FUNCIONES REALES DE VARIABLE REAL
|
|
|
- María del Rosario Plaza Segura
- hace 9 años
- Vistas:
Transcripción
1 .- Halla el dominio de las siguientes funciones: a) f(x)= x b) x 4 x 3 3x f(x)= + 8x 4 x + 3x 4 x 3 x + 4x c) f(x)= x 3 x x d) 8x 3 + 3x f(x)= 7x x 9 x e) f(x)= x x f) f(x)= x + 5 x g) f(x)= x x + h) f(x)= i) f(x)= 6x j) x f(x)= 3x 5 x x x + 3 k) f(x)= x l) x + 3 f(x)= x x + 3 (S: a) Dom(f)=,, b) Dom(f)=, 0, 3, c) Dom(f)= d), 3, Dom(f)=(, 3) 4 [, 3) 3 e) Dom(f)=(,0] 4 [, + ) f) Dom(f)=[, 5] g) Dom(f)=[, ] h) Dom(f)=[ 5,) 4 (, + ) i) Dom(f)=[0, ) 4 ( + ) 3 j) Dom(f)=( 3, ] 4 [, + ) k) Dom(f)=(, 3) 4 ( 3, ] 4 [, + ) l) Dom(f)=( 3, + ) )..- Calcular el dominio de las siguientes funciones definidas a trozos: x si x < 0 a) f(x)= 3 b) c) x 5 si x > 0 f(x)= x x f(x)=x E(x) x si x < x d) f(x)= e) f) x 3 si x m f(x)= x f(x)= x E(x) (S: a) {0, 5} b) {0} c) d) {3} e) (0, + ) f) ). I.E.S. BAJO GUADALQUIVIR Departamento de Matemáticas Avda. Doctor José Viel, Lebrija (Sevilla)
2 3.- Determinar la ecuación de la función que corresponde a una recta horizontal que pasa por el punto (-, 5). 4.- El punto (3, -), pertenece a la recta definida por la ecuación y = 3x + 5?. 5.- Determinar el valor de la pendiente para que la recta de ecuación y = mx + 4 pase por el punto (, -3). (S: m = 7 ). 6.- Representar gráficamente las siguientes funciones y determinar los puntos de intersección con los ejes coordenados: a) y = x + 4 b) y = x + 3 c) y = d) 3 x + 4 y = 6x (S: a) (-,0), (0,4) ; b) (3,0), (0,3) ; c) (,0), (0,4) ; d) (0,0) ). 7.- Hallar la pendiente,la inclinación y la ecuación de la recta que pasa por los puntos (, 3 ) y (4, 3 + ). (S: m = ; = 45 o ; y = x + 3 ). 8.- Hallar la ecuación de la recta que forma un ángulo de 30º con la parte positiva del eje OX 3 y pasa por el punto (3,). (S: y = ). 3 x Hallar la ecuación de la recta que pasa por el punto (,0) y es paralela a la recta y = x + (S: ). y = x 0.-Representar gráficamente las siguientes parábolas: a) y = x x + b) y = c) x x + 5 y = x x 4 (S: a) V(,0) ; (0,) b) V(,3) ; (0,5) c) V(, 9 ) ; (4,0) ; (-,0) ; (0,-4) )..-Sabiendo que la parábola y = ax 4x + 5 pasa por el punto (,4), obtener el valor de a. (S: a = 3 )..-Los puntos de intersección de una parábola con los ejes coordenados son (0,5), (,0) y (7,0). Determinar la ecuación de la función. (S: f(x)= 5 7 x 40 7 x + 5 ). I.E.S. BAJO GUADALQUIVIR Departamento de Matemáticas Avda. Doctor José Viel, Lebrija (Sevilla)
3 3.- Expresar la función cuadrática cuya representación gráfica pasa por los puntos (,7), (5,-7) y (-,5). (S: f(x)= x + 6x + 3 ). 4.- Una parábola tiene su vértice en el punto (3,-5) y pasa por el origen de coordenadas. Obtener la función cuadrática a que corresponde. (S: f(x)= 5 9 x 0 3 x ). 5.- Determinar la función cuadrática cuya representación gráfica es una parábola tangente al eje de abscisas en el punto (,0) y que pasa por el punto (-3,5). (S: f(x)=x 4x + 4 ). 6.- Representa gráficamente las siguientes funciones definidas a trozos, indicando sus dominios y recorridos: f(x)= 3x + si x < si [ x [ 3 x + 4 si 3 < x < 5 si x m 5 g(x)= (x + ) + 3 si x [ 6 si < x < 3 x 6 si x m 3 (S: Dom(f) = Rec(f) = Dom(g) = Rec(g) = ). 7.- Responder a las siguientes cuestiones: a) Si f es una función polinómica, cuál es el dominio de?. f b) Cuál es el dominio de f+g, siendo f una función cualquiera y g una función polinómica?. c) Sean p yp dos funciones polinómicas. Cuál es el dominio de p + p?. p(x) d) Si p(x) es una función polinómica, cuál es el dominio de?. 8.- Hallar una función tal que su dominio sea {} y que valga 4 para x =. 9.- Siendo f(x)= x y g(x)=, hallar f+g, Dom(f+g), fg y Dom(fg). x I.E.S. BAJO GUADALQUIVIR Departamento de Matemáticas Avda. Doctor José Viel, Lebrija (Sevilla)
