Problemas de demostración
|
|
|
- Marina Vargas Macías
- hace 9 años
- Vistas:
Transcripción
1 Problemas de demostración AUTOR: Begoña Soler de Dios 1 Máster en Profesor de Educación Secundaria Esp. Matemáticas 1 [email protected]
2 Problemas de demostración 1. Dados una circunferencia, un triángulo cualquiera ABC inscrito en la circunferencia y la recta r tangente a la circunferencia en A, discute la relación entre los ángulos ACB y BAN. Demuestra que tu conjetura es correcta. Si nos paramos a observar diversos casos del mismo problema podemos observar que los ángulos ACB y BAN serán iguales. Cómo lo podemos demostrar? Empezaríamos demostrando la relación entre un ángulo inscrito y su arco. Lo que correspondería en nuestro caso a la relación entre el ángulo ACB y su arco ( ). Relación: El ángulo KQP es sumplementario de MQP por lo que ambos sumados formarán un ángulo de 180 =KQP+MQP. Al ser el triángulo MPQ isósceles tendrá dos ángulos iguales QMP=MPQ por lo que 2QMP+MQP=180 debido a la suma de los ángulos internos del triángulo MPQ. Juntando la primera ecuación MQP=180-KQP con la de la suma de los ángulos del triángulo obtenemos que 2QMP+180-KQP=180, es decir, 2QMP=KQP QMP=KQP/2 El ángulo inscrito QMP mide la mitad del arco. Traducido a nuestra situación diríamos que el ángulo ACB es la mitad del arco. También se puede encontrar la relación entre un arco y un ángulo semi-inscrito en él. Lo que correspondería en nuestro problema a la relación entre el arco y el ángulo BAN. 2
3 Los ángulos DBC y DAB miden 90. Por lo tanto ADB+DBA=90 =DBC y DBC=DBA+ABC. Juntando ambas relaciones DBA+ABC=ADB+DBA, es decir ADB=ABC. De la demostración anterior obtenemos que ADB=AOB/2 y por lo tanto, como ADB=ABC ABC=ACB/2. Traducido a nuestra situación diríamos que el ángulo BAN es la mitad del arco. Recordando la demostración anterior de que el ángulo ACB es también la mitad del arco podemos concluir que BAN=ACB. Podemos demostrar la misma afirmación basándonos en la representación gráfica: A partir de la demostración anterior el ángulo AOB será dos veces el ángulo ACB por lo que el ángulo AOD tendrá de valor ACB. Teniendo en cuenta que la suma de los ángulos interiores de un triángulo es 180 y que AOD=ACB, podemos obtener el valor del ángulo OAD que será ACB+90+OAD=180 OAD=90-ACB. Como OAF=90=OAD+BAN BAN=90-OAD=90-90+ACB=ACB, es decir, BAN=ACB. 3
4 2. Cuánto vale la suma de los ángulos de un polígono de n lados? Demuestra tu respuesta. Como sabemos, la suma de los ángulos internos de un triángulo es 180. Un cuadrilátero, por su parte, se puede descomponer en dos triángulos (trazando todas las diagonales que salen de uno de los vértices del polígono), por lo que la suma de sus ángulos es 180 2=360 (180 el número de triángulos que lo forman). Utilizando el mismo procedimiento descomponemos en tres triángulos un pentágono y obtenemos que la suma de sus ángulos interiores es 180 3=540. 4
5 Haciendo este procedimiento para más polígonos demostramos el valor de la suma de los ángulos interiores de un polígono de n lados. Lados Diagonales Triángulos Suma de los ángulos interiores = = = = =900 n n-3 n (n-2) n+1 n-2 n (n-1) Es decir, un polígono de n lados tiene n vértices y a partir de uno de ellos podemos trazar n-3 diagonales para dividir el polígono en triángulos. Esto es debido a que hay que excluir los dos vértices adyacentes y el propio vértice desde el cual se trazan las diagonales. Mediante el trazo de diagonales obtendremos los triángulos, formando cada diagonal uno excepto la última que forma dos. Por lo que el número de triángulos que