POSICIONES RELATIVAS
|
|
|
- Germán Martínez Muñoz
- hace 9 años
- Vistas:
Transcripción
1 POSIIONES RELTIVS i. Picine Relti e pln ii. Picine elti e te pln iii. Picine elti e ect i. Picine elti e n ect n pln Picine elti e pln. Sen l pln picine elti peen e - Secnte. - Plel. - inciente Secnte. Tienen infinit pnt cmne fmn n ect. t cn qe e cmpl n eigl. Plel. N tienen pnt cmne. inciente. T pnt n cmne.
2 Picine elti e te pln. L picine elti e te pln peen e - ncente en n pnt. - Fmn n pim tingl e it plel. - plel n ecnte. - Fmn n h e pln e it cmún. - Plel. - inciente. Sen l pln pición elti e eti meinte l ng e l mtice qe efinen el item Nt Pet qe n núme p implific l eplicción n e tiene en cent el cmi e ign l p e n miem t. * ncente en n pnt. g g *. El pnt e cte e l te pln e l lción el item. Fmn n pim tingl e it plel. g g * emá n eite plelim ente e l te pln. plel n ecnte. g g * emá eite plelim ente e l te pln.
3 H e pln e it cmún. g g *. L ección e l ect e etemin elien el item cmptile inetemin qe fmn clqie e l te eccine. Pln plel. g g * Pln cinciente el mim pln. g g *.
4 Picine elti e ect en el epci. ect en el epci peen cp ct picine itint - Se cn pe n e ctn. - Secnte. - Plel. - inciente. Se pee eti e fm itint. ª. nci el ect e iección n pnt e l ect. ppi cn l ect etén epe en fm ectil eccine pmétic en cntin. Sen L pición elti e fnción el ng e l mti fm p l ecte e iección el ect fm ente l pnt. Se cn pe n e ctn. N n cplni n tienen ningún pnt cmún. g Secnte. Sn cplni tienen n pnt cmún. g k El pnt e cte e clcl meinte n item fm p l eccine pmétic e m ect. Si P( ) e el pnt cmún cen een e cmpli l eccine e e l ect. igln enn e tiene n item cmptile etemin e te eccine cn incógnit. P elel e eleccinn eccine linelmente inepeniente. nci ó e tite en l pmétic cepniente e clcln l cen e P. Plel. Sn cplni n tienen pnt cmne. g k inciente. T l pnt n cmne. Sn l mim ect. g
5 ª. Epe l et cm inteección ente pln ò cm eccine eci. L ición el item qe fmn l eccine e l ct pln e elcin cn l pición elti e l ect meinte l ng e l mtice e ceficiente mpli. g * * g Se cn pe n e ctn. N n cplni n tienen ningún pnt cmún. g g * Secnte. Sn cplni tienen n pnt cmún. g g * El pnt e cte e tiene cm lción el item. P ele el item e ecgen te eccine linelmente inepeniente e eele p me clqie t mét. Plel. Sn cplni n tienen pnt cmne. g g * inciente. T l pnt n cmne. Sn l mim ect. g g *
6 Picine elti e n ect n pln. Un ect n pln peen cp te picine elti - Secnte. - Pelel - L ect et cnteni en el pln S pición elti pee etie e fm itint. ª P ecte. ppi cn l ect etá epe en fm ectil pmétic cntin. Sen n ; Secnte. L ect ct l pln tienen n pnt cmún. El ect nml el pln ( n ) n e pepenicl l ect e iección e l ect ( ) p tnt pct ecl e itint e ce. n El pnt e cte (P ) e hll fmn n item ente l pmétic e l ect l genel el pln tenien en cent qe en el pnt e cte ( ) e cmplen m eccine p tnt titen l pmétic e l ect en el pln e pee epej el l el pámet en el pnt e cte ( ). nci el l el pámet en l eccine pmétic e l ect e tienen l cen el pnt e cte. P Plel. N tienen pnt cmne. El ect e iección e l ect ( ) e pepenicl l ect nml el pln ( n ) pe el pnt e l ect n cmple l ección el pln. n
7 L ect et cnteni en el pln. T l pnt e l ect petenecen l pln. El ect e iección e l ect ( ) e pepenicl l ect nml el pln ( n ) el pnt e l ect cmple l ección el pln. n ª P item. ppi cn l ect etá epe cm inteección e pln en eccine eci. Sen n ect n pln. L ect el pln fmn n item e te eccine cn te incógnit. L ng e l mtice e ceficiente mpli e elcinn cn l pición elti. Nt Pet qe n núme p implific l eplicción n e tiene en cent el cmi e ign l p e n miem t. * Secnte. L ect ct l pln tienen n pnt cmún. g g * El pnt e cte e hll elien el item qe e cmptile etemin. Mét e me. Plel. N tienen pnt cmne. g g * L ect et cnteni en el pln. T l pnt e l ect petenecen l pln. g g *
MÉTRICA. = r. r r. Se puede calcular como distancia entre dos puntos.
MÉTRI. Ditci. i. Ditci ete pt. L itci ete pt e el mól el egmet qe etemi l pt. Se ( ) ( ) pt el epci l itci ete ell eá p l epeió Ppiee i. ii. Sí l ( ) iii. ( ) ( ) i. ( ) ( ) ( ) ( ) ( ) ( ) ( ) etce ii.
TEMAS DE MATEMATICAS (Oposiciones de Secundaria)
TEMAS DE MATEMATICAS (Opsicines de Secndi) TEMA 5 SISTEMAS DE REFERENCIA EN EL PLANO Y EN EL ESPACIO. ECUACIONES DE LA RECTA Y DEL PLANO. RELACIONES AFINES.. Espci Afín... Pln Afín... Espci Afín... Sespcis
EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS
EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto
VECTORES EN EL ESPACIO
Tem Vectes Ejecicis eselts Mtemátics II º Bchillet VECTORES EN EL ESPACIO DEPENDENCIA E INDEPENDENCIA LINEAL COMBINACIÓN LINEAL BASE EJERCICIO : Dds ls vectes ( ) b( ) c ( ) d ( ): ) Fmn n bse de R? Expes
PLANOS. Ecuación vectorial de un plano. Expresando los vectores en forma cartesiana:
PLNOS L eión el Pln Se efine n ln m el lg geméti e ls nts el esi et e siión ee eesse m minión linel el et e siión e n nt el ln s etes linelmente ineenientes lels l ln tnt l mínim eteminión linel e n ln
UNIDAD13.PRODUCTO ESCALAR, VECTORIAL Y MIXTO. APLICACIONES
6 Unidd. Podcto ecl ectoil mito. Apliccione en el epcio. UNIDAD.PRODUCTO ESCALAR VECTORIAL Y MIXTO. APLICACIONES. Podcto ecl de do ectoe libe.. Definición.. Intepetción geométic.. Epeión nlític. Podcto
+ + = = π 4 ( ) ( ) ( ) + +
Moelo 8. Ejecicio B. Clificción máim: punto Do lo plno π π el punto B( ) e pie: c) (. punto) Hll el ángulo que fomn lo plno π π. c. El ángulo ente plno e clcul como ángulo ente u vectoe nomle meinte el
Matemáticas II Unidad 4 Geometría
Mtemátic II Unidd Geometí UNIDAD EL ESPACIO AFÍN.- Demot que i do punto etán ddo epecto del item de efeenci fín cteino, entonce el vecto que lo une tiene po coodend l difeenci de l coodend de mbo punto
PRODUCTO ESCALAR. r r r
PRODUCTO ESCALAR Defncón de pdct escl de ectes. Se denmn pdct escl de ds ectes (, ) y (, ), l núme: cs α y l epesentms p En el pdct escl se mltplcn ds ectes, pe el esltd es n núme (escl). S ls ectes petenecen
Modelo 4 de sobrantes de 2005 - Opción A
Modelo de onte de - Opción A Ejecicio. 8 Se f : R R l función definid po f () () [ punto] Clcul lo punto de cote de l gáfic de f con lo eje coodendo. () [ punto] Hll l íntot de l gáfic de f. (c) [ punto]
UNIDAD13.PRODUCTO ESCALAR, VECTORIAL Y MIXTO. APLICACIONES
Unidd. Podcto ecl ectoil mito. Apliccione en el epcio. UNIDAD.PRODUCTO ESCALAR VECTORIAL Y MIXTO. APLICACIONES. Podcto ecl de do ectoe libe.. Definición.. Intepetción geométic.. Epeión nlític. Podcto ectoil
Resumen de Geometría. Matemáticas II GEOMETRÍA. w y los números a, b, c,, g, la expresión
Resmen e Geometía Matemáticas II GEOMETRÍA - BASE EN lr Daos los ectoes x,, z,, w los númeos a, b, c,, g, la expesión a x+ b + c z + + gw se llama combinación lineal e esos ectoes Dos ectoes son linealmente
Sistema diédrico ortogonal (II)