4 0.- Dadas las funciones f(x)= x y g(x)=, halla sus dominios y las funciones x 3x x + f+g y f-g..- Para los siguientes pares de funciones definidas a trozos, hallar (f+g)(x). a) f(x)= x + si x [ x + 3 si x > g(x)= xsix< 0 x si x m 0 b) f(x)= x + si x m x six[ 0 g(x)= x 6 si x > x + si x [.- Calcula la ecuación de las funciones cuyas gráficas son las siguientes: 3.- Hallar f(x) si f(x + )=x 3x +. (S: f(x)=x 5x + 6 ). 4.- Se dan las funciones f(x)= y. Hallar el y la función x g(x)=x 4 6 Dom(fg) producto. 5.- Multiplica las funciones f(x)= si x > 0 y g(x)= x + si x > 0 y 0 si x < si x [ 0 represéntalas gráficamente. I.E.S. BAJO GUADALQUIVIR Departamento de Matemáticas Avda. Doctor José Viel, Lebrija (Sevilla)
5 6.- Dadas las funciones definidas a trozos: f(x)= x si x [ 0 x si x > 0 g(x)= x si x < 0 x 3 si x m 0 encuentra la expresión de (fg)(x) y su dominio. xsix< 0 (S: (fg)(x)= 0 si x = 0 Dom(fg)= ). x si x > Dadas las siguientes funciones definidas a trozos: f(x)= x si x [ 3 x si x > 3 g(x)= x + si x < 0 x si x m 0 calcula (f + g)(x) y su dominio. x si x c (, ) 4 (, 0) x + 3 (S: (f + g)(x)= ) x si x c [0, ) 4 (, 3] Dom(f + g)= {, } x 3 x x + si x c (3, + ) x 8.- Son iguales las funciones f(x)=x + y g(x)= x 4?. Por qué?. x 9.- Expresa las siguientes funciones valor absoluto como definidas a trozos, y represéntalas gráficamente: a) f(x)= x + 3 b) f(x)= x 3x + x + 3 si x m 3 (S: a) f(x)= b) ) x 3 si x < 3 f(x)= x 3x + si x c (, ] 4 [, + ) x + 3x si x c (, ) I.E.S. BAJO GUADALQUIVIR Departamento de Matemáticas Avda. Doctor José Viel, Lebrija (Sevilla)
6 30.- Representar gráficamente la función f(x)= x + $ x. 3.- Hallar el dominio de inversión y la inversa respecto del producto para las funciones f(x)= x + x 3 3x 0x y g(x)= x 3.- Dividir las funciones f(x)= x y g(x)= x Si f(x)=x + y g(x)= x, calcular f. 3x 6 g ( x) (S: ( g f )(x)=x x ; Dom( g f )=(,] {0} ). (S: f g ( x) = 3x 3; Dom( g f )= {} ) Averiguar si las funciones f(x)=3x y g(x)=4x conmutan con respecto a la composición de funciones Dadas las funciones f(x)= x y g(x)=, hallar. x + x f ) g + f y f) f + g 36.- Comprobar que si f(x)= x entonces f ) f ) f = I, siendo I la función identidad Representar gráficamente la función f ) g, siendo f(x)= x y g(x)=e(x) Se consideran las funciones Se pide: f(x)= ax + bsixm 0 si x < 0 y g(x)= x a) Calcular a y b sabiendo que f(0)= y f()=. b) Representar gráficamente la función f. c) Hallar sus dominios. d) Se puede calcular (g ) f)( 3)?. Cuándo se podrá calcular (g ) f)(x)?. e) Dar una función, h, tal que Dom(h)=,, 3. f) Se puede calcular (g + h)()?. Y (g + h)( )?. I.E.S. BAJO GUADALQUIVIR Departamento de Matemáticas Avda. Doctor José Viel, Lebrija (Sevilla)
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano
MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad
TEMA 8 CARACTERÍSTICAS GLOBALES Y LOCALES DE LAS FUNCIONES
A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE Y FUNCIÓN INVERSA. 1. Calcula el dominio de las siguientes funciones: a) f(x) = 2 b) g(x) = x + 3 c) h(x) = 1 x 6 a) f(x) =
INTEGRAL DEFINIDA. APLICACIONES
COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 7 Funciones reales de una variable real Elaborado por la Profesora Doctora
Documento 2 : Nuevas funciones a partir de otras
Unidad 4: Funciones reales de una variable real Temas: Algebra de funciones. Composición de funciones. Funciones inyectivas, sobreyectivas, biyectivas. Función inversa. Capacidades. Manejar conceptos y
