Tema 7. Integrales múltiples
|
|
|
- Esther de la Fuente Álvarez
- hace 9 años
- Vistas:
Transcripción
1 Tema 7 Integrales múltiples 7.. efinición. En esta sección estudiamos el cálculo de la integral de una función real de dos variables denominada integral doble. Se puede utilizar el esquema del tema anterior para la integral de Riemann. efinición 7... Sea f : [a, b] [c, d] R R acotada en el rectángulo [a, b] [c, d] Si P {x, x,, x n } es una partición de [a, b] P {,,, m } es una partición de [c, d], se obtiene una partición P P P de [a, b] [c, d] formada por los rectángulos de la forma: R i [x i, x i+ ] [ j, j+ ], i,,, n, j,,, m. Sobre cada uno de los rectángulos construimos dos paralelepípedos de alturas: m ij inf{f(x, ) : (x, ) [x i, x i+ ] [ j, j+ ], M ij sup{f(x, ) : (x, ) [x i, x i+ ] [ j, j+ ] Sumamos los volúmenes de los paralelepípedos de alturas m ij M ij : n m n m U(f, P ) M ij (x i+ x i )( j+ j ), L(f, P ) m ij (x i+ x i )( j+ j ) i j i j 5
2 Curso 4/5 Matemáticas (Grado en Química) ecimos que f es Integrable (Riemann) sobre definimos la integral de Riemann de f(x, ) sobre como: f(x, )dxd inf{u(f, P )} sup{l(f, P )}. Nota 7... Si f : R R es una función continua, al igual que ocurría en una variable, f es integrable.ado que las funciones que utilizaremos en este tema serán todas continuas,todas serán también integrables. 7.. Propiedades.- Si f g son integrables en, entonces f ± g es integrable en (f ± g)(x, )dxd f(x, )dxd ± g(x, )dxd.- Si f es integrable en α R, entonces αf es integrable en : (αf)(x, )dxd α f(x, )dxd 3.- Si f g son integrables en f(x, g(x, ) (x, ), f(x, )dxd g(x, )dxd 4.- Si f es integrable en, f es integrable en f(x, )dxd 5.- Sean f, g : R R, tales que,. f es integrable en si sólo si lo es en. En este caso: f(x, )dxd f(x, )dxd + f(x, )dxd f(x, ) dxd 7.3. Teorema de Fubini El Teorema que vamos a enunciar nos proporciona una importante herramienta para el cálculo de integrales múltiples, a que permite reducir el cálculo de una integral múltiple sobre R n al cálculo de n integrales ordinarias. 6
3 Grupos Curso 4/5 Teorema (Teorema de Fubini). Sea f : R R integrable en. Si [a, b] [c, d], entonces: ( b ) d f(x, )dxd f(x, )d dx a c Si {(x, ) R : a x b, g (x) g (x)}, con g, g : [a, b] R continuas en [a, b] tales que g (x) g (x) x [a, b], entonces: ( b ) g(x) f(x, )dxd f(x, )d dx a g (x) Si {(x, ) R : c d, h () x h ()}, con h, h : [c, d] R continuas en [c, d] tales que h () h () [c, d], entonces: ( d ) h() f(x, )dxd f(x, )dx d c h () 7.4. Cambio de variable en integrales dobles Teorema Sean f : R R integrable en h : R R de clase C en biectiva. x h (u, v) Si el cambio de variables h (u, v) transforma (región del plano (u, v)) en (región del plano (x, )) se tiene: f(x, )dxd f(h (u, v), h (u, v)) Jh(u, v) dudv x x u v donde J(u, v) u v Nota El cambio de variable más común en R es el cambio a coordenadas polares: x ρ cos θ ρ sen θ 7
4 Curso 4/5 Matemáticas (Grado en Química) El determinante de su Jacobiano es: x x ρ θ cos θ Jh(ρ, θ) sen θ ρ θ Por tanto: f(x, )dxd ρf(ρ, θ)dρdθ ρ sen θ ρ cos θ ρ 7.5. Ejercicios resueltos. Calcular I (x + )dxd, siendo J [, 3] [, ]. J SOLUCIÓN: plicando el Teorema de Fubini, resulta que 3 3 ) I dx (x + )d (x + dx. Calcular I ( x + x ) x3 J x (9 + 3/) ( + /) 9. cos xdxd, siendo J [, ] [, ]. SOLUCIÓN: plicando el Teorema de Fubini, resulta que I dx sen x x x cos xd cosxdx (sen sen ). d 3. Calcular I dxd, siendo x + {(x, ) R : x,, x }. SOLUCIÓN: El recinto es el siguiente: 3 cos xdx (x + /)dx.5. x Por lo tanto, si x [, ], entonces x; aplicando el Teorema de Fubini, se tiene que x I dx x + d x + dx x d 8