08 Sitem iéico otogonl (II) Too lo item e epeentción e lo que e ocup l geometí ecipti e n en métoo y teoem que peentn l fom geométic e figu e o o te imenione oe un opote plno, enomino plno el cuo. Eto
TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS
TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4
I.E.S. Mediterráneo de Málaga Septiembre 2015 Juan Carlos Alonso Gianonatti OPCIÓN DE EXAMEN Nº 1
I.E.S. editeáneo de álg Septiembe Jn Clos lonso Ginontti OCIÓN DE EXEN Nº Considee el sigiente sistem de ecciones dependiendo del pámeto [7 UNTOS] Clcle los loes de p qe el sistem teng solción. b [ UNTOS]
Cartesiano Curvilíneas generalizadas: cilíndrico y esférico.
Electici Mgnetismo so 4-5 Tem : Intocción oncepto e cmpo Repso e álgeb vectoil Sistems e cooens tesino vilínes genelis: cilínico esféico. Opeoes vectoiles. Giente Divegenci Rotcionl Deiv tempol ombinción
MOVIMIENTO POR UN PLANO INCLINADO.
MOVIMINTO POR UN PLANO INCLINADO. Ft Ft Nt imprtnte. te prblem debe relvere utiliznd un hj de cálcul L ftgrfí y, crrepnden l deplzmient de un r hci l prte inferir de un pln inclind. n l ftgrfí el pln inclind
ESPACIO AFÍN REAL TRIDIMENSIONAL
Jn Antonio Gonále ot Profesor e temátics el Colegio Jn XIII Ziín e Grn ESPACIO AFÍN REAL TRIDIENSIONAL VECTORES FIJOS EN EL ESPACIO. Definimos n VECTOR ORIENTADO FIJO el espcio como n prej oren e pntos
IES Mediterráneo de Málaga Solución Junio 2013 Juan Carlos Alonso Gianonatti. x - z = 1, y - z = 1,
ES Medieáneo de Málg Solción Jnio Jn Clos lonso Ginoni OPCÓN Ejecicio - -. Cliicción máim: pnos. Ddos el pno P(- ls ecs: s se pide: ( pno Deemin l posiion eli de s. b ( pno Deemin l ección de l ec qe ps
UNIDAD TEMÁTICA: Cambios de Planos de Proyección. DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 7.
DIBUJO GEOMÉTRICO. Cmios e Plnos e Poyeión. 7.1 Resolve los mios e Plnos e Poyeión popuestos en so p ls ets s. 1 2 1 1 3 4 1 1 5 6 1 1 Ejeiios elizos y pouios po Alfeo Aguil Gutiéez. DIBUJO GEOMÉTRICO.
teniendo en cuenta que la relación de equipolencia es una relación de igualdad: ( ) ( )
Jni. Ejeii B. (Pntión máim pnts Ls pnts A( B( C( sn tes éties nsetis de n plelgm. Se pide (pnt Hll ls dends del t étie D ll el áe de dih plelgm. ( pnt Clsifi el plelgm p ss lds p ss ángls. Slión Si t pnts
ESPACIO EUCLÍDEO ESPACIO EUCLÍDEO
ESPACIO EUCLÍDEO.- PRODUCTO ESCALAR....- MODULO Y ÁNGULO....- PRODUCTO VECTORIAL...4 4.- PRODUCTO MIXTO DE TRES VECTORES...5 5.- ANGULO DE RECTA Y PLANO...6 6.- ÁNGULO DE DOS PLANOS....7 SI α : AX BY CZ
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos
I.E.S. CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE EXTREMDUR JUNIO 9 (RESUELTOS po ntonio Menguino) MTEMÁTICS II Tiempo máimo: ho minutos El lumno elegiá un de ls dos opciones popuests. Cd un de
4º ESO ACADÉMICAS VECTORES y RECTAS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa.