Apuntes de Funciones
Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación
Bloque 2. Geometría. 3. La recta. 1. Definición de recta
Bloque 2. Geometría 3. La recta 1. Definición de recta Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares, cuyo corte es el punto 0 de
SEGUNDO TURNO TEMA 1
TEMA 1 Ejercicio 1 ( puntos) Dada la función polinómica f(x) = x + 2x 2 x 2, hallar los intervalos de positividad y negatividad de f sabiendo que el gráfico de dicha función corta al eje x en el punto
Matemática-ILSE. Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA. Guía de verano
Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA Guía de verano 1 1) Con la información dada, hallar la fórmula en cada caso: a) El vértice de la parábola es V = ( ;1 ) y pasa
IES RAFAEL PUGA RAMÓN DERIVADA Y APLICACIONES Calcula el valor de a para que la gráfica de la función y= x a cumpla que la recta
BOLETÍN DE DERIVADAS Y RECTA TANGENTE 1. Aplicando la definición, calcula la derivada de f(x)=2x 2 -x en x=1 2. Pon tres ejemplos de funciones cuya derivada sea x 2. Cuántas existen?. Existe alguna función
La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.
Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA 1) La recta r 1, tiene ordenada al origen 4 y forma con los ejes coordenados en el segundo cuadrante, un triángulo de área 16. Determinar la distancia del punto
5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES
Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad
TEMA 5 FUNCIONES Y PROGRESIONES
TEMA 5 FUNCIONES Y PROGRESIONES PROGRESIONES 2 (Filloy, 2005) 3 Sucesiones Definición: una sucesión es un conjunto ordenado de números reales: a 1, a 2, a 3, Otras definiciones relacionadas: Cada elemento
1. Halla la derivada de la función f(x)= en el punto x=3, aplicando la definición de derivada. Solc:
ANÁLISIS 1. Halla la derivada de la función f(x)= en el punto x=3, aplicando la definición de derivada. Solc: 2. Comprueba que la siguiente función es continua y derivable y halla f (0),f (3) y f (1).
Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010
Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010 [2 5 puntos] Sea la función f : R R dada por f(x) = Calcula las constantes a, b y c sabiendo que f es derivable y que la recta tangente a la gráfica
Ejercicios de Funciones: derivadas y derivabilidad
Matemáticas 2ºBach CNyT. Ejercicios Funciones: Derivadas, derivabilidad. Pág 1/15 Ejercicios de Funciones: derivadas y derivabilidad 1. Calcular las derivadas en los puntos que se indica: 1., en x = 5.
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se
EJERCICIOS PROPUESTOS DE MATEMÁTICA I
UNIVERSIDAD INCA GARCILASO DE LA VEGA INGENIERIA DE SISTEMAS, COMPUTO Y TELECOMUNICACIONES LIC. MIGUEL CANO EJERCICIOS PROPUESTOS DE MATEMÁTICA I TEMA: FUNCIONES ESPECIALES 1) FUNCIÓN LINEAL 01.- Si f(x)
CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES
CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado
INSTITUCIÓN EDUCATIVA SANTA TERESA DE JESÚS IBAGUÉ - TOLIMA GUIA No.4 ALGEBRA DOCENTE: EDGARD RODRIGUEZ USECHE GRADO : NOVENO
TEMA: ECUACIÓN DE LA LÍNEA RECTA Las coordenadas cartesianas o coordenadas rectangulares son un ejemplo de coordenadas ortogonales usadas en espacios euclídeos caracterizadas por la existencia de dos ejes
FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje
Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad
TEMA 4 Y 5 FUNCIONES. (El valor de la y es función de lo que valga x, depende de x).
