INTEGRALES INDEFINIDAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INTEGRALES INDEFINIDAS"

Transcripción

1 Ingrals INTEGRALES INDEFINIDAS MÉTODOS DE INTEGRACIÓN. Ingración inmdiaa.- Tnindo n cuna qu l procso d ingración s l invrso d la drivación, podmos scribir fácilmn las ingrals indfinidas d las funcions más lmnals sin más qu lr la abla d drivadas n snido conrario, d drcha a izquirda. Así podmos obnr los siguins ipos d ingrals lmnals: a) Poncial b) Logarímica uu n n+ d= u +C (n -) n+ Si n = - noncs s convir n una ingral LOGARÍTMICA: Ejmplos: 6 5 d = +C d=ln u +C u - d = +C = +C = +C - + sn a cosa d = a cosa sn ad = a sn a = +C a a sn a +C = ( - ) d = ( -)( - ) d = +C = = - +C d = d= ln +C sn g d = d = -ln cos +C ( o si s prfir cos = ln +C = ln sc +C cos --

2 Ingrals c) Eponncial u u u d = +C Ejmplos: d = d = +C d = d = +C sn sn cos d = +C d) Trigonoméricas snu d = - cosu+c cosu d = sn u+c d = - cogu +C sn u d = gu +C cos u Ejmplos: cos d = cos d = sn +C 6 sn d = - cos +C sn d = - cos +C cos( ln ) d = sn(ln)+c Aquí pud sr inrsan rcordar las fórmulas rigonoméricas d cursos anriors: cos sc u + g u u = = Así la úlima ingral omará las siguins formas: u d = u d = u (+g u) d sc cos u sc d = sc d = g +C cosc d = cosc d = - cog +C g d = (+g -) d = (+g ) d - d = g - +C ) Cicloméricas -u d = arcsn u+c d = arcg u+c +u --

3 Ingrals Ejmplos: 6 d = 6 d = 6 arcg +C + + d = d = arcsn +C - -( ) d = d = arcsn - -( ) cos d = arcg(sn)+c + sn +C. Cambio d variabl o susiución Qué hacr cuando la ingral propusa no parc sr una ingral inmdiaa?. Eisn varias solucions. Una d llas s raar d cambiar la variabl "" por ora "" d manra qu la ingral rsulan ras l cambio sa más sncilla qu la inicial (inmdiaa si s posibl). S hac l cambio =g(), y así d= g ()d. En l siguin jmplo, db viars l cambio d variabl por sr rivial (hmos rsulo ya ingrals d s ipo d forma inmdiaa), pro nos prmi vr odo lo dicho anriormn: d sn sn cos d = = +C = +C 6 d ( = sn ; d = cos d = cos d ) En l siguin, sin mbargo, s méodo s l más adcuado: d = - (+ ( = - d = ) = arcg d = arcg +C = + -+C = + y así d = d ). Ingración por pars S corrspond con la rgla d drivación d un produco. u dv = u v - v du Ejmplos: ln d = ln - d = ln - +C = ( ln -)+C u = ln du = d dv = d v = --

4 arcg d = arcg - d = arcg - d = + + arcg - ln (+ )+C d ( u = arcg du = ; dv = d v = ) + = Ingrals LA APLICACIÓN DE ESTE MÉTODO ES ACONSEJABLE CUANDO EL FACTOR QUE SE DERIVA (u) SE REDUCE O SIMPLIFICA, Y EL FACTOR QUE SE INTEGRA (dv) NO SE COMPLICA CON ESTA INTEGRACIÓN. Eisn varias rglas mnmoécnicas. Una d llas s "Sólo Un Día Vi (IGUAL) A Un Valin (mnos ingral) Soldadio Vsida D Uniform". Eligindo adcuadamn los valors d u y dv, pud simplificars mucho la rsolución d la ingral. Para lgir la función u s pud usar l código A L P E S Arcosno, arcocosno..., Logarímicas, Polinómicas, Eponncials, Sno, cosno, angn... (Elgimos simpr "u" como la función siuada más a la izquirda d la palabra ALPES). Los firms candidaos a s méodo con oda sguridad srán por ano: n n n d, sn d, cos d,... En algunas ocasions hay qu volvr a aplicar la ingración por pars a la ingral rsulan: cos d = sn - sn d = u = du = d u = du = d dv = cos d v = sn dv = sn d v = - cos La siguin ingral s "basan curiosa": - sn +C = sn + cos + (- cos ) d = sn + cos = sn - [(-cos )- (-cos ) d] = sn d = - sn cos+ cos d = - sn cos + (- sn ( u = sn _ du = cos d ; v = sn d _ v = - cos d ) = - sn cos + d - sn d.por ano : sn d + sn d = - sn cos + +C d dond : - sn cos + sn d = +C D la misma manra: cos d = (+ sn cos )+C )d = --