5 Grupos Curso 4/5 x + 4. Calcular I ( ) x (3 ln x + x) x x dx 3 ln. x x + dx ( ) 3 x + dx x + dxd, siendo {(x, ) R : x,, x + 4}. SOLUCIÓN: El recinto es el siguiente:..5 x Por lo tanto, si x [, ], entonces 4 x ; aplicando el Teorema de Fubini, se tiene que 4 x 4 x I dx x + d x + dx d ( ) 4 x dx 4 x x + x + dx ) x (x x (4 ). x 5. Calcular el área del recinto {(x, ) R : x x}. ( x)dx SOLUCIÓN: El recinto es el siguiente:.5. x x Por lo tanto, si x [, ], entonces x x; el área será dxd. plicando el Teorema de Fubini, se tiene que 9
6 Curso 4/5 Matemáticas (Grado en Química) emostrar que x dx d x x dx x e x dx π. ( x (x x )dx x3 3 SOLUCIÓN: Para ello, vamos a calcular la siguiente integral doble por dos métodos diferentes. Por un lado, por el Teorema de Fubini resulta que R e x dxd ( ( ) x ) e x d dx x 3 R e x ) ( ) ( e x dx e d e dx) x. Por otro lado, si realizamos el cambio a polares resulta que dxd e r rdrdα R e x π π dα (,+ ) ( π,π) re r dr π e r Por consiguiente, uniendo ambas partes, tenemos que ( de donde se deduce que e dx) x R e x e x dx π. dxd π + π. dxd 7.6. Ejercicios propuestos.- Calcular las siguientes integrales dobles en el recinto que se indica: a) e dxd, I [, ] [, 3] I b) (x + )dxd, I [, 3] [, ] I c) x dxd, {(x, ) R : x x}
7 Grupos Curso 4/5 d) e) f) g) h) i) xe dxd, {(x, ) R : x x } xdxd, {(x, ) R : x + 4 ; x +, x } xdxd, } {(x, ) R : x ; ; x sen xdxd, {(x, ) R : x ; ; x ; x } + dxd, { (x, ) R : x ; ; x } x dxd, { (x, ) R : 3 ; 4 x }.- Calcular mediante una integral doble el área del recinto: {(x, ) R : x ; x ; + x 4} 3.- Calcular mediante una integral doble el área del recinto: {(x, ) R : ; x + 3 ; 4x}
5.2. El teorema de Fubini. TEMA 5. INTEGRALES DE FUNCIONES DE DOS VARIABLES.
Tema 5 Integrales de funciones de dos variables. 5.. La integral doble como volumen. La integral de una función de dos variables está relacionada con zf H,L el cálculo del volumen encerrado entre el plano
Integrales dobles. Integrales dobles
Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,
Lección 32: Algunas ideas sobre la integral doble. Introducción al Cálculo Infinitesimal I.T.I. Gestión
Lección 32: Algunas ideas sobre la integral doble Introducción al Cálculo Infinitesimal I.T.I. Gestión Esquema: - Idea de integral doble - Teorema de Fubini - Cambio a coordenadas polares Integral doble
Capítulo 3. Integración multidimensional. 1. Integrales de Riemann en rectángulos
Capítulo 3 Integración multidimensional 1. Integrales de Riemann en rectángulos Definición (Partición de rectángulos). Consideremos el rectángulo [a, b] [c, d] y sean P 1 = {a = x 0, x 1,..., x n = b}
Integración doble Integrales dobles sobre regiones no rectangulares
Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos
Funciones integrables en R n
Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está
11. Integrales múltiples.
Tema 1. plicaciones del cálculo diferencial. urso 17/18 11. Integrales múltiples. En este tema nos vamos a centrar en tratar de integrar funciones de varias variables. eniremos los conceptos de integral
Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos
Integrales Dobles Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 76 CONTENIDO Integrales Dobles Introducción
Introducción al Cálculo. Integral en Varias Variables
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Introducción al Cálculo Integral en Varias Variables Ramón Bruzual Marisela Domínguez Caracas,