TEMA 4 Y 5 FUNCIONES. FUNCIÓN Una función relaciona dos variables: x (variable independiente) e y (variable dependiente). (El valor de la y es función de lo que valga x, depende de x). y = 3x 5 Una función
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 213 Capítulo 11 Año 21 11.1. Modelo 21 - Opción A Problema 11.1.1 3 puntos Dada la función: fx
Funciones. 63 Ejercicios para practicar con soluciones
Funciones. 63 Ejercicios para practicar con soluciones Dadas las siguientes funciones gráficas, asocia cada función con su gráfica: a) f() = b) g() = - c) h() = 3 a) La 3; b) La ; c) La De las siguientes
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Ejercicio 2.- [2 5 puntos] Sea f : ( 2, + ) R la función
Módulo 2 - Diapositiva 6 Funciones y sus gráficas. Universidad de Antioquia
Módulo 2 - Diapositiva 6 Funciones y sus gráficas Facultad de Ciencias Exactas y Naturales Temas Funciones Funciones Funciones Lineales Función Funciones Dominio y rango de una función Gráfica de funciones
Derivadas e integrales
Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M [email protected], [email protected], [email protected] Índice 1. Definiciones 3 2. Herramientas 5 2.1. Reglas de derivación............................
CONCEPTOS PREVIOS. 1.- Analizar cuales de los gráficos corresponden a relaciones funcionales, determinando Dom yrec.
CONCEPTOS PREVIOS. Una función f: A B, es un subconjunto de A B, en el cual cada elemento x A tiene a lo mas una imagen y B. Como todo subconjunto de A B es una relación, los términos de dominio de definición
Ficha 1. Formas de expresar una función
Ficha 1. Formas de expresar una función 1. En unas instalaciones deportivas cobran 5 euros por la entrada, que da derecho a la utilización de todas las dependencias salvo las pistas de tenis, por las que
TEMA 8 Y 9 FUNCIONES. (El valor de la y es función de lo que valga x, depende de x).
TEMA 8 Y 9 FUNCIONES. FUNCIÓN Una función relaciona dos variables: x (variable independiente) e y (variable dependiente). (El valor de la y es función de lo que valga x, depende de x). y = 3x 5 Una función
Derivadas e integrales
Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M [email protected], [email protected], [email protected] ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1. [2 5 puntos] Calcula lim x 0 siendo Ln(1 + x) el logaritmo neperiano de 1 + x. Ln(1 + x) sen x, x sen x Ejercicio 2. Sea f : R R la función definida por f(x) = e x/3. (a) [1 punto]
TEMA 7. FUNCIONES ELEMENTALES
TEMA 7. FUNCIONES ELEMENTALES 8.1. Funciones cuya gráfica es una recta. - Función constante. - Función de proporcionalidad. - Función lineal. - Pendiente. 8.2. Función cuadrática. - Representación gráfica
TERCER TURNO TEMA 1. Ejercicio 1 (3 puntos) Sea f(x) la función lineal que pasa por los puntos A = (1; 3) y B = (2; 5). Sea
PRIMER PARCIAL MATEMÁTICA 1Cuat. 017 TEMA 1 Ejercicio 1 (3 puntos) Sea f(x) la función lineal que pasa por los puntos A = (1; 3) y B = (; 5). Sea g(x) = 4 x + 7 1 Hallar el conjunto de ceros de la función
[email protected]!!91.501.36.88!!28007!madrid!
CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,
Ecuación Vectorial de la Recta
Ecuación Vectorial de la Recta Definimos una recta r como el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. Si P(x 1, y 1 ) es un punto de la recta r, el vector tiene
A partir de la gráfica de las siguientes funciones, indica cuál es su dominio de definición y su recorrido:
Modelo de eamen Ejercicio nº. Halla el dominio de definición de las siguientes funciones: a) y = ( 3) b) y = S Fecha: b) > 0 > Dominio = (, + ) Ejercicio nº. A partir de la gráfica de las siguientes funciones,
Ejercicios de funciones
Matemáticas 4º ESO. Ejercicios Tema 0. Funciones. Pág /6. Sean las funciones: Ejercicios de funciones Calcular:. Dadas las funciones: Calcular: Probar que: Probar que: 3. Dadas las funciones: Calcular:
TEMA 0: REPASO DE FUNCIONES
TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
Examen de Matemáticas II (Junio 2014) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas II (Junio 04) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Dadas las matrices α β γ x 0 A = γ 0 α ; X = y ; B = 0 O = 0 β γ z 0 se pide: (,5 puntos). Calcula α, β
APLICACIÓN DE LAS DERIVADAS 2º Bachillerato
Recta Tangente a una curva en uno de sus Puntos Si f(x) es derivable en x 0, la ecuación de la recta tangente a la gráfica de y=f(x) en x 0 es: Tipos: y y 0 = m (x-x 0 ) y f(x 0 ) = f (x 0 ) (x-x 0 ) 1)
COLEGIO INTERNACIONAL TORREQUEBRAD.
CUADERNO DE VERANO MATEMÁTICAS 1º Bachillerato ALUMNO: Problema 1: Dado el sistema de ecuaciones con un parámetro real λ e incógnitas x, y, z se pide: a) Calcular para qué valores de λ el sistema sólo
Ejemplo: Por ejemplo, para la función f cuya gráfica es Y
º ESO (LOMCE) MATEMÁTICAS ACADÉMICAS TEMAS 0,,.- FUNCIONES-(ª PARTE).- CONCEPTO DE FUNCIÓN. CARACTERÍSTICAS Definición de función Una función real de variable real es una forma de hacerle corresponder
EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:.
EJERCICIS RESUELTS TEMA 11 1. FUNCINES. FUNCIÓN LINEAL CUADRÁTICA Apellidos y Nombre:.Curso: º E.S.. Grupo:. 1 El coste del recibo del teléfono depende de los minutos hablados y una cuota fija de 1 euros.
dx 9 (x 1) . (1 punto) . (1 punto) . Se pide:
Septiembre 008: Calcular d 9 ( ). ( Septiembre 008: Calcular Ln Junio 008: Sea f() = d (. ( ) con 0,. Se pide: a) Calcular los intervcalos de crecimiento y decrecimiento, los etremos relativos y las asíntotas.
de ecuaciones x=0 y x=3. Haz una representación gráfica aproximada. (Junio 2008)
1.- Calcula el área del recinto limitado por la parábola de ecuación y = 4 x 2 y la recta de ecuación y = x+2. Haz una representación gráfica aproximada. http://www.youtube.com/watch?v=pmdehdqdbpy 2.-
FUNCIÓN. La Respuesta correcta es D
FUNCIONES FUNCIÓN La Respuesta correcta es D FUNCIÓN Función Continua: Es aquella en la que su gráfica se puede recorrer en forma ininterrumpida en toda su extensión. FUNCIÓN Función Discontinua: Es aquella
CLASE 2. Sergio Stive Solano Sabié. Agosto de 2011. Catálogo de funciones básicas Transformaciones de funciones Combinaciones de funciones
CLASE 2 Sergio Stive Solano Sabié Agosto de 2011 CLASE 2 Sergio Stive Solano Sabié Agosto de 2011 Función lineal Definición 1.1 Decimos que y es una función lineal de x, si la gráfica de y es una recta.
A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. ( (
A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. 1. Calcula el dominio de las siguientes funciones: ( ( ( ( ( ( 2. Calcula la imagen de las siguientes
2. [2014] [JUN] Sean x e y dos números reales tal que x+y = 10. Cuál es el máximo valor posible para el producto (x+1)(y-1)?
[04] [ET] Supongamos que queremos construir un gallinero rectangular (como el que se muestra en la figura de la derecha) apoyado sobre dos muros formando un ángulo recto de longitudes y metros, respectivamente
Dominio, Recorrido y Álgebra de Funciones Semana del Lunes 05 al Jueves 08 de Mayo
UNIVERSIDAD DE CHILE Facultad de Ciencias Departamento de Matemáticas MC-140 Matemáticas I Ayudantías 07 A y 07 B Dominio, Recorrido y Álgebra de Funciones Semana del Lunes 05 al Jueves 08 de Mayo 1. Para
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,
Funcion Lineal. 1) Determine la pendiente y el punto de intersección con el eje y, en las siguientes funciones lineales.