º ESO CDÉMICS VECTORES RECTS DEPRTMENTO DE MTEMÁTICS. COPIRRI_Jlio Cé d Mínez-Lo VECTORES RECTS L geomeí nlíic e como e llm e pe de l memáic de eplic odo lo elciondo con l ec en el plno (en.º de chilleo
Capítulo. Cinemática del Sólido Rígido
Cpítulo 1 Cinemátic del Sólido Rígido Contenido Intoducción Tslción Rotción lededo de un Eje Fijo. elocidd Rotción lededo de un Eje Fijo: celeción Rotción lededo de un Eje Fijo: Sección epesentti Ecución
PROYECTO DE TEORIA DE MECANISMOS.
Nmbe: Mecnism: PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemátic y dinámic de un mecnism pln ticuld cn un gd de libetd. 7. Cálcul de ls celecines cn el métd de ls celecines eltivs gáfic y nlític 7.1.
143. a) Ecuación del cono de revolución que tiene su vértice en el punto O, su eje coincide con OZ y b el ángulo en el vértice es recto.
Hoj e Poblems Geometí II 3. Ecución el cono e evolución que tiene su vétice en el punto O, su eje coincie con O y b el ángulo en el vétice es ecto. b Ecuciones pmétics e un cuv c efini po un punto el cono
Una vez obtenido el vector perpendicular a ambos plano, se normaliza (se hace unitario) dividiendo el vector por su módulo.
Modelo. Ejeiio B. Clifiión máim pntos. Ddos los plnos π 7 ; π ; se pide ( pnto Hll n eto nitio dieión se plel los plnos π π. Solión.. Un eto plelo n plno es pependil l eto noml del plno. Si se s n eto
U N I V E R S I D A D D E L A Z U A Y
U N I V E R S I D A D D E L A Z U A Y F A C U L T A D D E M E D I C I N A V E N T A J A S D E L A H I S T E R E C T O M Í A R A D I C A L C O N P R E S E R V A C I O N N E R V I O S A E N C Á N C E R C
FORMULARIO Matemáticas II
FORMULRIO Mtemátis II º de hilleto LGER MTRIES. DEFINIION: Se llm mti de dimensión m n n onjnto de númeos eles dispestos en m fils n olmns de l sigiente fom: 3... n 3... n 3 3... 3n.................. m
GEOMETRÍA ANALÍTICA EN EL ESPACIO
DP. - S - 59 7 Matemáticas ISSN: 988-79X a b = a b cos(a, b) a b = a b + a b + a b GEOMETRÍ NLÍTI EN EL ESPIO PRODUTO ESLR ando sabemos el ánglo qe foman a y b ando sabemos las coodenadas de a y b a =
2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.
REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,
ECUACIONES DE LA RECTA
RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA P hll l ecución de un ect en el espcio necesito: Dos puntos Un punto su vecto diecto Not: Nosotos utiliemos siempe un punto A(,, ) un vecto v (,b,c).
TEMA 11: PROBLEMAS MÉTRICOS
Alonso Fernánde Glián TEMA PROBLEMAS MÉTRICOS Finlmente vmos ocprnos de clclr ánglos distncis entre rects plnos de resolver problems relciondos con estos conceptos.. ÁNGULOS ENTRE RECTAS Y PLANOS Vemos
TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar:
Ceno Concedo Pl Mde Mol nº 86- MADRID TEMA GEOMETRÍA RECTAS Y PLANOS P empe. Ddo lo puno A() B(8) hll ) L coodend de lo vecoe fijo AB BA b) Do puno C D le que CD e equipolene AB. c) El eemo F de un veco
4º ESO VECTORES y RECTAS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa. VECTORES y RECTAS
º ESO VECTORES RECTS DEPRTMENTO DE MTEMÁTICS. COPIRRI_Jlio Cé bd Mínez-Lo VECTORES RECTS L geoeí nlíic e coo e ll e pe de l eáic de eplic odo lo elciondo con l ec en el plno (en.º de bchilleo en l odlidd
la integral de línea de B alrededor de un trayecto cerrado
LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En
PRODUCTO ESCALAR. r r r
PRODUCTO ESCALAR Defnón de pdt esl de vetes. Se denmn pdt esl de ds vetes ( ) y ( ) p l núme: s y l epesentms En el pdt esl se mltpln ds vetes pe el esltd es n núme (esl). S ls vetes peteneen l esp vetl
Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)
Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede
Análisis de Sistemas Lineales. Modelado en variables de fase
Aálii e Sitem Liele Moelo e vrile e fe A B Coteio C D Moelo e vrile e fe Co : Si eriv e l fció e etr Co : Co geerl Ejemplo ejercicio Moelo e vrile e fe A B pr el co, q C D E moelo e vrile e eto, e el cl
1.- El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo
UNIDAD.- Geometrí eclíde. Prodcto esclr (tem 6 del libro). PRODUCTO ESCALAR DE DOS VECTORES LIBRES Definición: Se llm prodcto esclr de los ectores se not por sigiente form: del ánglo qe formn dichos ectores.
CAPÍTULO 3: CAMPO MAGNÉTICO. BIBLIOGRAFÍA Tipler. "Física". Cap. 27. Reverté Campo magnético creado por cargas puntuales en movimiento. (27.
CAPÍTULO 3: 3.. Camp magnétic cead p cagas pntales en mvimient. (7.) CAMPO MAGNÉTCO 3.3. Camp magnétic cead p cientes elécticas: Le de it Savat. (7.) 3.. Le de Gass paa el magnetism. (7.3) 3.5. Le de Ampee.
CAMPO MAGNÉTICO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRIENTE y. sin
CAMPO MAGNÉTCO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRENTE dl - P X d φ φ sin sin φ φ 3/ sin d d φ Cundo l longitud del conducto es mu gnde en compción con, l ecución se conviete en: >> 8. Un lmbe ecto
Problemas resueltos de Electricidad y Magnetismo. E.T.S.I.T. Universidad de Las Palmas de Gran Canaria
Pblems esuelts e lectici Mgnetism.T.S.I.T. Univesi e Ls Plms e Gn Cni LCTICIDAD Y MAGNTISMO. lectstátic-cí ) Supnien un nube e electnes cnfin en un egión ente s esfes e is cm 5 cm, tiene un ensi e cg en
1.7.1. Un automóvil recorre 300 m en 20 segundos, sometido a una aceleración constante de 0,8 m.s -
La deriada en cineática.7. Ejercici de aplicación.7.. Un autóil recrre 3 en egund, etid a una aceleración cntante de,8. -.Calcular a) u elcidad inicial b) u elcidad a l egund c) la lngitud recrrida en
EJERCICIOS GEOMETRÍA 2º BACHILLERATO
EJECICIOS GEOMETÍ º CHILLETO ) Coob qe lo vecoe () b (-) c () o lielee eeiee Eco l ecció el lo qe coiee eo vecoe l o (-) g( b c) g g g Lo vecoeolielee eeiee ) Se coie cico o e cooe (-) (-) (-) S(-) T(-)
Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y
E F G I J H M K M L N N Q P R S Ejecicio 1. Medi con un egl estos segmentos y not, encim de cd uno de ellos, el esultdo en milímetos. T Ejecicio 2. on l yud del compás, tz: +, pti del punto M, -, pti del
Buda predicó el S ut ra de la P ro f un da Bo n dad de lo s padres y la D if icult ad en R et rib uirla T r a d u cci ó n a l es p a ñ o l d e l a v er s i ó n ch i n a d e K u m a r a j i v a Plegaria
Encontrando el área y circunferencia de un círculo. Nombre: Encuentra el área y circunferencia de cada círculo. Los círculos no están a escala.
12 6.5 1a. 113.1 cm 2 1c. 37.7 cm 2a. 132.73 cm 2 20 25 2c. 0. cm 3a. 31.16 cm 2 3c. 62.3 cm a. 0.7 cm 2 c. 7.5 cm.5 5.5 5a. 63.62 cm 2 5c. 2.27 cm 6a. 5.03 cm 2 6c. 3.56 cm 1 0.5 7a. 23.53 cm 2 7c. 5.6
WONDERPONDEREO NAVIDENO Propuestas para pensar sobre la Navidad
WONDERPONDEREO NAVIDENO Ppt p p b l Nvidd p Ell Dthi & Dil Mtgó 1. Jmó. 2. Jg d ctcci. 3. Sphé. 4. Ct d ft. 5.Pc c pz xótic. 6.Dptd. 7.C. 8. Bmbill b id. 9. Smb. 10. Odd. 11. Dii. 12. Niñ. 23. Git. 13.
Talleres de lectura para no olvidar. colegiopascal.com
Talleres de lectura para no olvidar colegiopascal.com Fantabulario Introducción E l a r t e d e c o n t a r h a e x i s t i d o e n t o d a s l a s é p o c a s, e n c a d a p a r t e d e l m u n d o.
Matrices. 2 0 1 1 1 1 3 0 y 2 1 5 1 3 0 3. siendo. Ejercicio nº 1.- Dadas las matrices: b) Halla una matriz, X, tal que AX B. Ejercicio nº 2.
Mtrices Ejercicio nº - Dds ls mtrices: b) Hll n mtriz tl qe Ejercicio nº - Reselve el sigiente sistem mtricil: Ejercicio nº - Clcl los vlores de pr qe l mtriz: verifiqe l ección l donde l O son respectivmente
INTEGRALES INDEFINIDAS
INTEGRALES INDEFINIDAS Pág.: ÍNDICE:.- FUNCIÓN PRIMITIVA..- INTEGRAL INDEFINIDA..- INTEGRALES INMEDIATAS...- INTEGRACIÓN INMEDIATA DE ALGUNAS FUNCIONES. 4.- PROPIEDADES DE LA INTEGRAL INDEFINIDA. 5.- MÉTODOS
Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones
Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (
1 Año 2003 2. 2004 Año 2005 4 Año 2006 5. Año 2007 No. CASOS 3864 5941 6971 7347 7401 10983
PERFIL DE LA VIOLENCIA FAMILIAR EN CALI Mar t a Le t i c i a Es p i n o s a G. Ob s e r v at o r i o de Vi o l e n c i a f am i l i ar En C olom b i a, el f enó m eno d e la v i olenci a ha si d o a b
RECTAS EN EL ESPACIO.
IES Pade Poeda (Guadi UNI 9 GEOETRÍ FÍN RETS EN EL ESPIO EUIONES E L RET Una ecta queda deteminada po Un punto ( a a a Un ecto de diección ( ( ; se le llama deteminación lineal de la ecta Si X ( es un
Soluciones 1er parcial de Fisica II Comisión B1 - Sábado
Soluciones e pcil e Fisic II Comisión B - Sáo 6 e julio e 05. Ley e Coulom.. Enuncio Do el siguiente ipolo eléctico, confomo po os cgs e vloes y, seps po un istnci, espon: + P - x Figu : Dipolo. ) Oteng
Tema 2. Sistemas conservativos
Te. Sistes consevtivos Segn pte: Potenciles centles Un potencil U se enoin centl cno epene solente e l istnci n pnto fijo O. Tono n siste e efeenci cento en O, el potencil sólo epene e l cooen il U U (
INTEGRAL DEFINIDA. ln ln ln dx 3. t t. 1 5 ln t t 5t 1 ln 1 7 ln 1. [7.1] Calcular: Solución. [7.2] Calcular: Solución INTEGRAL DEFINIDA
INTEGRAL DEFINIDA INTEGRAL DEFINIDA [7.] Clclr: d 5 dt t d t t dt 5 5t t / t 5t t 5t / / t d dt 5 t t t dt 5 5 5 5 ln t t 5t ln 7 ln 5 / 9 t 7 7 7 7 7 7 ln ln ln 5 5 7 9 6 [7.] Clclr: ln 5 e e e d e t
METODO DEL ESPACIO DE ESTADO
Fcltd de Ingenierí Bioingenierí Control de Proceo METODO DEL ESPACIO DE ESTADO ESTADO: El etdo de n item dinámico e el conjnto má eqeño de vrile denomind vrile de etdo tl qe el conocimiento de e vrile
Olimpiadas. Internacionales
ble e L Olp Iele De Fí Jé Lu Heáe ée uí L ll 8 Jé Lu Heáe ée, uí L ll, 8 XXX OLIID INERNCIONL DE FÍSIC. CORE DEL SUR. I.-UN CONDENSDOR ING-ONG U e e e pl ule plel ee í, e R el e pl y l ee ell, uplée que
UNIDAD 12. ECUACIONES DE RECTA Y PLANO
Unidad. Ecaciones de la recta el plano UNIDD. EUIONES DE RET Y PLNO. Introdcción. Espacio fín... Vector en el espacio. Vector libre fijo... Operaciones con ectores.. Dependencia e independencia de ectores.
MATEMÁTICAS II TEMA 5 Ecuaciones de rectas y planos en el espacio. Posiciones relativas
Geomeí el epio Euione e e plno; poiione eli MTEMÁTICS II TEM Euione e e plno en el epio Poiione eli Euione e un e en el epio Re efini po un puno un eo Un e que efini no uno e u puno u eo e ieión Si el
x y z 3 x y z x y z x y z 5 0 3
leto Enteo onde Mite González Jueo MTEMÁTIS II Deteminntes. Soluiones z. Siendo que, lul n desoll el vlo de los guientes deteminntes: z z z z z z z z z z z z en en z z z z z z + Segundo método evit ls
Más información: Grupo DIA. Teléfono: 91 398 54 00. Nieves Álvarez. Lara Vadillo. Ginés Cañabate. comunicació[email protected]
Doi pn Má infomción: Gpo DIA. Tléfono: 91 398 54 00 Niv Álvz. L Villo. Giné Cñbt comnicció[email protected] Román y Aocio. Tléfono: 91 591 55 00 Jvi Agil: j.gil@omnyocio. Silvi Sotomyo:.otomyo@omnyocio. INDICE:
FIGURAS EN EL PLANO Y EN EL ESPACIO
Consejeí de Educción, Cultu y Depotes CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS. Simienz C/ Fncisco Gcí Pvón, 16 Tomelloso 1700 (C. Rel) Teléfono Fx: 96 51 9 9 Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS
CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería 5.1. DERIVADA DE LA FUNCIÓN EXPONENCIAL ( ) f ( x) = a Enunciado. x h x. x h.
Escela Colombiana e Ingeniería.. DERIVADA DE LA FUNCIÓN EXPONENCIAL Aplicano la efinición e la erivaa se tiene: f a Ennciao. + f + f a a f ' Lim Lim Aplicano la efinición e la erivaa. 0 0 a a a a ( a f
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00
CAMPO GRAVITATORIO FCA 08 ANDALUCÍA
CAMPO GRAVIAORIO FCA 08 ANDALUCÍA. L atélite metelógic n un medi paa btene infmación be el etad del tiemp atmféic. Un de et atélite, de 50 kg, gia aleded de la iea a una altua de 000 km en una óbita cicula.
ÓPTICA GEOMÉTRICA. ; 2s s 40 + =
ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto
UNIDAD 7 Problemas métricos
Pág. 1 e x = 11 + 4l x = 11 9l 1 1 : y = + l : y = l z = 7 + l z = 7 7l a) Halla las istancias ente los puntos e cote e 1 y con π: x y + z 4 = 0. b) Halla el ángulo e 1 con. c) Halla el ángulo e 1 con
