Tema 7. Integrales múltiples

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 7. Integrales múltiples"

Transcripción

1 Tema 7 Integrales múltiples 7.. efinición. En esta sección estudiamos el cálculo de la integral de una función real de dos variables denominada integral doble. Se puede utilizar el esquema del tema anterior para la integral de Riemann. efinición 7... Sea f : [a, b] [c, d] R R acotada en el rectángulo [a, b] [c, d] Si P {x, x,, x n } es una partición de [a, b] P {,,, m } es una partición de [c, d], se obtiene una partición P P P de [a, b] [c, d] formada por los rectángulos de la forma: R i [x i, x i+ ] [ j, j+ ], i,,, n, j,,, m. Sobre cada uno de los rectángulos construimos dos paralelepípedos de alturas: m ij inf{f(x, ) : (x, ) [x i, x i+ ] [ j, j+ ], M ij sup{f(x, ) : (x, ) [x i, x i+ ] [ j, j+ ] Sumamos los volúmenes de los paralelepípedos de alturas m ij M ij : n m n m U(f, P ) M ij (x i+ x i )( j+ j ), L(f, P ) m ij (x i+ x i )( j+ j ) i j i j 5

2 Curso 4/5 Matemáticas (Grado en Química) ecimos que f es Integrable (Riemann) sobre definimos la integral de Riemann de f(x, ) sobre como: f(x, )dxd inf{u(f, P )} sup{l(f, P )}. Nota 7... Si f : R R es una función continua, al igual que ocurría en una variable, f es integrable.ado que las funciones que utilizaremos en este tema serán todas continuas,todas serán también integrables. 7.. Propiedades.- Si f g son integrables en, entonces f ± g es integrable en (f ± g)(x, )dxd f(x, )dxd ± g(x, )dxd.- Si f es integrable en α R, entonces αf es integrable en : (αf)(x, )dxd α f(x, )dxd 3.- Si f g son integrables en f(x, g(x, ) (x, ), f(x, )dxd g(x, )dxd 4.- Si f es integrable en, f es integrable en f(x, )dxd 5.- Sean f, g : R R, tales que,. f es integrable en si sólo si lo es en. En este caso: f(x, )dxd f(x, )dxd + f(x, )dxd f(x, ) dxd 7.3. Teorema de Fubini El Teorema que vamos a enunciar nos proporciona una importante herramienta para el cálculo de integrales múltiples, a que permite reducir el cálculo de una integral múltiple sobre R n al cálculo de n integrales ordinarias. 6

3 Grupos Curso 4/5 Teorema (Teorema de Fubini). Sea f : R R integrable en. Si [a, b] [c, d], entonces: ( b ) d f(x, )dxd f(x, )d dx a c Si {(x, ) R : a x b, g (x) g (x)}, con g, g : [a, b] R continuas en [a, b] tales que g (x) g (x) x [a, b], entonces: ( b ) g(x) f(x, )dxd f(x, )d dx a g (x) Si {(x, ) R : c d, h () x h ()}, con h, h : [c, d] R continuas en [c, d] tales que h () h () [c, d], entonces: ( d ) h() f(x, )dxd f(x, )dx d c h () 7.4. Cambio de variable en integrales dobles Teorema Sean f : R R integrable en h : R R de clase C en biectiva. x h (u, v) Si el cambio de variables h (u, v) transforma (región del plano (u, v)) en (región del plano (x, )) se tiene: f(x, )dxd f(h (u, v), h (u, v)) Jh(u, v) dudv x x u v donde J(u, v) u v Nota El cambio de variable más común en R es el cambio a coordenadas polares: x ρ cos θ ρ sen θ 7