1. Teorema de Fubini. Teorema de Fubini.
1. El teorema de Fubini nos va a dar una técnica para el cálculo de integrales de funciones de varias variables mediante el cálculo de varias integrales de funciones de una variable. partir de ahí se podrán
Tema 5: Funciones homogéneas
Tema 5: Funciones homogéneas f se dice homogénea de grado α si se verifica: f(λ x) = λ α f( x), x, λ > 0 Propiedades: 1. Si f y g son homogéneas de grado α, entonces f ± g es también homogénea de grado
Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008
Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 8 MA- Practica: semana y/o Ejercicios sugeridos para la semana y/o. Cubre el siguiente material: Propiedades de la
1. Construcción de la Integral
1. Construcción de la Integral La integral de Riemann en R n es una generalización de la integral de funciones de una variable. La definición que vamos a dar reproduce el método de Darboux para funciones
Teorema de Cambio de Variables para Integrales Dobles
Universidad de Chile Facultad de Ciencias Físicas y Matemáticas epartamento de Ingeniería Matemática Cátedra - MA2A1 22 de Enero 2008 Teorema de Cambio de Variables para Integrales obles Cuál es la idea:
Integral Múltiple. María Muñoz Guillermo Matemáticas I(1 o Grado Ingeniería Electrónica Industrial y Automática) U.P.C.T.
Integral Múltiple María Muñoz Guillermo [email protected] U.P.C.T. Matemáticas I(1 o Grado Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Integral Múltiple Matemáticas I 1 / 19 Introducción
INTEGRALES DE FUNCIONES DE VARIAS VARIABLES
INTEGALES DE FUNCIONES DE VAIAS VAIABLES [Versión preliminar] Prof. Isabel Arratia Z. Integrales dobles sobre rectángulos La integral de iemann para una función f de dos variables se define de manera similar
UNIDAD DIDÁCTICA 4 Cálculo integral CAPÍTULO 12. LA INTEGRAL MÚLTIPLE DE RIEMANN CAPÍTULO 13. INTEGRACIÓN SOBRE CONJUNTOS ACOTADOS.
Índice Pág. UNIDAD DIDÁCTICA 4 Cálculo integral CAPÍTULO 12. LA INTEGRAL MÚLTIPLE DE RIEMANN... 13 1. Introducción. La integral doble... 17 2. Integral múltiple... 21 3. Medida cero y contenido cero...
Definición de la integral de Riemann (Esto forma parte del Tema 1)
de de de Riemann (Esto forma parte del Tema 1) Departmento de Análise Matemática Facultade de Matemáticas Universidade de Santiago de Compostela Santiago, 2011 Esquema de Objetivos del tema: Esquema de
Integrales múltiples
ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más
El Teorema de Fubini-Tonelli
Capítulo 23 El Teorema de Fubini-Tonelli Veremos en este capítulo que el cálculo de una integral múltiple se reduce al de integrales simples. Concretamente se va a probar que si f(x, y) es una función
INTEGRALES. EL PROBLEMA DEL ÁREA II
INTEGRALES. EL PROBLEMA DEL ÁREA II En esta relación de ejercicios vamos a practicar el cálculo de integral es definidas. Para realizar el cálculo de la integral definida aplicaremos el Teorema Fundamental
Capítulo 4. Integración
Capítulo 4. Integración En este capítulo vamos a estudiar cómo se puede hacer integración con funciones multivariables. Estudiaremos los siguientes temas: 4.1. Integral de Riemann, teorema de Fubini. 4..
El Teorema de Fubini-Tonelli
Capítulo 26 El Teorema de Fubini-Tonelli Veremos en este capítulo que el cálculo de una integral múltiple se reduce al de integrales simples. Concretamente se va a probar que si f(x, y) es una función
Antiderivada o Primitiva
Octubre 2013 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada En esta Presentación... En esta Presentación veremos: Definición de Antiderivada Ejemplos En esta Presentación...
Integración múltiple: integrales dobles
Problemas propuestos con solución Integración múltiple: integrales dobles ISABEL MAEO epartamento de Análisis Matemático Universidad de La Laguna [email protected] Índice. Integrales iteradas 2. Teorema
3 Integración en IR n
a t e a POBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CUSO 29 21 3 Integración en I n 3.1 Integral múltiple. Problema 3.1 Calcula f en los siguientes casos: Q i) f(x, y) =
Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ,
egundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de 216 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. ecuerde apagar
Examen final de Cálculo Integral
Examen final de Cálculo Integral 8 de junio de (Soluciones) Cuestiones C Sí se puede asegurar que es integrable, como consecuencia del teorema 4. de los apuntes: Llamamos W y f : W R a la esfera y a la
TERCER EXAMEN EJERCICIOS RESUELTOS
MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).
Medida Cero y Contenido Cero
Medida Cero y Contenido Cero Ejemplo.- Sea f : [0, 1] [0, 1] definida como 1 si x o y Q f(x, y) = 0 si x y y / Q Mostrar que f Sea P cualquier partición de y i cualquier subrectángulo inducido por esta
E.T.S.I. Agrónomos Grado en Biotecnología Matemáticas II 1 a prueba de la evaluación continua: soluciones
E.T.S.I. Agrónomos Grado en Biotecnología Matemáticas II a prueba de la evaluación continua: soluciones 4 de marzo de 04 Es importante que escribáis con claridad y expreséis con precisión los argumentos
EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera
EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:
APLICACIONES DE LA INTEGRAL DEFINIDA
APLICACIONES DE LA INTEGRAL DEFINIDA Objetivo: El alumno analizará y comprenderá el uso y la aplicación de la integral definida en la resolución de problemas REGIONES PLANAS LIMITADAS POR DOS CURVAS Sean
Tema 4 Diferenciación de funciones de una y varias
Tema 4 Diferenciación de funciones de una y varias variables. CÁLCULO DIFERENCIAL DE FUNCIONES DE UNA VARIABLE Definición.: Función derivable Sea f : R R definida en un entorno de a R, se dice que f es
Cambio de Variables en la Integral Múltiple
Capítulo 24 Cambio de Variables en la Integral Múltiple n la demostración del teorema del cambio de variable utilizaremos con frecuencia que el carácter medible de los conjuntos es una propiedad que se
1 Funciones de Varias Variables
EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,
Análisis Matemático 2
Análisis Matemático Resolución del coloquio de fecha 4/07/18 tema I con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad
Comisión de Pedagogía - Diego Chamorro Un (corto) panorama de Análisis Armónico (Nivel 3).
AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Un (corto) panorama de Análisis Armónico (Nivel 3). Lección n : La ecuación de ondas como punto de partida UCE, otoño 04 Introducción El objetivo
Antiderivada o Primitiva
Antiderivada o Promitiva agosto 2012 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada. En esta Presentación... En esta Presentación veremos: Definición de Antiderivada.
En este capítulo extenderemos la conocida ecuación. g(b) f = f g g, g(a)
Capítulo 6 Cambio de variable 1. Particiones de la Unidad En este capítulo extenderemos la conocida ecuación (6.1) g(b) g(a) f = b a f g g, válida para funciones iemann-integrables f y funciones diferenciables
Matemáticas III Tema 6 Integrales de superficie
Matemáticas III Tema 6 Integrales de superficie Rodríguez ánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba,. 214. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative Commons Attribution- NonComercial-hareAlike
3. Cambio de variables en integrales dobles.
GADO DE INGENIEÍA AEOESPACIAL. CUSO. Lección. Integrales múltiples. 3. Cambio de variables en integrales dobles. Para calcular integrales dobles eiste, además del teorema de Fubini, otra herramienta fundamental
APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO
APUNTES E MATEMÁTICAS EXÁMENES RESUELTOS E MATEMÁTICAS I EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA GRAOS EN ECONOMÍA Y AMINISTRACIÓN E EMPRESAS PRIMER CURSO Jesús Muñoz San Miguel http://www.personal.us.es/jmiguel
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:
FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,
CÁLCULO INTEGRAL EN VARIAS VARIABLES
APUNTES MAT 4 CÁLCULO INTEGRAL EN VARIAS VARIABLES CÁLCULO VECTORIAL 17 Salomón Alarcón Araneda Salomón Alarcón Araneda APUNTES MAT 4 CÁLCULO INTEGRAL EN VARIAS VARIABLES. CÁLCULO VECTORIAL.. Esta versión
Tarea 14 Ejercicios resueltos
Tarea 14 Ejercicios resueltos 1. En los ejercicios del 1 al 6 determinar viendo la gráfica cuándo la función definida en [a, b] tiene máximos, o mínimos y en dónde. 1 (1) La función es continua en un intervalo
Integración de Funciones Reales
Capítulo 20 Integración de Funciones Reales Nos proponemos estudiar en este capítulo las propiedades fundamentales del operador integral. n particular, extenderemos aquí al caso de funciones medibles con
INTEGRALES MÚLTIPLES
INTEGALES MÚLTIPLES Introducción: Si f es una función definida sobre una región, la integral doble se puede interpretar como el volumen del sólido limitado superiormente por la superficie z = f(,, inferiormente
Integración múltiple: integrales triples
Problemas propuestos con solución Integración múltiple: integrales triples ISABEL MARRERO epartamento de Análisis Matemático Universidad de La Laguna [email protected] Índice 1. Integrales iteradas 1. Teorema
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 10 Año 009 10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π
1. INTEGRALES MÚLTIPLES
1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1
Integración en una variable (repaso)
Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 28 Práctica 8: Integración Integración en una variable (repaso). Calcular: xsen x. sen 2 x cos x. xe x2. e x sen x. 3x 2 x 2 + x 2. ln x. 2.