se formarán a partir de las diagonales será uno más que el número de diagonales trazadas desde un vértice, es decir, se formarán n-2 triángulos. Por lo tanto, como la suma de los ángulos interiores de todos los triángulos creados a partir de las diagonales que salen de un vértice es igual a la suma de los ángulos interiores del polígono, si multiplicamos 180 (suma de los ángulos interiores de un triángulo) por el número de triángulos, n-2, obtendremos la suma de los ángulos interiores del polígono: (n-2) 180. Podemos hacer la demostración por inducción: ( ) ( ) ( ) ( ) ( ) ( ) ( ) 5
6 En el caso de los ángulos exteriores, su suma es siempre 360. Teniendo en cuenta que el ángulo exterior de un polígono está formado por un lado cualquiera y la prolongación del que está a continuación podemos deducir que el ángulo interior más el exterior formarán 180. Por lo tanto, en un triángulo, la suma total de los ángulos interiores y exteriores es 180 3=540 (180 por cada uno de sus vértices) y que si a este número le restamos la suma de los ángulos interiores, nos queda la suma de los ángulos exteriores. Como en todo triángulo la suma de los ángulos interiores es 180, se obtiene que la suma de los ángulos exteriores será =360. Este método se puede extender para polígonos con más lados, obteniendo siempre que la suma de los ángulos exteriores será 360. Lados Suma de los ángulos exteriores e interiores Suma de los ángulos interiores Suma de los ángulos exteriores (S. ángulos ext.+int. Menos S. ángulos interiores) = = = = = = = = = =360 n 180 n 180 (n-2) 180n-180(n-2)= 180n-180n+180 2= 180 2=360 6
7 3. Sea ABCD un paralelogramo. Por un punto cualquiera de su diagonal AC trazamos dos segmentos paralelos a los lados de ABCD (ver la figura). Demuestra que las superficies sombreadas tienen la misma área. Ya que ABCD es un paralelogramo y AC es su diagonal, ABC y ACD serán dos triángulos con la misma área. Este razonamiento se basa en el hecho de que al ser paralelos los lados dos a dos, ambos triángulos tendrán la misma base y la misma altura, por lo que al calcular su área obtendremos la misma. Es decir, en todo paralelogramo los ángulos y los lados opuestos son iguales y la diagonal divide el área en dos partes iguales, por lo que los triángulos ABC y ACD tendrán la misma área. ( ) ( ) i Si observamos ABCD podemos ver que AEOH es también un paralelogramo con diagonal AO y que igualmente OFCG es otro con diagonal OC. Por el mismo razonamiento anterior, el área del triángulo AEO es igual a la del triángulo AOH y el área del triángulo OFC será la misma que la del triángulo OCG. ( ) ( ) ( ) ( ) A partir del razonamiento anterior podemos deducir que el área del triángulo AEO junto el área del triángulo OCG es igual al área del triángulo AOH junto con el área del triángulo OFC. ( ) ( ) ( ) ( ) Finalmente, como el área del triángulo ABC es igual al área del triángulo ACD, y que las áreas AEO=AOH y OFC=OCG, concluimos que el área del paralelogramo HOGD es igual a la del paralelogramo OEBF. (Restando los triángulos obtendremos el área del paralelogramo coloreado). 7
8 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 8
9 4. Cuántas diagonales tiene un polígono de n lados? Demuestra tu respuesta. Partimos definiendo el concepto de diagonal de un polígono. Una diagonal de un polígono es un segmento que une dos vértices no consecutivos. Podemos ver algunos ejemplos: En un triángulo no hay diagonales. Un cuadrilátero tiene 2 diagonales. Un pentágono tiene 5 diagonales. Es decir, teniendo en cuenta que n es el número de lados y que por lo tanto n será también el número de vértices, podremos trazar desde cada vértice n-3 diagonales. Esto es debido a que hay que excluir los dos vértices adyacentes (las diagonales solamente unen vértices no consecutivos) y el propio vértice desde el cual se trazan las diagonales. De este modo 9