5 Ejrcicios Solucions Ingrals d - + arcg + C ( + ) ( +). - d - + arcsn + C. d - + C 9 -. d - + C (+) 5. d ( )+ C n - 6. d - n n- n- - ( +n +n(n -) +...+n! )+ C d + C 5. ( ) d C 5 9. (+ - ) d +5ln + + C 0. d + C d. + C 5. ( +a) d 5 +a+ C -. d - + C. 5(+g ) d 5 g + C π 5. d + π arcg + C 6. g d g - + C - sn 7. d sn cos - cog + C. sn d - cos + C 9. cog d ln sn +C sn 0. sn cos d + C sn. d +C = sc + C cos cos cos. d ln sn + +C sn +. g d - ln cos +C -5-

6 sn +g. d - ln cos + sc +C cos 5. ln d ln - +C 9 6. ln d ln - ln ++ C Ingrals 7. ln d ln + C ln( ln ). d ln [ ln( ln )-] +C 9. arcg d arcg - ln (+ )+ C 0. arcsn d arcsn - arcsn C. arcg d + arcg - + C. sn d sn - cos d. sn - cog + ln sn +C ( u = ) arcsn. d + + arcsn + - +C ( u = arcsn ) 5. arcg d arcg - d y ahora con = (+ ) s obin la solución ( +)arcg - + C arcsn - - arcsn 6. d ln ( )- d 7. Por cambio d variabl, =/ ; d=-/ d y así: - - d d = - = - - d = - = -arcsn +C - d. Como una función a+ lvada a -/ o mdian cambio d variabl: a+ +C ( a+ = ) -6-

7 -- 0. d ( + = ) (+ ) 6(+ ) -. d - + ln - + +C d. ln Cuál s la drivada d ln? ln ln +C. d ln + +C +. d + C - 5. ( - ) d C d 6. ( ln +) ln + ln +C d ln ( +)+ C +. d - + C ln ( ) 9. d ( ln ) + C. Ingración d funcions racionals.- Ingrals Son las dl ipo P() Q() d, dond P y Q son polinomios. Muchas d llas ya las hmos viso n l puno (Ingración inmdiaa). Por jmplo: Poncials: - - d= ( - )( - - ) d= - +C ( - - ) ( - - ) + Logarímicas: d= ln C Arco angn: d= d= d= arcg +C + (+( ) ) +( ) Qué hacr n los dmás casos? -7- Nosoros somos srs racionals d los qu oman las racions n los bars. Sinisro Toal