6. Integrales triples.
GRADO DE INGENIERÍA AEROESPACIAL. CRSO 0. Lección. Integrales múltiples. 6. Integrales triples. Integral triple en un prisma. El proceso para definir la integral triple f ( xyzdv,, ), de una función continua
MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN
MATEMÁTICAS: EBAU 207 MODELO CASTILLA Y LEÓN Opción A Ejercicio A x y + z = Dado el sistema de ecuaciones lineales { 3x + λy =, se pide: 4x + λz = 2 a) Discutir el sistema (existencia y número de soluciones)
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Análisis Matemático I
Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una
Capítulo 3: Cálculo integral
(Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos La integral indefinida Propiedades básicas de la integral indefinida Métodos de integración: por
( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h
Eamen de cálculo diferencial e integral /4/9 Opción A Ejercicio. (Puntuación máima: puntos) Sea la función f ( ) = 4 a. Estudiar su continuidad y derivabilidad. b. Dibujar su gráfica. c. Calcular el área
1.6 Ejercicios resueltos
Apuntes de Ampliación de Matemáticas 1.6 Ejercicios resueltos Ejercicio 1.1 En cada uno de los siguientes casos a A {(x,y R : 1 < x < 1, 1 < y < 1}. b A {(x,y R : 1 < x + y < 4}. c A {(x,y R : y > 0}.
Propiedades de la integral
Capítulo 4 Propiedades de la integral En este capítulo estudiaremos las propiedades elementales de la integral. En su mayoría resultarán familiares, pues las propiedades de la integral en R se extienden
La Integral de Riemann
Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función
TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo
TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x
Clase 14: Fórmula del Cambio de Variables
Clase 4: Fórmula del Cambio de Variables C.J. Vanegas 4 de junio de 8 Recordemos.. Método de sustitución en integrales de una variable: b f(g(t))g (t) dt g(b) a g(a) f(s) ds s g(t) ds g (t)dt t a s g(a)
7. Cambio de variables en integrales triples.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. Lección. Integrales múltiples. 7. Cambio de variables en integrales triples. El teorema del cambio de variables para integrales triples es análogo al de integrales
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2005 Primera parte
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 005 Primera parte Ejercicio 1. Un espejo plano de dimensiones 80 cm y 90 cm, se rompe por una esquina según una recta. De
Problemas de Análisis Vectorial y Estadístico
Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1
Matemáticas III Andalucía-Tech. Integrales múltiples
Matemátias III Andaluía-Teh Tema 4 Integrales múltiples Índie. Preliminares. Funión Gamma funión Beta. Integrales dobles.. Integral doble de un ampo esalar sobre un retángulo................ Integral doble
Examen final de Cálculo Integral
Examen final de Cálculo Integral de junio de 11 (Soluciones) Cuestiones C 1 La respuesta es que la función es integrable, como consecuencia del Teorema 1.1 de los apuntes, o el Teorema del Capítulo 5 del
Integrales impropias (funciones no continuas sobre conjuntos acotados)
Unidad Integrales Múltiples. Funciones no continuas sobre conjuntos acotados Integrales impropias (unciones no continuas sobre conjuntos acotados) Ejemplo Considere la unción (x, y) xy x 2 + y 2 En este
Integración en una variable (repaso)
Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 2 Práctica 8: Integración Integración en una variable (repaso). Calcular: sen x. 2π sen x. El área entre las curvas y = sen x, y =, x =, x
TEORIA MATEMATICAS 5 PRIMER PARCIAL
Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:
2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto
Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv
Teoremas de convergencia y derivación bajo el signo integral
Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones
