICADAS II) a Hallar todas las matrices X = ; a, b, c b c que satisfacen la ecuación matricial X = X Dado el sistema (MADRID JUNIO 004 MATEMÁTICAS APLICADAS II) (1 ax ) y+ 4z = 0 x (1 a) y + z = 0 x + ay z = 0 a) Estudiar la compatibilidad según los valores del parámetro a. b) Resolver el sistema anterior cuando sea compatible indeterminado Dadas las matrices: se pide: A 1 a) Hallar b) Hallar la matriz X, tal que: A X A (MADRID JUNIO 004 MATEMÁTICAS II) A= y B= t = B t ( donde A significa la matriz transpuesta de A) (MADRID JUNIO 004 MATEMÁTICAS II) 19.- x+ y a) Dado el sistema, escribir una tercera ecuación de la forma ax+by=c 3x y = (distinta de las dos anteriores) de manera que el sistema de tres ecuaciones y dos incógnitas resultante siga siendo compatible. x + y z b) Dado el sistema, escribir un tercera ecuación de la forma x + y + z α x + βy+ γz (distinta de las dos anteriores) de manera que el sistema de tres ecuaciones y tres incógnitas resultante sea compatible indeterminado. (MADRID JUNIO 004 MATEMÁTICAS II)

4 0.- Un individuo realiza fotografías con una cámara digital. Sabe que cada fotografía de calidad normal ocupa siempre 0,0 megabytes de memoria. Cada fotografía de calidad óptima ocupa siempre una cantidad A de megabytes, pero el individuo no la conoce. Esta semana ha llevado a revelar 4 fotografías que le han ocupado un total de 9, megabytes de memoria. (a) Plantea un sistema de ecuaciones (en función de A) donde las incógnitas sean el número de fotos de cada clase que ha realizado. Estudia la compatibilidad del sistema. (b) Hay alguna cantidad de megabytes que es imposible que ocupe cada foto de calidad óptima? (c) La semana pasada también hizo 4 fotos y ocupó 9, megabytes de memoria en total. Es posible que el número de fotos de cada tipo fuera diferente al de esta semana? (ASTURIAS JUNIO 004 MATEMÁTICAS APLICADAS II) 1.- El jefe de seguridad de un museo estudia de seguridad de un museo estudia combinar nuevos sistemas antirrobo: cámaras de vigilancia en las salas, y alarmas en puntos estratégicos del edificio. Se quiere utilizar un mínimo de 6 cámaras para cubrir con ellas las salas más importantes, y un máximo de 15 cámaras, con las que quedarían todas las salas cubiertas. Igualmente, se necesitan al menos 6 alarmas para cubrir las más importantes entradas y salidas del edificio. Finalmente, se tiene un presupuesto máximo de euros, y cada cámara cuesta 1000 euros mientras que cada alarma cuesta 500 euros. (a) Qué combinaciones de unidades de cada sistema se pueden instalar cumpliendo los requerimientos anteriores? Plantea el problema y representa gráficamente el conjunto de soluciones. Podría instalar 7 cámaras y 59 alarmas? b) Si el objetivo es colocar el mayor número de dispositivos entre cámaras y alarmas cuántos ha de colocar de cada modalidad? En ese caso cuál será el coste total? (ASTURIAS JUNIO 004 MATEMÁTICAS APLICADAS II).- Dadas las matrices A= 1x C = 01 D= 01 1 x a) Para qué valores de x la matriz A posee inversa? b) Calcula la inversa de A para el valor x = -1. c) Qué dimensiones debe tener una matriz B para que la ecuación matricial AB = CD tenga sentido? Calcula B para el valor x = -1. (ASTURIAS JUNIO 004 MATEMÁTICAS II) 3.- Las edades (en años) de un niño, su padre y su abuelo verifican las siguientes condiciones: La edad del padre es α veces la de su hijo. El doble de la edad del abuelo más la edad del niño y más la del padre es de 18 años. El doble de la edad del niño más la del abuelo es 100. a) Establece las edades de los tres suponiendo queα =. b) Para α = 3, qué ocurre con el problema planteado? c) Siguiendo con α = 3, qué ocurre si en la segunda condición la suma es 00 en vez de 18? (ASTURIAS JUNIO 004 MATEMÁTICAS II)

5 4.- Resuelve la ecuación matricial X. A + A t = X. B, siendo A t la matriz transpuesta de A Halla la matriz X sabiendo que = 1 A = y B (CASTILLA LA MANCHA JUNIO 004 MATEMÁTICAS APLICADAS II) 5.- Las edades de tres vecinos suman 54 años y son proporcionales a, 3 y 4. Halla la edad de cada uno de ellos. (CASTILLA LA MANCHA JUNIO 004 MATEMÁTICAS APLICADAS II) 6.- Un fabricante de abanicos dispone de dos modelos A y B. El modelo A requiere, para su elaboración, 0 cm de papel, 10 cm de lámina de madera y 1 enganche metálico. El modelo B requiere: 60 cm de papel, 80 cm de lámina de madera y 1 enganche metálico. El coste de producción de cada modelo es 1,0 euros el A y 1,30 euros el B. El precio de venta es de 1,80 euros cada uno, independientemente del modelo.. Teniendo en cuenta que las existencias son de 3000 cm de papel, 700 cm de lámina de madera y 70 enganches. 1) Representa la región factible. ) Determina el número de abanicos de cada modelo que ha de hacer para obtener un beneficio máximo. 3) Calcula cuál es ese beneficio. (CASTILLA LA MANCHA JUNIO 004 MATEMÁTICAS APLICADAS II) 7.- a) Determina la matriz X para que tenga solución la ecuación C(A+X)B = I donde A, B y C son matrices con inversa de orden n e I es la matriz identidad de orden n b) Aplica el resultado anterior para A =, B =, C = (CASTILLA LA MANCHA JUNIO 004 MATEMÁTICAS II) ( m + ) x + ( m 1) y z 8.- Se considera el sistema de ecuaciones: mx y + z x + my z a) Discútelo para los distintos valores de m. b) Resuélvelo para m. (CASTILLA LA MANCHA JUNIO 004 MATEMÁTICAS II) = = = Un camión de 9 Tm debe transportar mercancías de dos tipos: A y B. La cantidad de A no puede ser inferior a 4 Tm ni superior al doble de la cantidad de B. Si el transporte gana 0.03 euros por cada Kg de A y 0.0 euros por cada kg de B, cómo debe cargar el camión para obtener la máxima ganancia? A cuánto ascendería esa ganancia? (PAÍS VASCO JUNIO 004 MATEMÁTICAS APLICADAS II)

6 30.- Hallar la matriz X que cumple AXA = BA, siendo: 1 10 A=, B= 3 3 (PAÍS VASCO JUNIO 004 MATEMÁTICAS APLICADAS II) 31.- Para cada a se considera la matriz A(a) dada por 1 a 1 Aa ( ) = 0 1 a Encontrar el rango de la matriz ( ) t A a A ( a ) en función del valor de a. Se recuerda que t A ( a ) es la matriz multiplicada por sí misma y A ( a) es la matriz traspuesta. (PAÍS VASCO JUNIO 004 MATEMÁTICAS II) 3.- Dado el sistema x+ y+ z = S = x+ y = 0 3x + y+ az = a Demostrar que es compatible para todos los valores de a. Resolver en los casos en que sea compatible indeterminado. (PAÍS VASCO JUNIO 004 MATEMÁTICAS II) 33.- Una matriz cualquiera, siempre se puede multiplicar por su transpuesta? (LA RIOJA JUNIO 004 MATEMÁTICAS APLICADAS II) 34.- Todo sistema con más ecuaciones que incógnitas es incompatible, verdadero o falso? (LA RIOJA JUNIO 004 MATEMÁTICAS APLICADAS II) 35.- Calcula el determinante de las siguientes matrices: A= B= (LA RIOJA JUNIO 004 MATEMÁTICAS APLICADAS II)

7 Se consideran las matrices A= 31 y B. = a) Calcular AB y BA. x b) Discutir si existe solución del sistema AB y 5. = z 0 En caso afirmativo resolverlo utilizando el método de Gauss Se considera la función f ( xy, ) = x y (ARAGÓN JUNIO 004 MATEMÁTICAS APLICADAS II) a) Representar el conjunto A {( x, y)/3x y 15, y x 5,x 3y 60, y 0} = + + y calcular el valor máximo de f(x, y) en A. Alguna de las desigualdades que definen al conjunto A se podrían eliminar de forma que siguiera siendo el mismo conjunto? b) Decir si la función f(x, y) alcanza valor máximo en el conjunto B= ( x, y) / 3x+ y 15, x y 5, x 0. En caso afirmativo calcular dicho valor. { } (ARAGÓN JUNIO 004 MATEMÁTICAS APLICADAS II) 38.- Cuando el año 1800 Beethoven escribe su primera Sinfonía, su edad es diez veces mayor que la del jovencito Franz Schubert. Pasa el tiempo y es Schubert quien compone su célebre Sinfonía Incompleta. Entonces la suma de las edades de ambos músicos es igual a 77 años. Cinco años después muere Beethoven y en ese momento Schubert tiene los mismos años que tenía Beethoven cuando compuso su primera Sinfonía. Determinar el año de nacimiento de cada uno de estos dos compositores. (ARAGÓN JUNIO 004 MATEMÁTICAS II) 39.- Sea el sistema x+ 3y+ z = 5 ax + z = 0 ay + z = a Se pide clasificarlo según los valores del parámetro a y resolverlo si en algún caso es compatible indeterminado. (ARAGÓN JUNIO 004 MATEMÁTICAS II) 40.- Tres familias van a una pizzería. La primera familia pide 1 pizza grande, medianas y 4 pequeñas, la segunda familia pide 1 grande y 1 pequeña, y la tercera familia, 1 mediana y dos pequeñas. a) Sea A una matriz 3x3 que expresa el número de pizzas grandes, medianas y 1 pequeñas que pide cada familia. Calcular A. b) Si la primera, la segunda y la tercera familia se han gastado en pizzas 51.50, y 1 euros respectivamente, calcular el precio de una pizza grande, el de una pizza mediana, y el de una pizza pequeña. (ISLAS BALEARES JUNIO 004 MATEMÁTICAS APLICADAS II)

8 41.- En la preparación de dos paquetes de café, C 1 y C, se usa café brasileño y café colombiano. Cada paquete del tipo C 1 contiene 300 g. de café brasileño y 00 g. De café colombiano, y cada paquete del tipo C contiene 100 g. de café brasileño y 400 g. de café colombiano. Con cada paquete del tipo C 1 se obtiene un beneficio de 0.90 euros y con cada paquete del tipo C se obtiene un beneficio de 1.0 euros. Se dispone de 900 Kg. de café brasileño y 1600 Kg. de café colombiano. a) Cuántos paquetes de cada tipo se han de preparar para obtener un beneficio máximo? b) Cuál es este beneficio máximo? (ISLAS BALEARES JUNIO 004 MATEMÁTICAS APLICADAS II) 4.- Diga para qué valores de k el siguiente sistema es compatible determinado. Cómo es el sistema para k =? (1 kx ) + (k + 1) y+ (k + ) z= k kx + ky = k + x + ( k + 1) y+ ( k 1) z = 9 k + k (ISLAS BALEARES JUNIO 004 MATEMÁTICAS II) 43.- Determinar todas las matrices a tales que A =. (De estas matrices A determina las que tienen la suma de todos sus elementos igual a cero. (ISLAS BALEARES JUNIO 004 MATEMÁTICAS II) 44.- Juan, Pedro y Luis corren a la vez en un circuito. Por cada kilómetro que recorre Juan, Pedro recorre kilómetros y Luis recorre tres cuartas partes de lo que recorre Pedro. Al finalizar, la suma de las distancias recorridas por los tres, fue de 45 kilómetros, cuántos kilómetros recorrió cada uno? (ISLAS CANARIAS JUNIO 004 MATEMÁTICAS APLICADAS II) 45.- Una tienda de café recibe 700 kilos de café natural y 800 kilos de café torrefacto. Envasa paquetes de un kilo con dos tipos de mezcla: el tipo A con medio kilo de café natural y medio kilo de café torrefacto, y el tipo B con un cuarto kilo de natural, y tres cuartos kilos de torrefacto. La ganancia por cada kilo de mezcla del tipo A es de un euro, y por cada kilo del tipo B es de dos euros. Determinar los paquetes de cada tipo de mezcla que deben prepararse para obtener la ganancia máxima. (ISLAS CANARIAS JUNIO 004 MATEMÁTICAS APLICADAS II) 46.- Discutir y resolver según los valores del parámetro m: x y+ z = m x + y = 0 mx y + z (ISLAS CANARIAS JUNIO 004 MATEMÁTICAS II)

9 47.- a) Determinar para que valor de m tiene inversa la matriz: 1 m 0 m b) Calcular la matriz inversa para ese valor de m. (ISLAS CANARIAS JUNIO 004 MATEMÁTICAS II) 48.- Sea S la región del plano de coordenadas de valor mayor o igual que cero y tal que sus puntos cumplen que: (i) La media aritmética de las coordenadas es menor o igual que 5. (ii) El doble de la abscisa más la ordenada es mayor o igual que 5. a) Represente gráficamente el conjunto S. b) Determina en qué puntos de S la función f ( xy, ) = x+ y toma el valor máximo. (CATALUÑA JUNIO 004 MATEMÁTICAS APLICADAS II) 49.- El cuadrilátero ABCD es la región solución de un sistema de inecuaciones lineales. Los lados del cuadrilátero también forman parte de la región solución. a) Halle el valor máximo y el mínimo de la función f ( xy, ) = x+ 3y en dicha región. b) En qué puntos de la región solución toma la función del apartado anterior el valor máximo y en qué puntos el valor mínimo? (CATALUÑA JUNIO 004 MATEMÁTICAS APLICADAS II) 50.- Juana y Mercedes tenían 0000 cada una para invertir. Cada una de ellas distribuye su dinero de la misma forma en tres partes P, Q y R y las ingresan en una entidad financiera. Al cabo de un año, a Juana le han dado un 4% de interés por la parte P, un 5% por la parte Q y un 4% por la parte R y a Mercedes le han dado un 5% por la parte P, un 6% por la parte Q y un 4% por la parte R. Juana ha recibido en total 850 de intereses, mientras que Mercedes ha recibido 950. De qué cantidad de euros constaba cada una de les partes P, Q y R? (CATALUÑA JUNIO 004 MATEMÁTICAS APLICADAS II)

10 51.- Consideramos los puntos del espacio A(1,1,0), B(0,1,) y C( 1,,1). Nos dicen que estos tres puntos forman parte del conjunto de soluciones de un sistema de tres ecuaciones lineales con tres incógnitas. Se pide: a) Están alineados estos puntos? b) Podemos averiguar el rango de la matriz asociada al sistema de ecuaciones? Razona adecuadamente las respuestas. (CATALUÑA JUNIO 004 MATEMÁTICAS APLICADAS II) 5.- Tres hermanos tienen edades diferentes, pero sabemos que la suma de las edades de los 3 hermanos es de 37 años, y la suma de la edad del mayor más el doble de la edad del mediano más el triple de la edad del menor es de 69 años. a) Expresa las edades de los tres hermanos en función de la edad del hermano menor. b) Es posible que el hermano menor tenga 5 años? y 1 años? Razona la respuesta. c) Calcula las edades de los tres hermanos Dado el sistema y+ z = x + y + z = 1 ( mx ) + (m ) z= m 1 donde m es un parámetro, se pide : (CATALUÑA JUNIO 004 MATEMÁTICAS APLICADAS II) a) Discutir el sistema según los valores de m. b)re solver los casos compatibles. c) En cada uno de los casos de la discusión del apartado a), hacer una interpretación geométrica del sistema. (CATALUÑA JUNIO 004 MATEMÁTICAS II) 54.- Tres trabajadores A, B y C, para terminar un determinado mes, presentan a su empresa la siguiente plantilla de producción, correspondiente a las horas de trabajo, dietas de mantenimiento y Km. de desplazamiento fijadas por cada uno de ellos. HORAS DE TRABAJO DIETAS KILÓMETROS A B C Sabiendo que la empresa paga a los tres trabajadores la misma retribución: x euros por hora trabajada, y euros por cada dieta y z euros por Km. de desplazamiento y que paga ese mes un total de 94 euros al trabajador A, 1390 euros al B y 646 euros al C, calcular x, y, z. (GALICIA JUNIO 004 MATEMÁTICAS APLICADAS II)

11 55.- Un concesionario de coches comercializa dos modelos de automóviles uno de gama alta, con el que gana 1000 euros por unidad vendida y otro de gama baja con beneficios por unidad vendida de 600 euros. Por razones de mercado, la venta anual de estos modelos está sujeta a las siguientes restricciones: El número de modelos de gama alta vendidos no será menor de 50 ni mayor de 150 coches. El número de modelos de gama baja vendidos tendrá que ser mayor o igual que el número de modelos de gama alta vendidos. El concesionario puede vender hasta un máximo de 500 automóviles de los dos modelos al año. a) Formula las restricciones y representa gráficamente la región factible. b) Cuántos automóviles de cada modelo debe vender anualmente con el fin de maximizar los beneficios? (GALICIA JUNIO 004 MATEMÁTICAS APLICADAS II) 56.- Halle tres números sabiendo que el primero menos el segundo es igual a un quinto del tercero, si al doble del tercero le restamos seis resulta la suma del segundo y el tercero, además, el triple del segundo menos el doble del tercero es igual al primero menos ocho. (GALICIA JUNIO 004 MATEMÁTICAS II) 57.- Demuestra que toda matriz cuadrada 3-dimensional se puede escribir como suma de una matriz simétrica y otra antisimétrica. (GALICIA JUNIO 004 MATEMÁTICAS II) Sabiendo que A B = y que 3A + B = a) Cuáles son las dimensiones de A y B? b) Calcula las matrices A y B. (NAVARRA JUNIO 004 MATEMÁTICAS APLICADAS II) 59.- Una fábrica de helados elabora tres tipos de helados, H1, H y H3, a partir de tres ingredientes A, B y C. Se desea saber el precio unitario de cada ingrediente sabiendo que el helado H1 se elabora con unidades de A, 1 unidad de B y 1 unidad de C y supone un coste de 0.9 euros. El helado H se elabora con 1 unidad de A, unidades de B y 1 unidad de C y supone un coste de 0.8 euros. El helado H3 se compone de 1 unidad de A, 1 unidad de B y unidades de C y supone un coste de 0.7 euros. (NAVARRA JUNIO 004 MATEMÁTICAS APLICADAS II) 60.- Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro a y resuélvelo en los casos en que sea compatible: x+ y+ z = 0 x + ay + 3z x + y + ( a) z = a (NAVARRA JUNIO 004 MATEMÁTICAS II)

12 61.- Halla la inversa de la matriz 1 1 A = Dadas las matrices (NAVARRA JUNIO 004 MATEMÁTICAS II) A=, B= y C = Calcular la matriz X que verifica la ecuación AXB = C. (VALENCIA JUNIO 004 MATEMÁTICAS APLICADAS II) 63.- Juan decide invertir una cantidad de 1000 euros en bolsa, comprando acciones de tres empresas distintas, A, B y C. Invierte en A el doble que en B y C juntas. Transcurrido un año, las acciones de la empresa A se han revalorizado un 4 %, las de B un 5% y las de C han perdido un % de su valor original. Como resultado de todo ello, Juan ha obtenido un beneficio de 43.5 euros. Determinar cuánto invirtió Juan en cada una de las empresas. (VALENCIA JUNIO 004 MATEMÁTICAS APLICADAS II) 64.- Un banco dispone de 18 millones de euros para ofrecer préstamos de riesgo alto y medio, con rendimientos del 14% y 7%, respectivamente. Sabiendo que se debe dedicar al menos 4 millones de euros a préstamos de riesgo medio y que el dinero invertido en alto y medio riesgo debe estar a lo sumo a razón de 4 a 5, determinar cuánto debe dedicarse a cada uno de los tipos de préstamos para maximizar el beneficio y calcular éste. (VALENCIA JUNIO 004 MATEMÁTICAS APLICADAS II) 65.- Un tren de mercancías puede arrastrar, como máximo, 7 vagones. En cierto viaje transporta coches y motocicletas. Para coches debe dedicar un mínimo de 1 vagones y para motocicletas no menos de la mitad de los vagones que dedica a los coches. Si los ingresos de la compañía ferroviaria son 540 euros por vagón de coches y 360 euros por vagón de motocicletas, calcular cómo se deben distribuir los vagones para que el beneficio de un transporte de coches y motocicletas sea máximo y cuánto vale dicho beneficio. (VALENCIA JUNIO 004 MATEMÁTICAS APLICADAS II) x y+ z = λ 66.- Dado el sistema de ecuaciones lineales λx+ y z = 3λ, con λ parámetro real, se x+ λ y z = 6 pide: a) Determinar razonadamente para qué valores de λ es compatible determinado, compatible indeterminado e incompatible. Hallar el conjunto de las soluciones del sistema para el caso compatible determinado. b) Hallar el conjunto de las soluciones del sistema para el caso compatible indeterminado. (VALENCIA JUNIO 004 MATEMÁTICAS II)

13 67.- Determinar el valor real de x para el que se cumple la siguiente propiedad: El determinante de la matriz B es 160, siendo x 3 1 B= x+ 1 4 x x 1 (VALENCIA JUNIO 004 MATEMÁTICAS II) 68.- Una tienda de ropa deportiva tiene en su almacén 00 balones y 300 camisetas. Para su venta se hacen dos lotes (Ay B). El lote A contiene 1 balón y 3 camisetas y el lote B está formado por balones y camisetas. La ganancia obtenida con la venta de un lote tipo A es de 1 euros y de 9 euros con cada lote tipo B. Sabiendo que el número máximo de lotes del tipo A es de 80, determinar: a) El número de lotes de cada tipo que deben prepararse para obtener una ganancia máxima. b) La ganancia máxima. Justificar las respuestas (EXTREMADURA JUNIO 004 MATEMÁTICAS APLICADAS II) 69.- Determinar la matriz X que verifica la ecuación BX-A = X siendo: Justificar la respuesta A= y B = (EXTREMADURA JUNIO 004 MATEMÁTICAS APLICADAS II) 70.- Determinar todas las matrices X tales que AX=XA, donde: 11 A = 11 (EXTREMADURA JUNIO 004 MATEMÁTICAS II) 71.- Hallar una matriz con 3 filas y 3 columnas que tengan 3 elementos nulos y tal que ninguno de sus menores de orden sea nulo. (EXTREMADURA JUNIO 004 MATEMÁTICAS II) 7.- Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 9000 euros y el modelo B un tercio más caro. La oferta está limitada: por las existencias, que son 0 coches del modelo A y 10 del B y por el deseo de vender al menos tantas unidades del modelo A como del modelo B. Por otra parte, para cubrir gastos de esta campaña, los ingresos obtenidos con ella deben ser al menos de euros. 1. Cuántos coches de cada modelo deberá vender para maximizar sus ingresos?. Cuál es el importe de la venta? (CANTABRIA JUNIO 004 MATEMÁTICAS APLICADAS II)

14 73.- Una tienda ha vendido 600 ejemplares de un videojuego por un total de 1915 euros. La última versión del videojuego ha salido a la venta por un importe de 36 euros. Además de la última versión ha vendido, con un descuento del 30% y del 40%, otras dos versiones anteriores del videojuego. El número total de ejemplares vendidos de las dos versiones anteriores ha sido la mitad del de la última versión. Cuántos ejemplares vendió de cada versión? 74.- Considera la siguiente matriz: (CANTABRIA JUNIO 004 MATEMÁTICAS APLICADAS II) a 0 a A= 0 a 0, donde a es distinto de cero. a 0 a a) Calcula A 75.- A 1 b) Calcula 0 c) Calcula razonadamente A 19 d) Calcula razonadamente Det( A ) (CANTABRIA JUNIO 004 MATEMÁTICAS II) a) El siguiente sistema es compatible determinado. Calcula su solución. b) Considera ahora el sistema: x+ y+ z 4y+ 3z = x + y x + 3y+ z x+ y+ z 4y+ az = x + y x + ay + z Es posible encontrar valores para a tales que el sistema sea incompatible? En caso afirmativo, indica cuáles. Justifica tu respuesta. Es posible encontrar valores para a tales que el sistema sea compatible indeterminado? En caso afirmativo, indica cuáles. Justifica tu respuesta. (CANTABRIA JUNIO 004 MATEMÁTICAS II)

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás Problemas de 2 o Bachillerato ciencias sociales) Isaac Musat Hervás 27 de mayo de 2007 2 Índice General 1 Problemas de Álgebra 5 1.1 Matrices, Exámenes de Ciencias Sociales............ 5 1.2 Sistemas de

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

EJERCICIOS Y PROBLEMAS PROPUESTOS (ÁLGEBRA)

EJERCICIOS Y PROBLEMAS PROPUESTOS (ÁLGEBRA) EJERCICIOS Y PROBLEMAS PROPUESTOS (ÁLGEBRA) 1.- Sea el sistema de inecuaciones x+ y 6 3x y 13 x + 3y 3 x 0 a) Dibuje el recinto cuyos puntos son las soluciones del sistema y obtenga sus vértices. b) Halle

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

VALENCIA JUNIO 2004 1 1 0 0 4 0 1 0 1 1 0 0 1ª 2ª 1ª

VALENCIA JUNIO 2004 1 1 0 0 4 0 1 0 1 1 0 0 1ª 2ª 1ª VALENCIA JUNIO 4 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES Se elegirá el ejercicio A o el ejercicio B, del que sólo se harán tres de los cuatro problemas. Los tres problemas puntúan por igual. EJERCICIO

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

Ecuaciones y sistemas lineales

Ecuaciones y sistemas lineales UNIDAD Ecuaciones y sistemas lineales D e sobra son conocidas las ecuaciones. Refrescamos y profundizamos en su estudio: ecuaciones de primer y segundo grado, así como otras polinómicas de grados superiores,

Más detalles

Soluciones a las actividades

Soluciones a las actividades Soluciones a las actividades BLOQUE I Álgebra 1. Sistemas lineales 2. Matrices 3. Determinantes 4. Sistemas lineales con parámetros 1 Sistemas lineales 1. Sistemas de ecuaciones lineales Piensa y calcula

Más detalles

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE . (Jun. 205 Opción A) Dadas las matrices A = ( a 2 + 2 2 ), B = ( ) y C = (c 0 0 b 0 c ) Calcula las matrices A B y B C. Calcula los valores de a, b y c que cumplen A B B C. Sol.- 2. (Jun. 205 Opción B)

Más detalles

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss.

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss. Pruebas de Acceso a la Universidad de Zaragoza. Matemáticas aplicadas a las Ciencias Sociales. ÁLGEBRA Junio 1994. Un aficionado a la Bolsa invirtió.000.000 de pesetas en acciones de tres empresas A, B

Más detalles

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Ejercicio 1 Escribe las siguientes matrices en forma normal de Hermite: 2 4 3 1 2 3 2 4 3 1 2 3 1. 1 2 3 2. 2 1 1 3. 1 2 3 4. 2

Más detalles

4 Ecuaciones y sistemas

4 Ecuaciones y sistemas Solucionario Ecuaciones y sistemas ACTIVIDADES INICIALES.I. Comprueba si las siguientes ecuaciones tienen como soluciones,,. a) 0 b) 5 () 8 a) 0 () () es solución. 0 8 9 6 0 6 0 0 9 5 5 6 5 es solución.