8 Méodo d dscomposición n fraccions simpls.- Ingrals Si l grado d P() fura mayor o igual qu l d Q(), la división sría posibl. Por jmplo + + n: d Y nindo n cuna qu DIVIDENDO= DIVISOR COCIENTE + RESTO ++= ( - ) + +. Así, dividindo odo nr l divisor: + + ( -) + = +. Ingrando: d= d + d, dond la primra ingral s poncial, pro y la - - sgunda? P() P()Q() R() En gnral P()=Q() P ()+R(); y así: = +, ingrando: Q() Q() Q() P() R() d= P() d + d, dond l primr sumando s una ingral inmdiaa. Q() Q() R() En cualquir caso quda por ingrar d. Para llo s dscompon n facors l Q() dnominador y posriormn la función racional n fraccions simpls. Esa dscomposición dpnd dl ipo d raícs dl dnominador. Vamos los disinos casos. a) Q() in raícs rals simpls Es s nusro caso: ( -)= (+) (-) (*) + A B La dscomposición srá: = + (En gnral una fracción por cada raíz). El problma qudará rsulo cuando hayamos drminado los valors d A y B. Si n la prsión anrior muliplicamos por - obnmos += A(-) + B(+). Sñalaré dos méodos para rsolvr: I) En la prsión += A(-) + B(+), podmos idnificar los coficins + = A -A +B -B; + = (A+B) -A+ B Para qu dos polinomios san iguals dbn srlo érmino a érmino: Términos d primr grado iguals: Términos indpndins iguals: Y rsolvindo s sisma obnmos: = A + B = -A+ B A=/ y B=5/. II) Dando los valors apropiados a la "" (los mjors son las raícs dl dnominador), podmos avriguar los d A y B. += A(-) + B(+). Para qu dos polinomios san iguals dbn nr los mismos valors numéricos. --

9 Si =: + = A(-) + B(+) ; 5=B ; B=5/ Si =-: - += A(--)+ B(-+); -=-A; A=/ Ingrals Con cualquira d los dos méodos obndrmos, siguindo la prsión (*) : 5 + d + d= 5 d= ln + + ln - +C, so s d = d + d= + ln ln - +C = - - = + ln (+ ) (- ) 5 +C b) Q() in raícs rals múlipls - Es s l caso d d. En la dscomposición aparcrán las sucsivas ( - ) (+) poncias d la raíz múlipl: - A B C D = ( - ) (+) - ( - ) ( - ) + El rso dl procso s análogo al caso anrior. ( - ) = A( - ) ( - ) +B( - )( + ) +C( + ) +D( - ) Dando valors : Si = : - = C, d dond C=- Si =- : - = D(-) ; D=/ Ncsiamos oros dos valors. Por jmplo 0 y : Si =0 : -= A - B +(-/)- / Si = : 0= A+B - / + /... A=-/ y B=/ d = d+ d+ d+ d = ( - ) (+) - ( - ) ( - ) (+) - - = - ln - + ( - ) d - ( - ) d+ ln + +C = = - ln ( -) ( - ) c) Q() in raícs compljas simpls + ln + +C = ln (+ ) ( - ) - - ( - ) Ahora la dscomposición incluy un facor d nauralza disina a los anriors. Por jmplo: - 9 d ; -=(-)( ++), s úlimo facor no in raícs rals. La - dscomposición n fraccions srá: (**) - 9 A M+ N = +, si a +b+c in raícs compljas, n la dscomposición M+ N scribirmos. El rsulado d sa ingral srá simpr la combinación d un a +b+c arcoangn y una logarímica. En nusro jrcicio: D (**) - 9= A( ++)+(M+N)(-)...Rsolvindo por cualquira d los dos méodos -9- +C

10 ans mncionados: A= -, M= y N= 7. Ingrals d = d + d, )cómo rsolvr sa sgunda ingral? S procura qu l numrador s parzca lo más posibl a la drivada dl dnominador para podr dscomponrla n la suma d una logarímica y un arco-angn: d= d = d+ d = (+) = ln ( + +)+ arcg( ) - ln - +C 6 Cómo s ingra d? Sabmos qu s un arcoangn. Vamos a uilizar la + + fórmula dl binomio d Nwon para complar los cuadrados. Rcurda qu a + ab + b = (a + b) s un rinomio cuadrado prfco. El objivo s podr prsnar ++ como a +u complando cuadrados, y así podr u aplicar la fórmula dl arcoangn ( d = arcg + C ). a +u a a Pudo muliplicar por, n s caso, para viar las fraccions. ++= (+) -+=(+) +. En gnral a + ab = (a +b ) - b 6 + d= d= d = arcg +C, qu una (+) + vz racionalizado nos da la solución propusa A B+C d ; = + ( - )( +) ( - )( +) - + El grado dl dnominador s mayor qu l dl numrador. El facor + s irrducibl, d ahí la dscomposición fcuada. -5+=A( +)+(B+C)(-) Para =, 0=0A. D dond A=. =A+B =A-C... B=; C=-. Por ano: - 5+ d= ( - )( +) - - d + d= + - = ln - + ln ( +)- arcg +C = ln[( - ) d - + d d d ] = - arcg +C En primr lugar s dscompon l dnominador (hallando las raícs d la cuación d sgundo grado): -0-