Funcion Lineal 1 1) Determine la pendiente y el punto de intersección con el eje y, en las siguientes funciones lineales. 1) g(x) = x-7 x ) 4y = 10-x 4) x-y = 5 ) y m = m = m = m = b = b = b = b = ) Resuelva
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en
PROBLEMAS DE INTEGRALES INDEFINIDAS
PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su
Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DEL TEMA 10
Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DEL TEMA 0. De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y
MATEMÁTICAS II SEPTIEMBRE 2016 OPCIÓN A
Ejercicio. (Calificación máxima: puntos) Dada la función f(x) = (6 x)e x, se pide: MATEMÁTICAS II SEPTIEMBRE 6 OPCIÓN A a) ( punto) Determinar su dominio, asíntotas y cortes con los ejes. b) (punto) Calcular
Tema 6 La recta Índice
Tema 6 La recta Índice 1. Ecuación vectorial de la recta... 2 2. Ecuaciones paramétricas de la recta... 2 3. Ecuación continua de la recta... 2 4. Ecuación general de la recta... 3 5. Ecuación en forma
TEMA 10.- FUNCIONES ELEMENTALES
º Bachillerato Matemáticas I Dpto de Matemáticas- I.E.S. Montes Orientales (Iznalloz)-Curso 20/202 TEMA 0.- FUNCIONES ELEMENTALES.- CONCEPTO DE FUNCIÓN. CARACTERÍSTICAS (Pág. 28) Deinición de unción. Decimos
Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones
Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a
MODELOS DE EXÁMENES. Pruebas de acceso a la universidad Matemáticas II. Universidad Complutense (Madrid)
COLEGIO INTERNACIONAL SEK EL CASTILLO Departamento de Ciencias MODELOS DE EXÁMENES Pruebas de acceso a la universidad Matemáticas II Universidad Complutense (Madrid) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al
DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):
1 FUNCIONES ELEMENTALES CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): Lo denotamos por : f : Dom -----> R x
Cálculo Integral INTEGRAL INDEFINIDA. INTEGRAL DEFINIDA. APLICACIONES
INTEGRAL INDEFINIDA. INTEGRAL DEFINIDA. APLICACIONES. Halla una primitiva de: e) f) g) h) i) j) + 7 +. Halla el área comprendida entre la función y = ( ) ( ), el eje X y las rectas = 0, =. Sol: 98 u..
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en
TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 1º E.S.O. TEMA 08: Funciones. TEMA 08: FUNCIONES. 1. Correspondencia.
Página 127. Página 128
Soluciones de las actividades Página 15 1. La clasificación de las funciones es: a) Función algebraica racional polinómica de grado. b) Función algebraica racional polinómica de grado. c) Función trascendente.
Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x
Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que
FUNCIONES REALES DE VARIABLE REAL
FUNCIONES REALES DE VARIABLE REAL Función: Es toda aplicación definida entre conjuntos numéricos. Cuando el conjunto inicial y final son los números Reales, se llaman funciones reales de variable real.
Departamento de matemáticas
Análisis con solución (Límites, derivadas y aplicaciones) Problema 1: Determina los valores de a y b para los cuales Problema 2: Calcula Problema 3: Una persona camina a la velocidad constante de 3 m/s
Examen de Matemáticas II (Modelo 2018) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas II (Modelo 208) Selectividad-Opción A Tiempo: 90 minutos 0 Problema (2,5 puntos) Dadas las matrices A = 0 0, y I = 0 0 0 0 0 se pide: 0 0 a) (,5 puntos) Obtener los valores de m para
Ejercicio 7: Hallar las coordenadas del punto B sabiendo que M es el punto medio del segmento [AB], A(7,8), M(3,-2).
Geometría Analítica Investiga 1- Qué significa geometría analítica? Cómo surge? Quién es considerado el padre de la geometría analítica? Por qué? Qué otros matemáticos puedes encontrar en su historia?