10 obtendremos las diagonales que salen de un vértice. Si esta cantidad la multiplicamos por el número de vértices que tiene el polígono obtendríamos el número de diagonales que saldrían de todos los vértices. Finalmente necesitaríamos dividir el resultado por dos para no contar dos veces cada diagonal (ya que cada diagonal contiene dos vértices), obteniendo con este procedimiento el número de diagonales del polígono. Lados Diagonales ( ) ( ) ( ) ( ) 5 ( ) ( ) ( ) ( ) ( ) 6 ( ) ( ) ( ) ( ) ( ) ( ) 7 ( ) ( ) ( ) ( ) ( ) ( ) ( ) n ( ) n+1 ( )( ) Podemos comprobarlo por inducción: ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) i Se hace uso de la notación (MNC) para referirse al área del triángulo MNC. 10
2.-GEOMETRÍA PLANA O EUCLIDIANA
2.-GEOMETRÍA PLANA O EUCLIDIANA 2.2.-Cuadriláteros. Definición, clasificación y notación. Clasificación de los cuadriláteros: Paralelogramos y no paralelogramos. Los cuadriláteros son los polígonos de
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es
Soluciones Nota nº 1
Soluciones Nota nº 1 Problemas Propuestos 1- En el paralelogramo ABCD el ángulo en el vértice A es 30º Cuánto miden los ángulos en los vértices restantes? Solución: En un paralelogramo, los ángulos contiguos
EJERCICIOS ÁREAS DE REGIONES PLANAS
EJERCICIOS ÁREAS DE REGIONES PLANAS 1. En un triángulo equilátero se inscribe una circunferencia de radio R y otra de radio r tangente a dos de los lados y a la primera circunferencia, hallar el área que
TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.
Tema 2 2 Geometría métrica en el pla no
Tema Geometría métrica en el pla no CONCEPTOS BÁSICOS Figuras básicas en el plano: puntos, rectas, semirrectas, segmentos y ángulos Los polígonos y su clasificación según los ángulos internos y según el
TALLER DE ENTRENAMIENTO PARA SEMIFINAL Sábado 6 de mayo y jueves 11 de mayo Elaborado por: Gustavo Meza García. Ángulos
Ángulos Ejercicios: 1) Si un triángulo tiene 2 ángulos que miden 25 y 75 Cuánto mide el tercer ángulo? 2) Cuánto suman los ángulos internos de un cuadrilátero cualquiera? Teorema: 1) La suma de los ángulos
Polígonos IES BELLAVISTA
Polígonos IES BELLAVISTA Polígonos: definiciones Un polígono es la porción de plano limitada por rectas que se cortan. Polígono regular: el que tiene todos los lados y ángulos iguales. Polígono irregular:
FIGURAS GEOMETRICAS PLANAS
UNIDAD 9 FIGURAS GEOMETRICAS PLANAS Objetivo General Al terminar esta Unidad entenderás y aplicaras los conceptos generales de las figuras geométricas planas, y resolverás ejercicios y problemas con figuras
Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011
Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Álgebra Resumen de la sesión anterior. Se añadió que
POLÍGONOS REGULARES. Ejemplo: Hexágono 360º / 6 = 60º. TRIÁNGULO 3 120º 60º 180º (3-2)= 180º CUADRADO 4 90º 90º 180º (4-2)= 360º
A B G C F LADO D E A B G C F D E APOTEMA DIAGONALES RADIO 360º / n (180º- ) ELEMENTOS Y PROPIEDADES DE LOS POLÍGONOS REGULARES. (Ilustración nº 1). Diagonal: Es el segmento que une dos vértices no consecutivos.
Reporte de Actividades 15
Reporte de Actividades 15 Profesores: Arturo Ramírez, Alejandro Díaz. Tutores: Paulina Salcedo, Filomeno Alcántara. 1. Sesión del 8 de junio de 2011. 1.1 Resumen de la clase con Alejandro Díaz Barriga.
Soluciones Nota nº 2. Problemas propuestos 1. El segmento AC es una diagonal del cuadrado ABCD. Reconstruir el cuadrado.
Soluciones Nota nº 2 Problemas propuestos 1. El segmento AC es una diagonal del cuadrado ABCD. Reconstruir el cuadrado. Si el segmento AC fuera una diagonal del rectángulo ABCD, que no es cuadrado, es
El polígono es una porción del plano limitado por una línea poligonal cerrada.
UNIDAD 12: GEOMETRÍA PLANA 12.1. Los polígonos: Elementos El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los
Ejercicios de Geometría Plana
jercicios de Geometría lana 1. n la (, ),,,, y son puntos de la circunferencia, =. rueba que: y diámetros a) GH es isósceles. b) HG es un trapecio isósceles. c) GH. 2. n la figura y paralelogramos, y puntos
A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:
TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS
Figuras planas. Definiciones
Figuras planas Definiciones Polígono: definición Un polígono es una figura plana (yace en un plano) cerrada por tres o más segmentos. Los lados de un polígono son cada uno de los segmentos que delimitan
Unidad 4Transformaciones geométricas
4.1. Dados los puntos A, B y C sobre una recta r, de manera que AB = 20 mm y BC = 20 mm, determina sobre r el punto D para que la razón doble (ABCD) = 19/14. 1. Por los puntos A y B de la recta r se trazan
Soluciones Primer Nivel - 5º Año de Escolaridad
Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden
Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes:
Identificación de las propiedades de los cuadriláteros Cuadrilátero. Es un polígono de cuatro lados. Se le representa con sus cuatro vértices. Características Dado este cuadrilátero ABCD, se tiene: Clasificación.
Geometría. Problemas de Semejanza. Olimpiada de Matemáticas en Tamaulipas
Geometría Problemas de Semejanza Olimpiada de Matemáticas en Tamaulipas 1. Problemas Antes de comenzar con los problemas, es conveniente recordar o asegurarse que los olímpicos tienen presentes el tema
1º ESO TEMA 12 FIGURAS PLANAS
1º ESO TEMA 12 FIGURAS PLANAS 1 1.- POLÍGONOS Concepto de polígono POLÍGONO 2 1.- POLÍGONOS Elementos de un polígono Lado: segmento que une dos vértices consecutivos Vértice: punto en común entre dos lados
unidad 9 Problemas métricos en el plano
unidad 9 Problemas métricos en el plano Propiedades de los ángulo en los polígonos Página 1 Los ángulos de un triángulo suman 180. Los ángulos de un polígono de n lados suman 180 (n 2), pues se puede descomponer
Mª Rosa Villegas Pérez
Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o
donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.
Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices
Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se
Cuadriláteros y circunferencia
CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C
Clasificación de polígonos según sus lados
POLÍGONOS Polígonos Un polígono es la región del plano limitada por tres o más segmentos. Elementos de un polígono Lados Son los segmentos que lo limitan. Vértices Son los puntos donde concurren dos lados.
Soluciones Primer Nivel
Soluciones Primer Nivel Torneos Geométricos 2017 2º Ronda 1. En un papel cuadriculado con cuadrados de un centímetro de lado, se ha dibujado un cuadrilátero con vértices en los nodos del mismo (vértices
FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.
1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:
1. Encuentra cuánto vale el ángulo exterior θ en la siguiente figura si son conocidos los ángulos α y β. El ángulo θ se llama ángulo exterior en C.
1. Encuentra cuánto vale el ángulo exterior θ en la siguiente figura si son conocidos los ángulos α y β. El ángulo θ se llama ángulo exterior en C. 2. En un triángulo rectángulo, los ángulos agudos están
III: Geometría para maestros. Capitulo 1: Figuras geométricas
III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo
El ejercicio de la demostración en matemáticas
El ejercicio de la demostración en matemáticas Demostración directa En el tipo de demostración conocido como demostración directa (hacia adelante) se trata de demostrar que A B partiendo de A y deduciendo
PROBLEMAS DE POLÍGONOS.