4 Curso 4/5 Matemáticas (Grado en Química) El determinante de su Jacobiano es: x x ρ θ cos θ Jh(ρ, θ) sen θ ρ θ Por tanto: f(x, )dxd ρf(ρ, θ)dρdθ ρ sen θ ρ cos θ ρ 7.5. Ejercicios resueltos. Calcular I (x + )dxd, siendo J [, 3] [, ]. J SOLUCIÓN: plicando el Teorema de Fubini, resulta que 3 3 ) I dx (x + )d (x + dx. Calcular I ( x + x ) x3 J x (9 + 3/) ( + /) 9. cos xdxd, siendo J [, ] [, ]. SOLUCIÓN: plicando el Teorema de Fubini, resulta que I dx sen x x x cos xd cosxdx (sen sen ). d 3. Calcular I dxd, siendo x + {(x, ) R : x,, x }. SOLUCIÓN: El recinto es el siguiente: 3 cos xdx (x + /)dx.5. x Por lo tanto, si x [, ], entonces x; aplicando el Teorema de Fubini, se tiene que x I dx x + d x + dx x d 8

5 Grupos Curso 4/5 x + 4. Calcular I ( ) x (3 ln x + x) x x dx 3 ln. x x + dx ( ) 3 x + dx x + dxd, siendo {(x, ) R : x,, x + 4}. SOLUCIÓN: El recinto es el siguiente:..5 x Por lo tanto, si x [, ], entonces 4 x ; aplicando el Teorema de Fubini, se tiene que 4 x 4 x I dx x + d x + dx d ( ) 4 x dx 4 x x + x + dx ) x (x x (4 ). x 5. Calcular el área del recinto {(x, ) R : x x}. ( x)dx SOLUCIÓN: El recinto es el siguiente:.5. x x Por lo tanto, si x [, ], entonces x x; el área será dxd. plicando el Teorema de Fubini, se tiene que 9

6 Curso 4/5 Matemáticas (Grado en Química) emostrar que x dx d x x dx x e x dx π. ( x (x x )dx x3 3 SOLUCIÓN: Para ello, vamos a calcular la siguiente integral doble por dos métodos diferentes. Por un lado, por el Teorema de Fubini resulta que R e x dxd ( ( ) x ) e x d dx x 3 R e x ) ( ) ( e x dx e d e dx) x. Por otro lado, si realizamos el cambio a polares resulta que dxd e r rdrdα R e x π π dα (,+ ) ( π,π) re r dr π e r Por consiguiente, uniendo ambas partes, tenemos que ( de donde se deduce que e dx) x R e x e x dx π. dxd π + π. dxd 7.6. Ejercicios propuestos.- Calcular las siguientes integrales dobles en el recinto que se indica: a) e dxd, I [, ] [, 3] I b) (x + )dxd, I [, 3] [, ] I c) x dxd, {(x, ) R : x x}

7 Grupos Curso 4/5 d) e) f) g) h) i) xe dxd, {(x, ) R : x x } xdxd, {(x, ) R : x + 4 ; x +, x } xdxd, } {(x, ) R : x ; ; x sen xdxd, {(x, ) R : x ; ; x ; x } + dxd, { (x, ) R : x ; ; x } x dxd, { (x, ) R : 3 ; 4 x }.- Calcular mediante una integral doble el área del recinto: {(x, ) R : x ; x ; + x 4} 3.- Calcular mediante una integral doble el área del recinto: {(x, ) R : ; x + 3 ; 4x}

5.2. El teorema de Fubini. TEMA 5. INTEGRALES DE FUNCIONES DE DOS VARIABLES.

5.2. El teorema de Fubini. TEMA 5. INTEGRALES DE FUNCIONES DE DOS VARIABLES. Tema 5 Integrales de funciones de dos variables. 5.. La integral doble como volumen. La integral de una función de dos variables está relacionada con zf H,L el cálculo del volumen encerrado entre el plano

Más detalles

Integrales dobles. Integrales dobles

Integrales dobles. Integrales dobles Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,

Más detalles

Lección 32: Algunas ideas sobre la integral doble. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 32: Algunas ideas sobre la integral doble. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 32: Algunas ideas sobre la integral doble Introducción al Cálculo Infinitesimal I.T.I. Gestión Esquema: - Idea de integral doble - Teorema de Fubini - Cambio a coordenadas polares Integral doble

Más detalles

Capítulo 3. Integración multidimensional. 1. Integrales de Riemann en rectángulos

Capítulo 3. Integración multidimensional. 1. Integrales de Riemann en rectángulos Capítulo 3 Integración multidimensional 1. Integrales de Riemann en rectángulos Definición (Partición de rectángulos). Consideremos el rectángulo [a, b] [c, d] y sean P 1 = {a = x 0, x 1,..., x n = b}

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

Funciones integrables en R n

Funciones integrables en R n Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está

Más detalles

11. Integrales múltiples.

11. Integrales múltiples. Tema 1. plicaciones del cálculo diferencial. urso 17/18 11. Integrales múltiples. En este tema nos vamos a centrar en tratar de integrar funciones de varias variables. eniremos los conceptos de integral

Más detalles

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Integrales Dobles Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 76 CONTENIDO Integrales Dobles Introducción

Más detalles

Introducción al Cálculo. Integral en Varias Variables

Introducción al Cálculo. Integral en Varias Variables UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Introducción al Cálculo Integral en Varias Variables Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

1. Teorema de Fubini. Teorema de Fubini.

1. Teorema de Fubini. Teorema de Fubini. 1. El teorema de Fubini nos va a dar una técnica para el cálculo de integrales de funciones de varias variables mediante el cálculo de varias integrales de funciones de una variable. partir de ahí se podrán

Más detalles

Tema 5: Funciones homogéneas

Tema 5: Funciones homogéneas Tema 5: Funciones homogéneas f se dice homogénea de grado α si se verifica: f(λ x) = λ α f( x), x, λ > 0 Propiedades: 1. Si f y g son homogéneas de grado α, entonces f ± g es también homogénea de grado

Más detalles

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008 Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 8 MA- Practica: semana y/o Ejercicios sugeridos para la semana y/o. Cubre el siguiente material: Propiedades de la

Más detalles

1. Construcción de la Integral

1. Construcción de la Integral 1. Construcción de la Integral La integral de Riemann en R n es una generalización de la integral de funciones de una variable. La definición que vamos a dar reproduce el método de Darboux para funciones

Más detalles

Teorema de Cambio de Variables para Integrales Dobles

Teorema de Cambio de Variables para Integrales Dobles Universidad de Chile Facultad de Ciencias Físicas y Matemáticas epartamento de Ingeniería Matemática Cátedra - MA2A1 22 de Enero 2008 Teorema de Cambio de Variables para Integrales obles Cuál es la idea:

Más detalles

Integral Múltiple. María Muñoz Guillermo Matemáticas I(1 o Grado Ingeniería Electrónica Industrial y Automática) U.P.C.T.

Integral Múltiple. María Muñoz Guillermo Matemáticas I(1 o Grado Ingeniería Electrónica Industrial y Automática) U.P.C.T. Integral Múltiple María Muñoz Guillermo [email protected] U.P.C.T. Matemáticas I(1 o Grado Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Integral Múltiple Matemáticas I 1 / 19 Introducción

Más detalles

INTEGRALES DE FUNCIONES DE VARIAS VARIABLES

INTEGRALES DE FUNCIONES DE VARIAS VARIABLES INTEGALES DE FUNCIONES DE VAIAS VAIABLES [Versión preliminar] Prof. Isabel Arratia Z. Integrales dobles sobre rectángulos La integral de iemann para una función f de dos variables se define de manera similar

Más detalles

UNIDAD DIDÁCTICA 4 Cálculo integral CAPÍTULO 12. LA INTEGRAL MÚLTIPLE DE RIEMANN CAPÍTULO 13. INTEGRACIÓN SOBRE CONJUNTOS ACOTADOS.

UNIDAD DIDÁCTICA 4 Cálculo integral CAPÍTULO 12. LA INTEGRAL MÚLTIPLE DE RIEMANN CAPÍTULO 13. INTEGRACIÓN SOBRE CONJUNTOS ACOTADOS. Índice Pág. UNIDAD DIDÁCTICA 4 Cálculo integral CAPÍTULO 12. LA INTEGRAL MÚLTIPLE DE RIEMANN... 13 1. Introducción. La integral doble... 17 2. Integral múltiple... 21 3. Medida cero y contenido cero...

Más detalles

Definición de la integral de Riemann (Esto forma parte del Tema 1)

Definición de la integral de Riemann (Esto forma parte del Tema 1) de de de Riemann (Esto forma parte del Tema 1) Departmento de Análise Matemática Facultade de Matemáticas Universidade de Santiago de Compostela Santiago, 2011 Esquema de Objetivos del tema: Esquema de

Más detalles

Integrales múltiples

Integrales múltiples ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más

Más detalles

El Teorema de Fubini-Tonelli

El Teorema de Fubini-Tonelli Capítulo 23 El Teorema de Fubini-Tonelli Veremos en este capítulo que el cálculo de una integral múltiple se reduce al de integrales simples. Concretamente se va a probar que si f(x, y) es una función

Más detalles

INTEGRALES. EL PROBLEMA DEL ÁREA II

INTEGRALES. EL PROBLEMA DEL ÁREA II INTEGRALES. EL PROBLEMA DEL ÁREA II En esta relación de ejercicios vamos a practicar el cálculo de integral es definidas. Para realizar el cálculo de la integral definida aplicaremos el Teorema Fundamental

Más detalles

Capítulo 4. Integración

Capítulo 4. Integración Capítulo 4. Integración En este capítulo vamos a estudiar cómo se puede hacer integración con funciones multivariables. Estudiaremos los siguientes temas: 4.1. Integral de Riemann, teorema de Fubini. 4..

Más detalles

El Teorema de Fubini-Tonelli

El Teorema de Fubini-Tonelli Capítulo 26 El Teorema de Fubini-Tonelli Veremos en este capítulo que el cálculo de una integral múltiple se reduce al de integrales simples. Concretamente se va a probar que si f(x, y) es una función

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Octubre 2013 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada En esta Presentación... En esta Presentación veremos: Definición de Antiderivada Ejemplos En esta Presentación...

Más detalles

Integración múltiple: integrales dobles

Integración múltiple: integrales dobles Problemas propuestos con solución Integración múltiple: integrales dobles ISABEL MAEO epartamento de Análisis Matemático Universidad de La Laguna [email protected] Índice. Integrales iteradas 2. Teorema

Más detalles

3 Integración en IR n

3 Integración en IR n a t e a POBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CUSO 29 21 3 Integración en I n 3.1 Integral múltiple. Problema 3.1 Calcula f en los siguientes casos: Q i) f(x, y) =

Más detalles

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ,

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ, egundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de 216 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. ecuerde apagar

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral 8 de junio de (Soluciones) Cuestiones C Sí se puede asegurar que es integrable, como consecuencia del teorema 4. de los apuntes: Llamamos W y f : W R a la esfera y a la

Más detalles

TERCER EXAMEN EJERCICIOS RESUELTOS

TERCER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).

Más detalles

Medida Cero y Contenido Cero

Medida Cero y Contenido Cero Medida Cero y Contenido Cero Ejemplo.- Sea f : [0, 1] [0, 1] definida como 1 si x o y Q f(x, y) = 0 si x y y / Q Mostrar que f Sea P cualquier partición de y i cualquier subrectángulo inducido por esta

Más detalles

E.T.S.I. Agrónomos Grado en Biotecnología Matemáticas II 1 a prueba de la evaluación continua: soluciones

E.T.S.I. Agrónomos Grado en Biotecnología Matemáticas II 1 a prueba de la evaluación continua: soluciones E.T.S.I. Agrónomos Grado en Biotecnología Matemáticas II a prueba de la evaluación continua: soluciones 4 de marzo de 04 Es importante que escribáis con claridad y expreséis con precisión los argumentos

Más detalles

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA

APLICACIONES DE LA INTEGRAL DEFINIDA APLICACIONES DE LA INTEGRAL DEFINIDA Objetivo: El alumno analizará y comprenderá el uso y la aplicación de la integral definida en la resolución de problemas REGIONES PLANAS LIMITADAS POR DOS CURVAS Sean

Más detalles

Tema 4 Diferenciación de funciones de una y varias

Tema 4 Diferenciación de funciones de una y varias Tema 4 Diferenciación de funciones de una y varias variables. CÁLCULO DIFERENCIAL DE FUNCIONES DE UNA VARIABLE Definición.: Función derivable Sea f : R R definida en un entorno de a R, se dice que f es

Más detalles

Cambio de Variables en la Integral Múltiple

Cambio de Variables en la Integral Múltiple Capítulo 24 Cambio de Variables en la Integral Múltiple n la demostración del teorema del cambio de variable utilizaremos con frecuencia que el carácter medible de los conjuntos es una propiedad que se

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático Resolución del coloquio de fecha 4/07/18 tema I con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad

Más detalles

Comisión de Pedagogía - Diego Chamorro Un (corto) panorama de Análisis Armónico (Nivel 3).

Comisión de Pedagogía - Diego Chamorro Un (corto) panorama de Análisis Armónico (Nivel 3). AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Un (corto) panorama de Análisis Armónico (Nivel 3). Lección n : La ecuación de ondas como punto de partida UCE, otoño 04 Introducción El objetivo

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Antiderivada o Promitiva agosto 2012 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada. En esta Presentación... En esta Presentación veremos: Definición de Antiderivada.

Más detalles

En este capítulo extenderemos la conocida ecuación. g(b) f = f g g, g(a)

En este capítulo extenderemos la conocida ecuación. g(b) f = f g g, g(a) Capítulo 6 Cambio de variable 1. Particiones de la Unidad En este capítulo extenderemos la conocida ecuación (6.1) g(b) g(a) f = b a f g g, válida para funciones iemann-integrables f y funciones diferenciables

Más detalles

Matemáticas III Tema 6 Integrales de superficie

Matemáticas III Tema 6 Integrales de superficie Matemáticas III Tema 6 Integrales de superficie Rodríguez ánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba,. 214. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative Commons Attribution- NonComercial-hareAlike

Más detalles

3. Cambio de variables en integrales dobles.

3. Cambio de variables en integrales dobles. GADO DE INGENIEÍA AEOESPACIAL. CUSO. Lección. Integrales múltiples. 3. Cambio de variables en integrales dobles. Para calcular integrales dobles eiste, además del teorema de Fubini, otra herramienta fundamental

Más detalles

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO APUNTES E MATEMÁTICAS EXÁMENES RESUELTOS E MATEMÁTICAS I EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA GRAOS EN ECONOMÍA Y AMINISTRACIÓN E EMPRESAS PRIMER CURSO Jesús Muñoz San Miguel http://www.personal.us.es/jmiguel

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

CÁLCULO INTEGRAL EN VARIAS VARIABLES

CÁLCULO INTEGRAL EN VARIAS VARIABLES APUNTES MAT 4 CÁLCULO INTEGRAL EN VARIAS VARIABLES CÁLCULO VECTORIAL 17 Salomón Alarcón Araneda Salomón Alarcón Araneda APUNTES MAT 4 CÁLCULO INTEGRAL EN VARIAS VARIABLES. CÁLCULO VECTORIAL.. Esta versión

Más detalles

Tarea 14 Ejercicios resueltos

Tarea 14 Ejercicios resueltos Tarea 14 Ejercicios resueltos 1. En los ejercicios del 1 al 6 determinar viendo la gráfica cuándo la función definida en [a, b] tiene máximos, o mínimos y en dónde. 1 (1) La función es continua en un intervalo

Más detalles

Integración de Funciones Reales

Integración de Funciones Reales Capítulo 20 Integración de Funciones Reales Nos proponemos estudiar en este capítulo las propiedades fundamentales del operador integral. n particular, extenderemos aquí al caso de funciones medibles con

Más detalles

INTEGRALES MÚLTIPLES

INTEGRALES MÚLTIPLES INTEGALES MÚLTIPLES Introducción: Si f es una función definida sobre una región, la integral doble se puede interpretar como el volumen del sólido limitado superiormente por la superficie z = f(,, inferiormente

Más detalles

Integración múltiple: integrales triples

Integración múltiple: integrales triples Problemas propuestos con solución Integración múltiple: integrales triples ISABEL MARRERO epartamento de Análisis Matemático Universidad de La Laguna [email protected] Índice 1. Integrales iteradas 1. Teorema

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 10 Año 009 10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

Integración en una variable (repaso)

Integración en una variable (repaso) Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 28 Práctica 8: Integración Integración en una variable (repaso). Calcular: xsen x. sen 2 x cos x. xe x2. e x sen x. 3x 2 x 2 + x 2. ln x. 2.

Más detalles

6. Integrales triples.

6. Integrales triples. GRADO DE INGENIERÍA AEROESPACIAL. CRSO 0. Lección. Integrales múltiples. 6. Integrales triples. Integral triple en un prisma. El proceso para definir la integral triple f ( xyzdv,, ), de una función continua

Más detalles

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN MATEMÁTICAS: EBAU 207 MODELO CASTILLA Y LEÓN Opción A Ejercicio A x y + z = Dado el sistema de ecuaciones lineales { 3x + λy =, se pide: 4x + λz = 2 a) Discutir el sistema (existencia y número de soluciones)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Análisis Matemático I

Análisis Matemático I Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una

Más detalles

Capítulo 3: Cálculo integral

Capítulo 3: Cálculo integral (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos La integral indefinida Propiedades básicas de la integral indefinida Métodos de integración: por

Más detalles

( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h

( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h Eamen de cálculo diferencial e integral /4/9 Opción A Ejercicio. (Puntuación máima: puntos) Sea la función f ( ) = 4 a. Estudiar su continuidad y derivabilidad. b. Dibujar su gráfica. c. Calcular el área

Más detalles

1.6 Ejercicios resueltos

1.6 Ejercicios resueltos Apuntes de Ampliación de Matemáticas 1.6 Ejercicios resueltos Ejercicio 1.1 En cada uno de los siguientes casos a A {(x,y R : 1 < x < 1, 1 < y < 1}. b A {(x,y R : 1 < x + y < 4}. c A {(x,y R : y > 0}.

Más detalles

Propiedades de la integral

Propiedades de la integral Capítulo 4 Propiedades de la integral En este capítulo estudiaremos las propiedades elementales de la integral. En su mayoría resultarán familiares, pues las propiedades de la integral en R se extienden

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x

Más detalles

Clase 14: Fórmula del Cambio de Variables

Clase 14: Fórmula del Cambio de Variables Clase 4: Fórmula del Cambio de Variables C.J. Vanegas 4 de junio de 8 Recordemos.. Método de sustitución en integrales de una variable: b f(g(t))g (t) dt g(b) a g(a) f(s) ds s g(t) ds g (t)dt t a s g(a)

Más detalles

7. Cambio de variables en integrales triples.

7. Cambio de variables en integrales triples. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. Lección. Integrales múltiples. 7. Cambio de variables en integrales triples. El teorema del cambio de variables para integrales triples es análogo al de integrales

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2005 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2005 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 005 Primera parte Ejercicio 1. Un espejo plano de dimensiones 80 cm y 90 cm, se rompe por una esquina según una recta. De

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

Matemáticas III Andalucía-Tech. Integrales múltiples

Matemáticas III Andalucía-Tech. Integrales múltiples Matemátias III Andaluía-Teh Tema 4 Integrales múltiples Índie. Preliminares. Funión Gamma funión Beta. Integrales dobles.. Integral doble de un ampo esalar sobre un retángulo................ Integral doble

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral de junio de 11 (Soluciones) Cuestiones C 1 La respuesta es que la función es integrable, como consecuencia del Teorema 1.1 de los apuntes, o el Teorema del Capítulo 5 del

Más detalles

Integrales impropias (funciones no continuas sobre conjuntos acotados)

Integrales impropias (funciones no continuas sobre conjuntos acotados) Unidad Integrales Múltiples. Funciones no continuas sobre conjuntos acotados Integrales impropias (unciones no continuas sobre conjuntos acotados) Ejemplo Considere la unción (x, y) xy x 2 + y 2 En este

Más detalles

Integración en una variable (repaso)

Integración en una variable (repaso) Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 2 Práctica 8: Integración Integración en una variable (repaso). Calcular: sen x. 2π sen x. El área entre las curvas y = sen x, y =, x =, x

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

Teoremas de convergencia y derivación bajo el signo integral

Teoremas de convergencia y derivación bajo el signo integral Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones

Más detalles