4) Se dispusieron los números del 1 al 36 en el siguiente cuadrado:
TRABAJO PRÁCTICO Módulo : Funciones Función. Dominio. Codominio. Imagen. Representación gráfica de funciones. Composición de funciones. Funciones inyectivas, sobreyectivas y biyectivas. Funciones especiales
Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u )
1.3. La recta en el plano afín La recta está formada por puntos del plano en una dirección dada. La ecuación de la recta es la condición necesaria y suficiente que deben cumplir las coordenadas de un punto
f (x) = 3(1 + x2 cos x)(x sin x 1) 2 x ( x + 7x) 2/3 cos 4 (tan x) ) 1/5 f (x) = 3x4 + 6x 3 9x 2 + 3x + 3 x(x 3 + 3x 1)
1. Derivar las siguientes funciones: ( ) 3 1 a. f(x) = x sin x f (x) = 3(1 + x cos x)(x sin x 1) x 4 b. f(x) = ( ln[(x cos x) 4 ] ) 7 7 (ln(x cos x)) 6 sec x (cos x x sin x) x 1 + tan x c. f(x) = f (x)
Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2015) Selectividad-Opción A Tiempo: 90 minutos. mx+ 2y+ mz = 4 mx y+ 2z = m 3x+ 5z = 6
Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos)dado el sistema mx+ 2y+ mz = 4 mx y+ 2z = m 3x+ 5z = 6 1. (2 puntos). Discutir
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
Bloque 3. Análisis. 2. Tipos de funciones
Bloque 3. Análisis 2. Tipos de funciones 1. Función lineal Es una función polinómica de primer grado y tiene una ecuación del tipo: y = mx. Su gráfica es una línea recta que pasa por el origen de coordenadas,
x = 1 y que la recta tangente a la gráfica de la función en el punto de abcisa x=0 tiene la a)estudia y calcula las asístontas de la gráfica de f.
Jueves 9 de noviembre de 17 Ejercicio 1. Problema de optimización. Se considera una ventana rectangular en la que el lado de arriba se ha sustituido por un triángulo equilátero. Calcula la longitud de
1. Completar la siguiente tabla escribiendo o bien el símbolo o la expresión matemática o su significado según proceda.
1. Completar la siguiente tabla escribiendo o bien el símbolo o la expresión matemática o su significado según proceda. Símbolo o expresión = A B x A A B Significado para todo A y B son conjuntos disjuntos
(1-mx)(2x+3) x 2 +4 = 6. x > -1
. [04] [EXT-A] Sea la función f(x) = e x +ax+b a) Calcular a y b para que f(x) tenga un extremo en el punto (,). b) Calcular los extremos de la función f(x) cuando a = 0 y b = 0.. [04] [EXT-B] En la figura
INTEGRALES DEFINIDAS. CÁLCULO DE ÁREAS
INTEGRALES DEFINIDAS. CÁLCULO DE ÁREAS. Dada la función f() = -. Calcular f () d. a) Representar y = ( ) 3. b b) Calcular la integral indefinida ( 3 ) d a c) Justificar el resultado de b en función de
DEPARTAMENTO DE MATEMÁTICAS
DOMINIO Y PUNTOS DE CORTE 1. Se considera la función que tiene la siguiente gráfica: a) Cuál es su dominio de definición? Cuáles son los puntos de corte con los ejes de coordenadas? c) Presenta algún tipo
Ejercicios de Funciones: Monotonía, curvatura, parámetros.
Matemáticas 2ºBach CNyT. Ejercicios Funciones: Monotonía, curvatura, parámetros. Pág 1/8 Ejercicios de Funciones: Monotonía, curvatura, parámetros. 1. Calcular los intervalos de crecimiento y decrecimiento
Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro)
(tema 7 del libro) 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto
Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul
Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Unidad I (Capítulos 3 y 5 del texto) Funciones y Gráficas 1.1 Definición y notación de función. 1.2 Dominio y rango
Matemáticas II. * Análisis III: Integrales * o) x x. p) 3. q) 5. r) 1. s) e 2x 3 dx. t) 5 dx. u) x2 5 x 4. v) x3 3x 2 x 1. z) 3
I.E.S. Juan Carlos I Ciempozuelos (Madrid) Matemáticas II * Análisis III: Integrales *. Integrales inmediatas (o casi inmediatas): a) 4 2 5 7 b) 3 3 5 2 +3 +4 c) 2 7 d) 5 e) sen f) sen +7cos g) tg 2 h)
-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.
EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta
Ejercicios de integración
1. Calcular las siguientes integrales: 1) ) 8) + 1 d ) + 6 6 + 1 d 5) + + 1 + 1 7) d 8) + Ejercicios de integración d ) + + 1 d 6) ( + 1) + + d + d 9) ( + + 1) ln d + 1 + + 1) d 11) d 1) + + 1 d + 1 1)
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio