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución Repaso de todo Con solución Gauss, matrices, programación lineal, límites, continuidad, asíntotas, cálculo de derivadas. Problema 1: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados,

Más detalles

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Sistemas de dos ecuaciones con dos incógnitas. Un sistema lineal de dos ecuaciones con dos incógnitas es de la forma: a b c ' ' ' con a b c a b c números reales

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

José Jaime Mas Bonmatí E-Mail: josejaime@ieslaasuncion.org IES LA ASUNCIÓN http://www.ieslaasuncion.org

José Jaime Mas Bonmatí E-Mail: josejaime@ieslaasuncion.org IES LA ASUNCIÓN http://www.ieslaasuncion.org 1. (PAU junio 2003 A1). Dada la siguiente ecuación matricial: 3 2 x 10 x 2 1 y 6 y 0 1 z 3 obtener de forma razonada los valores de x, y, z. 2. (PAU junio 2003 A2). Una compañía fabrica y vende dos modelos

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

EXÁMEN 1 DICIEMBRE EXÁMEN 1 DICIEMBRE. 5º. Resolver e interpretar el sistema. 1. Resolver e interpretar el sistema

EXÁMEN 1 DICIEMBRE EXÁMEN 1 DICIEMBRE. 5º. Resolver e interpretar el sistema. 1. Resolver e interpretar el sistema EXÁMEN DICIEMBRE 5º. Resolver e interpretar el sistema º. Discutir el sistema según los valores de º. La suma de tres cifras de un número es 5 si se intercambia la primera por la segunda el número aumenta

Más detalles

ASTURIAS JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

ASTURIAS JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ASTURIAS JUNIO 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OBSERVACIONES IMPORTANTES: El alumno deberá contestar a cuatro bloques elegidos entre los seis que siguen. La contestación deberá ser

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Capítulo 7 SISTEMAS DE ECUACIONES LINEALES 7.1. Introducción Se denomina ecuación lineal a aquella que tiene la forma de un polinomio de primer grado, es decir, las incógnitas no están elevadas a potencias,

Más detalles

b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados.

b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados. Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Reduce a común denominador el siguiente conjunto de fracciones: + ; y Común denominador: ( + )( ) MCM + ( )( ) ( )( + )( ) ( ) (

Más detalles

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio EJERCICIOS EJERCICIO 1 En una granja de pollos se da una dieta "para engordar" con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado solo se encuentran

Más detalles

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID)

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) 1.- (Junio 99). Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragar los gastos del viaje de estudios. Cada lote de tipo A consta

Más detalles

PROGRAMACIÓN LINEAL. Página 102. Página 103

PROGRAMACIÓN LINEAL. Página 102. Página 103 4 PROGRAMACIÓN LINEAL Página 0 Problema Para representar y x, representa la recta y x =. Después, para decidir a cuál de los dos semiplanos corresponde la inecuación, toma un punto cualquiera exterior

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 Problema 1. Dadas las matrices: 4 A = 1 0 1 1 B = 2 2 0 y 2 C = 1 0 2 Calcular la matriz X que verifica la ecuación AXB =2C Problema 2. Un banco

Más detalles

Tema 1. - SISTEMAS DE ECUACIONES.

Tema 1. - SISTEMAS DE ECUACIONES. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad - Tema. - SISTEMAS DE ECUACIONES. Ejercicio. ( ) a) ( puntos) Determine dos números sabiendo que al dividir el mayor por el menor obtenemos 7

Más detalles

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean linealmente

Más detalles

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid Enunciados. Isaac Musat Hervás

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid Enunciados. Isaac Musat Hervás Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid Enunciados Isaac Musat Hervás 22 de noviembre de 2015 2 Índice general 1. Álgebra 7 1.1. Año 2000.............................

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

EJERCICIOS PROPUESTOS EN LAS P.A.U. DE LA C. V.

EJERCICIOS PROPUESTOS EN LAS P.A.U. DE LA C. V. EJERCICIOS PROPUESTOS EN LAS P.A.U. DE LA C. V. BLOQUE 1: ÁLGEBRA. JUN00 P4A: Por un helado, dos horchatas y cuatro batidos, nos cobraron en una heladería 1.700 pta un día. Otro día, por cuatro helados

Más detalles

EJERCICIOS SOBRE MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS SOBRE MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS SOBRE MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES ) Dadas las matrices 7 A, 4 5 B y 4 C, comprueba las siguientes igualdades: A (B C)(A B) C A (B+C)(A B)+(A C) (A+B) C(A C)+(B C) ) Dadas

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

IES Fco Ayala de Granada ( Modelo 5) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada ( Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 0-0 Opción A Ejercicio, Opción A, Modelo 5 de 0 ['5 puntos] Un alambre de longitud metros se divide en dos trozos Con el primero se forma

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3 Programación Lineal Ejercicio nº.- a) Representa gráficamente las soluciones de la inecuación: b) Averigua cuál es la inecuación cuas soluciones corresponden al siguiente semiplano: Ejercicio nº.- a) Representa

Más detalles

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior. PROGRAMACIÓN LINEAL 1. La región factible de un problema de programación lineal es la intersección de primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: x y x y x y + 1

Más detalles

8A-5B = -2 1 3, 2A-B =

8A-5B = -2 1 3, 2A-B = MasMatescom 1 [ANDA] [JUN-A] Sea la matriz A = 001 2 1 2 1 k 1 a) Para qué valores del parámetro k no existe la matriz inversa de la matriz A? Justifica la respuesta b) Para k = 0, resuelve la ecuación

Más detalles

Modelo1_2009_Enunciados. Opción A

Modelo1_2009_Enunciados. Opción A a) Duración: hora y 30 minutos. b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la o realizar únicamente los cuatro ejercicios de la. e) Se permitirá el uso de calculadoras que

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 3 1. Resolver los siguientes programas lineales primero gráficamente y después por el método del simplex. (a) Z = x +

Más detalles

ACTIVIDADES INICIALES. y 2 7, y 0,12. b) 0,12v 1 1 55 EJERCICIOS PROPUESTOS

ACTIVIDADES INICIALES. y 2 7, y 0,12. b) 0,12v 1 1 55 EJERCICIOS PROPUESTOS Solucionario 5 Inecuaciones ACTIVIDADES INICIALES 5.I. rdena de menor a mayor los siguientes números. a), 6 8, 4 y 7 b) 0,v,, y 0, 4 5 5 0 90 5 a) 75 ; 6 8 7 ; 4 80 y 7 70 7 6 8 4 4 00 5 00 5 00 0 00 0

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

Sistemas de dos ecuaciones lineales con dos incógnitas

Sistemas de dos ecuaciones lineales con dos incógnitas Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente

Más detalles

6Soluciones a los ejercicios y problemas PÁGINA 133

6Soluciones a los ejercicios y problemas PÁGINA 133 PÁGINA 33 Pág. P RACTICA Comprueba si x =, y = es solución de los siguientes sistemas de ecuaciones: x y = 4 3x 4y = 0 a) b) 5x + y = 0 4x + 3y = 5 x y = 4 a) ( ) = 5? 4 No es solución. 5x + y = 0 5 =

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

PARTE GENERAL. INSTRUCCIONES ESPECÍFICAS DE ESTA MATERIA Se han de Toda respuesta ha de estar debidamente justificada, valorándose positivamente las

PARTE GENERAL. INSTRUCCIONES ESPECÍFICAS DE ESTA MATERIA Se han de Toda respuesta ha de estar debidamente justificada, valorándose positivamente las PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Convocatoria de junio de 2002 (Resolución de 26 de Abril de la Consejería de Educación y Cultura del Gobierno del Principado de Asturias. BOPA de

Más detalles

DP. - AS - 5119 2007 Matemáticas ISSN: 1988-379X

DP. - AS - 5119 2007 Matemáticas ISSN: 1988-379X DP. - AS - 59 7 Matemáticas ISSN: 988-379X 5 Un almacén distribuye cierto producto que fabrican 3 marcas distintas: A, B y C. La marca A lo envasa en cajas de 5 gramos y su precio es de, la marca B lo

Más detalles

EJERCICIOS DE SISTEMAS DE ECUACIONES

EJERCICIOS DE SISTEMAS DE ECUACIONES EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: 5x y 1 3x 3y 5 b) Resuelve por reducción: x y 6 4x 3y 14 Ejercicio nº.- a) Resuelve por igualación: 5x y x y b) Resuelve

Más detalles

SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS

SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS 1 SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS 102. PAU Universidad de Oviedo Fase General OPCIÓN A junio 2010 Dos amigos, Ana y Nicolás, tienen en total 60 euros. Además se

Más detalles

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA.

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. TEMA: ECUACIONES CON NÚMEROS NATURALES INTRODUCCIÓN: Las ecuaciones sirven, básicamente, para resolver problemas ya sean matemáticos, de la vida diaria o de cualquier ámbito- y, en ese caso, se dice que

Más detalles

Sistemas de ecuaciones de primer grado con dos incógnitas

Sistemas de ecuaciones de primer grado con dos incógnitas Unidad Didáctica 4 Sistemas de ecuaciones de primer grado con dos incógnitas Objetivos 1. Encontrar y reconocer las relaciones entre los datos de un problema y expresarlas mediante el lenguaje algebraico.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD SEPTIEMBRE 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 7 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica a) En qué punto se cortan la gráfica roja la azul del dibujo de la izquierda? b) Tienen algún punto en común las rectas de la

Más detalles

Matemáticas II. Curso 2012-2013. Problemas

Matemáticas II. Curso 2012-2013. Problemas Matemáticas II. Curso 0-03. Problemas Crecimiento y decrecimiento. Concavidad y convexidad. Estudiar la monotonía de las siguientes funciones: a) f(x) = x (x + ) b) f(x) = x 4 + 3x x c) y = x + 6x 9. Estudiar

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Sistemas de ecuaciones Cuando aparecen varias incógnitas en un problema, resulta más sencillo resolverlo planteando más de una ecuación con más de una incógnita. Un sistema de ecuaciones es un conjunto

Más detalles

4 INECUACIONES Y SISTEMAS

4 INECUACIONES Y SISTEMAS 4 INECUACINES SISTEMAS EJERCICIS PRPUESTS 4. Escribe las siguientes informaciones utilizando desigualdades. a) He sacado, por lo menos, un 7 en el examen. b) Tengo tarifa plana de ADSL de ocho de la mañana

Más detalles

7 ECUACIONES. SISTEMAS DE ECUACIONES

7 ECUACIONES. SISTEMAS DE ECUACIONES EJERCICIOS PROPUESTOS 7. Escribe estos enunciados en forma de ecuación. a) La suma de dos números consecutivos es. La suma de tres números pares consecutivos es 0. c) Un número más su quinta parte es.

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes. VECTORES EN EL ESPACIO. Determina el valor de t para que los vectores de coordenadas (,, t), 0, t, t) y(, 2, t) sean linealmente dependientes. Si son linealmente dependientes, uno de ellos, se podrá expresar

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 IES Fco Ayala de Granada Sobrantes 010 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 a 1 1 1 3 Sean las matrices

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Sobrantes 00 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 00 (Modelo ) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO Sea el recinto del plano definido

Más detalles

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7 1 Resuelve las siguientes ecuaciones: a) x 1 = x + x 6 = c) x 9x + = d) x 6x 7 = = a) x = 1 y x = 1 x = 3 y x = c) x = 4 y x = 5 d) x = 1 y x = 7 Resuelve las siguientes ecuaciones de primer grado: a)

Más detalles

Problemas de Selectividad. Isaac Musat Hervás

Problemas de Selectividad. Isaac Musat Hervás Problemas de Selectividad Isaac Musat Hervás 3 de mayo de 007 Índice General 1 Problemas de Álgebra 5 1.1 Matrices en General....................... 5 1. Determinantes.......................... 6 1.3

Más detalles

1º Dibuja las regiones factibles definidas por los siguientes sistemas:

1º Dibuja las regiones factibles definidas por los siguientes sistemas: Departamento de Matemáticas 2º de bachillerato Matemáticas II aplicadas a las Ciencias Sociales Tema 3: Programación lineal. 1º Dibuja las regiones factibles definidas por los siguientes sistemas: 0,3

Más detalles

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Antonio Francisco Roldán López de Hierro * Convocatoria

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

Propuesta A. b) Si A =, calcula la matriz X que cumple A X = I, donde I es la matriz identidad de orden 2. (0.75 puntos)

Propuesta A. b) Si A =, calcula la matriz X que cumple A X = I, donde I es la matriz identidad de orden 2. (0.75 puntos) Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (2012) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B.

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

Programación lineal -1-

Programación lineal -1- Programación lineal 1. (j99) Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragarse los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecados

Más detalles

Relación de ejercicios sobrantes de Matemáticas aplicadas a las Ciencias Sociales II (Segundo de Bachillerato L.O.G.S.E.)

Relación de ejercicios sobrantes de Matemáticas aplicadas a las Ciencias Sociales II (Segundo de Bachillerato L.O.G.S.E.) Relación de ejercicios sobrantes de Matemáticas aplicadas a las Ciencias Sociales II (Segundo de Bachillerato L.O.G.S.E.) 1 Nota: Esta relación de ejercicios la ha elaborado la Ponencia de Matemáticas

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES 2º BAC

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES 2º BAC MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES 2º BAC BLOQUE I: ÁLGEBRA TEMA 1: SISTEMAS DE ECUACIONES LINEALES GUÍA 1. Qué es la solución de una ecuación lineal? Qué es la solución particular? Qué es la

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES REFLEXIONA Y RESUELVE Resolución de sistemas 2 Ò 2 mediante determinantes A A y Resuelve, aplicando x = x e y =, los siguientes sistemas de ecuaciones: A A

Más detalles

Unidad 4 Programación lineal

Unidad 4 Programación lineal Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos

Más detalles

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción.

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción. Recuerdas qué es? Coordenadas de un punto Un punto del plano viene definido por un par ordenado de números. La primera coordenada es la abscisa del punto, la segunda coordenada es la ordenada del punto.

Más detalles

Problemas de Algebra Matricial

Problemas de Algebra Matricial Matrices Problemas de lgebra Matricial Matrices. Eplicitar las siguientes matrices. a) m=, n= a i i, b) m=, n= a si i=, a si i, i, c) m=, n= a, i, d) m=, n= a i i, i. Crear matrices de tal forma que cumplan

Más detalles

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

Ejercicios y problemas

Ejercicios y problemas Ejercicios problemas Problemas 28. Un granjero desea crear una granja de pollos de dos razas,a B. Dispone de 9 000 para invertir de un espacio con una capacidad limitada para 7 000 pollos. Cada pollo de

Más detalles

4. Sistemas. de ecuaciones lineales

4. Sistemas. de ecuaciones lineales 4. Sistemas de ecuaciones lineales Matemáticas aplicadas a las Ciencias Sociales II. Codificación. Rectas y planos. Método de Gauss 4. Método de GaussJordán 5. Método de la matriz inversa 6. La regla de

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).

Más detalles

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0 PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO 2000. OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y

Más detalles

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2.

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2. FACULTAD DE INGENIERÍA - UNSJ Unidad : Sistemas de Ecuaciones Lineales UNIDAD Sistemas de ecuaciones lineales... 8 Introducción... 8.1.- Sistemas de ecuaciones lineales con dos incógnitas... 8..- Resolución

Más detalles

20 X =, despeja y calcula la matriz X. b) Dada la ecuación matricial:

20 X =, despeja y calcula la matriz X. b) Dada la ecuación matricial: MasMatescom 1 [2014] [EXT-A] a) Despeja la matriz X en la siguiente ecuación matricial: I 3-2 X + X A = B, suponiendo que todas las matrices son cuadradas del mismo orden (I es la matriz identidad) b)

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora

Más detalles

Cambio de representaciones para variedades lineales.

Cambio de representaciones para variedades lineales. Cambio de representaciones para variedades lineales 18 de marzo de 2015 ALN IS 5 Una variedad lineal en R n admite dos tipos de representaciones: por un sistema de ecuaciones implícitas por una familia

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un

Más detalles

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B.

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B. Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado 3 Ecuaciones de segundo grado Objetivos En esta quincena aprenderás a: Identificar las soluciones de una ecuación. Reconocer y obtener ecuaciones equivalentes. Resolver ecuaciones de primer grado Resolver

Más detalles

TEMA 3. PROGRAMACIÓN LINEAL

TEMA 3. PROGRAMACIÓN LINEAL Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

4. Cuáles son los dos números?

4. Cuáles son los dos números? Problemas algebraicos 1 PROBLEMAS (SISTEMAS LINEALES) 1.1 PROBLEMAS (SISTEMAS NO LINEALES) 1.- La razón de dos números es tres quintos y si aumentamos el denominador una unidad y disminuimos el numerador

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

MATRICES SELECTIVIDAD

MATRICES SELECTIVIDAD MATRICES SELECTIVIDAD 1.- Sea K un número natural y sean las matrices a) Calcular A k. b) Hallar la matriz X que verifica que A K X = B C. Solución: 1 K K 0 0 0 ; X 1 1 0 0 1 1 1 K A 0 1 0 1 1 1 A 0 1

Más detalles