PROBLEMAS DE POLÍGONOS. 1. Construir un rombo sabiendo que: El punto M divide al segmento, en cuyos extremos se encuentran los focos de la elipse que pasa por A, en la razón 4/5. El punto M está más cerca
1. En la siguiente figura, asocie un término del lado izquierdo con los nombres del lado derecho.
TALLER # 3 DE GEOMETRÍA: CIRCUNFERENCIAS Y POLIGONOS PROFESOR: MANUEL J. SALAZAR JIMENEZ 1. En la siguiente figura, asocie un término del lado izquierdo con los nombres del lado derecho. a) OE 1. Radio
Polígono. Superficie plana limitada por una línea poligonal cerrada.
POLÍGONO B C r A d O a l E D Polígono. Superficie plana limitada por una línea poligonal cerrada. r O r =a Elementos, puntos y líneas en los polígonos. (Regulares) LADO Cada uno de los segmentos de la
EJERCICIOS PARA VERANO. MATEMÁTICAS I 1º BACH
Desarrollar los siguiente valores absolutos f(x) = x² + 5x 4 - x - 2 f(x) = x² -4x + 3 + x - 3 f(x) = x x f(x) = x / x Resolver las ecuaciones exponenciales: Resolver los sistemas de ecuaciones exponenciales:
Tema 10: Problemas métricos en el plano
Tema 10: Problemas métricos en el plano 10.1 Relaciones angulares Construye un polígono de cinco lados, divídelo en triángulos para averiguar la suma de los ángulos interiores del pentágono. Nuestro pentágono
POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos
1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular
EF AB. Hallar la longitud del segmento BE si AC+BD+CE+DF=30. 3 a) 10 b) 14 c) 20 d) 8 e) Ning.
UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA CURSO PREFACULTATIVO GESTIÓN II-2012 PRÁCTICA Nº 1 GEOMETRÍA 1. Sobre una línea recta se consideran los puntos consecutivos A, B y C; luego
TEMA Nombre IES ALFONSO X EL SABIO
1. Trazar la mediatriz del segmento AB 2. Trazar la perpendicular a la semirrecta s en su extremo A sin prolongar ésta 3. Dividir el arco de circunferencia en dos partes iguales. 4. Dividir gráficamente
CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean
Un juego de ángulos SGUICTG001TG31-A16V1
Un juego de ángulos SGUICTG001TG31-A16V1 SECCIÓN: EXPERIMENTANDO Actividad 1 1. Porque la dirección que adquiere el movimiento de las bolas en el billar depende del ángulo con que la bola blanca se golpea.
GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.
GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el
4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.
7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.
TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES
TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra
CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS
OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.
GEOMETRÍA POLÍGONOS - 1
GEOMETRÍA POLÍGONOS - 1 TRIÁNGULOS Los triángulos son figuras planas formadas por tres puntos no alineados y por tres segmentos que los unen dos a dos (los tres puntos son los vértices y los tres segmentos
2.-GEOMETRÍA PLANA O EUCLIDIANA
2.-GEOMETRÍA PLANA O EUCLIDIANA 2.1.-Triángulos. Definición, clasificación y notación. Puntos notables, ortocentro, circuncentro, baricentro e incentro. Propiedades de las medianas. Los Triángulos son
Geometría básica Autor: Noelia Torres Costa
Geometría básica Autor: Noelia Torres Costa 1 Presentación del curso La Geometría es una de las ramas de las Matemáticas más atractivas para estudiar. Aunque no lo parezca, todo nuestro entorno está lleno
- Propiedades de las figuras planas
MATEMÁTICAS 1ºESO TEMA 10 PROPIEDADES DE LAS FIGURAS PLANAS 1 Tema 10 - Propiedades de las figuras planas 1 Escribe de línea poligonal y dibuja una: 2 Escribe el concepto de polígono. Dibuja un polígono
open green road Guía Matemática CUADRILÁTEROS tutora: Jacky Moreno .co
Guía Matemática CUADRILÁTEROS tutora: Jacky Moreno.co 1. Polígonos Epistemológicamente, la palabra polígono significa muchos ángulos. Los polígonos son figuras cerradas planas que están formadas por la
CUENCA DEL ALTO PARANÁ Soluciones - Primer Nivel
CUENCA DEL ALTO PARANÁ Soluciones - Primer Nivel Problema 1: Si se traza una recta m paralela a r que pase por el centro del rectángulo, éste quedará seccionado en dos trapecios iguales. En efecto, trazando
TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad
TORNEOS GEOMÉTRICOS 2016 Primera Ronda Primer Nivel - 5º Año de Escolaridad 1- En el triángulo rectángulo ABC cuyo ángulo en C mide 48º se trazan la bisectrices de los ángulos B y C, que se cortan en O.
Capítulo 1. Geometría
Capítulo 1 Geometría Estas notas tienen como fin preparar el lector para la resolución de problemas de Matemáticas tipo olimpiada. Por esta razón hay muy poca teoría y sí muchos problemas. En cada sección
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo
TEMA 6: LAS FORMAS POLIGONALES
EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado
Construcciones. Proporciones. Áreas
Construcciones Proporciones Áreas Rectángulo y Cometa Dibuja una cometa inscrita en un rectángulo Qué relación hay entre sus áreas respectivas? Cómo cambiará el perímetro de la cometa a medida que E y
TEMA 5: GEOMETRÍA PLANA. Contenidos:
Contenidos: - Elementos básicos del plano: punto, recta y segmento. Rectas paralelas y perpendiculares. Ángulos: definición, clasificación y medida. - Instrumentos de dibujo. Construcción de segmentos,
POLÍGONOS POLÍGONOS. APM Página 1
POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.
Preguntas Propuestas
reguntas ropuestas 2 ... olígonos 1. alcule la suma de lados de dos polígonos si se sabe que las sumas de las medidas de sus ángulos interiores difieren en 540º y el número de diagonales del polígono de
El ejercicio de la demostración en matemáticas
El ejercicio de la demostración en matemáticas Demostración directa En el tipo de demostración conocido como demostración directa(hacia adelante) se trata de demostrar que A B partiendo de A y deduciendo
Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales.
TEMA 8: PROBLEMAS MÉTRICOS EN EL PLANO ÁNGULOS EN LA CIRCUNFERENCIA Ángulo central es aquel cuyo vértice está en el centro de la circunferencia. Ángulo inscrito es aquel cuyo vértice está en la circunferencia.
open green road Guía Matemática CIRCUNFERENCIA tutora: Jacky Moreno .cl
Guía Matemática CIRCUNFERENCIA tutora: Jacky Moreno.cl 1. Circunferencia La circunferencia es una figura geométrica plana que se define como el conjunto de puntos que están a una misma distancia de un
GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS
Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas
Lección 1.1: Perímetro y área. Parte A - Figuras regulares e irregulares
Unidad 7.5: Geometría Tema 1: Figuras bidimensionales Lección 1.1: Perímetro y área Parte A - Figuras regulares e irregulares Los polígonos Los ángulos son las regiones que forman los lados al cortarse.
UNIDAD DIDÁCTICA CONTENIDO
UNIDAD DIDÁCTICA CONTENIDO TRIÁNGULOS CLASIFICACIÓN DE TRIÁNGULO - SEGÚN SUS LADOS - SEGÚN SUS ÁNGULOS ÁNGULOS INTERIORES Y EXTERIORES DE UN TRIÁNGULO 1 ANALIZA LAS SIGUIENTES FIGURAS: Son polígonos: No
ACTIVIDADES PROPUESTAS
GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el
DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula.
DIBUJO GEOMÉTRICO 1. SIGNOS Y LÍNEAS. A. El punto: es la intersección de dos rectas. Se designa mediante una letra mayúscula y se puede representar también con un círculo pequeño o un punto. A B C D X
2ª.- Halla el valor de Xˆ, Yˆ, Z ˆ, en los siguientes polígonos regulares:
TRABAJO DE RECUPERACIÓN DE GEOMETRÍA de 3º ESO 1ª.- Calcula el valor de Xˆ, Yˆ, Z ˆ, en los siguientes polígonos regulares: a) b) 2ª.- Halla el valor de Xˆ, Yˆ, Z ˆ, en los siguientes polígonos regulares:
Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
Geometría. Ángulos. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
SOLUCIONES PRIMER NIVEL
SOLUCIONES PRIMER NIVEL 1. Los cuatro polígonos de la figura son regulares. Halla los valores de los tres ángulos, de vértice A limitados por dos lados de los polígonos dados, indicados en la figura. Solución:
Dibujar un rombo de diagonal BD y lado AB dados. Se dibuja la diagonal DB y se trazan arcos con centro en sus extremos y radio AB, para hallar A y C.
Algunos problemas de cuadriláteros Propiedades Para la resolución de problemas de cuadriláteros es necesario conocer algunas de sus propiedades : - Las diagonales de un paralelogramo se cortan en sus respectivos
ENCUENTRO NÚMERO CINCO La circunferencia y el círculo
MODULO III - GEOMETRIA ENCUENTRO NÚMERO CINCO La circunferencia y el círculo 24 DEAGOSTO DE 2014 MANAGUA FINANCIADO POR: FUNDACIÓN UNO 1 Circunferencia: Una circunferencia es una línea curva cerrada cuyos
UNIDAD 2: ELEMENTOS GEOMÉTRICOS
UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este
TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS.
TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. LOS POLÍGONOS El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los vértices.
1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0
Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a
B7 Cuadriláteros. Geometría plana
Geometría plana B7 Cuadriláteros Cuadrilátero es un polígono de cuatro lados. Lados opuestos son los que no tienen punto común. Ejemplo AB y CD, AD y BC. Lados contiguos son los que tienen un extremo común.
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.
Polígonos Regulares: Definición de polígono:
1 Polígonos Regulares: Definición de polígono: Un polígono es una figura plana cerrada, limitada por segmentos de recta llamados lados del polígono. Los puntos donde se unen dos lados consecutivos se llaman
GEOMETRÍA LLANA: CONCEPTOS BÁSICOS (1ESO)
GEOMETRÍA LLANA: CONCEPTOS BÁSICOS (1ESO) PUNTOS, RECTOS Y PLANES 1.- Punto: Intersección de dos rectos. No tiene dimensiones (ni largo, ni ancho, ni alto). 2.- Recta: Conjunto de puntos con una sola dimensión.
TRIÁNGULOS Y CUADRILÁTEROS
TEMA 8.- POLÍGONOS TRIÁNGULOS Y CUADRILÁTEROS 1.- POLÍGONOS.- La definición de polígono viene dada por POLI= varios y GONO= ángulo. Clasificación de los polígonos según el número de lados: así son los
Construcciones de cuadriláteros
Construcciones de cuadriláteros Heriberto Cisternas Escobedo 1 Colegio Constitución Departamento de Matemática En la resolución de un problema de construcción comenzamos por suponer resuelto el problema;
ÁNGULOS. 2. En el triángulo ABC, el ángulo B se obtiene aumentando en 50% el ángulo A o también reduciendo en 25% el ángulo C. Cuál es la medida de B?
ENTRENAMIENTO COMPETENCIA COTORRA 2015 GEOMETRÍA (PROBLEMAS INTRODUCTORIOS) IIS AMIR MADRID GARZÓN Enero / 2015 ÁNGULOS 1. Cuántos ángulos hay en la siguiente figura? a) 13 b) 14 c) 21 d) 18 2. En el triángulo
TEMA 1. TRAZADOS GEOMÉTRICOS ELEMENTALES
TEMA 1. TRAZADOS GEOMÉTRICOS ELEMENTALES GEOMETRÍA: Rama de las matemáticas que se ocupa del estudio de las figuras geométricas, incluyendo puntos, rectas, planos Proviene del Griego GEO (tierra) METRÍA
LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90
LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar
( 2) 1. Simplificar las siguientes expresiones usando propiedades de la potenciación: a) f) 5 0 b) 2 6 : 2 3 g) 2 4.
DO AÑO. 014 TRABAJO PRÁCTICO 0 1. Simplificar las siguientes expresiones usando propiedades de la potenciación: a) 5.. f) 5 0 b) 6 : g) 4. - + c) 5-5. 5 h) 5 d) ( 5 ) 5 i) e) Esta Guía 0 contiene los prerrequisitos
Propiedades TEMA 3: POLÍGONOS DEFINICIÓN, PROPIEDADES Y CLASIFICACIÓN D TRIÁNGULOS. Clasificación. Definición
TRIÁNGULOS/CUADRILÁTEROAS/POLÍGONOS TEMA 3:2º- BACH/Página 1 de 30 TEMA 3: POLÍGONOS DEFINICIÓN, PROPIEDADES Y CLASIFICACIÓN D TRIÁNGULOS. Definición Triángulo es una superficie plana limitada por tres
Relaciones geométricas IES BELLAVISTA
Relaciones geométricas IES BELLAVISTA Igualdad y semejanza Dos figuras son iguales cuando sus lados y sus ángulos son iguales y están igualmente dispuestos. Dos figuras son semejantes cuando sus ángulos
POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA
POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA Introducción La construcción de polígonos regulares inscritos en una circunferencia dada, se basan en la división de dicha circunferencia en un número
Láminas para hacer durante las vacaciones
Diseño Equipacional Dibujo Técnico 1 Comisión 1 C Prof. Sanchez Láminas para hacer durante las vacaciones Se trabaja en hojas A4, con el mismo formato y rótulo que el resto de las láminas. En cada hoja
SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C
XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C 01 1. Un factor de la factorización completa de corresponde a mx y + 9y m x y x 4
Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia
Módulo III: Geometría Elmentos del triángulo Altura Bisectriz Simetral o mediatriz Transversal de gravedad Teorema de Pitágoras Ángulos en la circunferencia Ángulo del centro Ángulo inscrito Ángulo interior
Fundación Uno. 2x La gráfica que se muestra en la figura siguiente corresponde a la función:
ENCUENTRO # 49 TEMA: Ángulos en Geometría Euclidiana. CONTENIDOS: 1. Introducción a Geometría Euclidiana. 2. Ángulos entre rectas paralelas y una transversal. 3. Ángulos en el triángulo y cuadriláteros.
LOS POLIGONOS. 1. Definiciones.
LOS POLIGONOS 1. Definiciones. Un triángulo es un polígono cerrado y convexo constituido por tres ángulos (letras mayúsculas y sentido contrario a las agujas del reloj) y tres lado (letras minúsculas).
ANEXO 1. Sistema de plantillas. a) Simetría axial. b) Simetría central. c) Rotación de ángulo. d) Traslación.
109 ANEXO 1. Sistema de plantillas. a) Simetría axial. b) Simetría central.. c) Rotación de ángulo. α. d) Traslación. 110 Anexo 2. Sistema de plantillas a) Triángulo ABC. b) Rombo ABCD c) Pentágono ABCDE.
ÁNGULOS: (triángulos - cuadriláteros)
1 ÁNGULOS: (triángulos - cuadriláteros) 1. - Transforma en grados, minutos y segundos: a) 15.910" b) 27.673" c) 78.385" d) 38.890" e) 21.930" f) 35.627" g) 50.420" h) 43.692" i) 22.475" j) 95.486" k) 9.999"