11 Ingrals A B -+=(-)(-); = + ; = A( -)+ B( - ) Solucions: A= y B=- d d d = - = ln - -ln - +C = ln C - Ejrcicios Solucions d - ( ++)+ arcg (+)+ C ln d ln + +C ( - ) 5. d + C + + ln d ln - - ln + +C d - ln - +5 ln - +C d ln - - ln( + +)- arcg + C - 6 Limia l qu quir, driva cualquira, ingra l qu pud --

TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Cód. 80607 TEMA INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN. INTEGRAL INDEFINIDA Dfinición: S dic qu una función F() s una primiiva d la función f() si y sólo si F () = f() Ejmplo: F () = y F ()= son primiivas

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales ismas d Ecuacions Difrncials Un sisma d dos cuacions difrncials d primr ordn s pud rprsnar n forma gnral como g g, x,, x, Dond x, son las variabls dpndins s la variabl indpndin dl sisma. i cada una d las

Más detalles

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias Mamáicas II Ingrals Impropias Mamáicas II IMPORTANTE: Es ipo d ingrals s llaman ipo P (EN ESTE CASO TIPO ALFA) Mamáicas II Mamáicas II Ejmplo 7.5. (Problma 5.f) Dcida si la siguin ingral convrg d ln( )

Más detalles

TEMA 5: INTEGRAL INDEFINIDA

TEMA 5: INTEGRAL INDEFINIDA MATEMÁTIAS II TEMA : INTEGRAL INDEFINIDA. Primitiva d una función El objtivo d st tma s l studio dl procso contrario al d drivación. Si drivamos la función partimos d f tnmos y dirmos qu s una primitiva

Más detalles

Integrales indefinidas. 2Bach.

Integrales indefinidas. 2Bach. Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva

Más detalles

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION Inroducción a la ingración d funcions compusas INTREGRACION POR SUSTITUCION Cuando s raa d funcions compusas, s aplica un méodo qu s llama ingración por susiución, s méodo srá nndido sin dificulad n la

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x) IES Padr Povda (Guadi) UNIDAD : INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu:

Más detalles

La integral Indefinida MOISES VILLENA MUÑOZ

La integral Indefinida MOISES VILLENA MUÑOZ . DEFINIIÓN. TÉNIAS DE INTEGRAIÓN.. FORMULAS.. PROPIEDADES.. INTEGRAIÓN DIRETA.. INTEGRAIÓN POR SUSTITUIÓN.. INTEGRAIÓN POR PARTES..6 INTEGRALES DE FUNIONES TRIGONOMÉTRIAS..7 INTEGRAIÓN POR SUSTITUIÓN

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x) IES Padr Povda (Guadi) UNIDAD INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu: Ejmplos:

Más detalles

Ejercicios para aprender a integrar Propiedades de las integrales:

Ejercicios para aprender a integrar Propiedades de las integrales: Julián Morno Mstr www.juliwb.s Ejrcicios para aprndr a intgrar Propidads d las intgrals: af d = a f d f ± g( ) d = f d ± g( ) d b a b f d = f d = [ F( ) ] a = F( b) F( a) a b Rglas d intgración: ad = a

Más detalles

Prof. Jesús Olivar. Resumen de Cálculo II ING. PETRÓLEO

Prof. Jesús Olivar. Resumen de Cálculo II ING. PETRÓLEO Prof. Jsús Olivar Rsumn d Cálculo II ING. PETRÓLEO.- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f, dirmos qu F s una primitiva suya si F

Más detalles

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades. INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

Ejercicios para aprender a integrar

Ejercicios para aprender a integrar Ejrcicios para aprndr a intgrar Propidads d las intgrals: af ) d = a f d b f ) d = Rglas d intgración: ad = a ( f ± g( ) d = f d ± g( ) d a a b [ F( ) ] = F( b) F( ) ( f d = a b Polinomios y sris d potncias

Más detalles

Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida

Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida ntgral indfinida achillrato ntgral indfinida. Primitiva d una función Dfinición: Sa f() una función dfinida n l intrvalo (a,b), llamarmos primitiva d la función f() a toda función ral d variabl ral, F(),

Más detalles

MATEMÁTICAS II 2011 OPCIÓN A

MATEMÁTICAS II 2011 OPCIÓN A MTEMÁTICS II OPCIÓN Ejrcicio : Una vnana normanda consis n un rcángulo coronado con un smicírculo. D nr odas las vnanas normandas d prímro m, halla las dimnsions dl marco d la d ára máima. Solución: El

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida

Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida º achillrato ntgral indfinida. Primitiva d una función Dfinición: Sa f() una función dfinida n l intrvalo (a,b), llamarmos primitiva d la función f() a toda función ral d variabl ral, F(), tal qu: Hallar

Más detalles

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros.

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros. . Drivar simplificar: a. S driva n forma logarítmica. S mpiza por tomar logaritmos npranos n ambos mimbros. ln ln Aplicando las propidads d los logaritmos s baja l ponnt. ln ln S drivan los dos mimbros

Más detalles

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A Eámns d Mamáicas d Slcividad rsulos hp://qui-mi.com/ Eamn d Slcividad Mamáicas II - SEPTIEMBRE - ndalucía OPIÓN.- Sa la función coninua f : R R dfinida por f si si > a [' punos] alcula l valor d. b ['

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Univrsidad d Puro Rico Rcino Univrsiario d Maagüz Dparamno d incias Mamáicas Eamn II - Ma álculo II d marzo d 9 Nombr Númro d sudian Scción Profsor Db mosrar odo su rabajo. Rsulva odos los problmas, scriba

Más detalles

n n ... = + : : : : : : : [ ]

n n ... = + : : : : : : : [ ] Considérs l siguin sisma d cuacions difrncials linals d rimr ordn d coficins consans, n dond las incógnias son las funcions x x ( ), x x ( ),, x ( ) n xn / d a x ( ) a x ( ) a x ( ) f ( ) n n / d a x (

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones

Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones Raccions Rrsibls Raccions Parallas o Compiias Raccions Conscuias Raccions n Cadna Ramificada. Explosions Mcanismos d Racción Raccions Rrsibls Para la racción A _ B dond ano la racción dirca como la inrsa

Más detalles

Capítulo 1: Integral indefinida. Módulos 1 al 4

Capítulo 1: Integral indefinida. Módulos 1 al 4 Módulos al En los jrcicios a 8 s dan las funcions f y F. Comprub, usando drivación, qu F( ) s la primiiva más gnral d f ( ). Qué fórmula d ingración pud dducirs n cada caso?. f ( ) = ; ( ) = ln ( ). F

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

Tema 10. La integral indefinida

Tema 10. La integral indefinida Mamáicas II (achillrao d incias). nálisis: Ingral Indfinida 9. oncpo d ingral indfinida Tma 0. La ingral indfinida La drivada d una función prmi conocr la asa d variación (l cambio insanáno) d un drminado

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido.

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido. La figura musra n forma squmáica un sisma d calnamino d líquidos conocido como pava lécrica. Un rsisor d masa dsprciabl calfacciona una placa málica cuya capacidad érmica la suponmos concnrada n C1 y su

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

tiene por límite L cuando la variable independiente x tiende a x

tiene por límite L cuando la variable independiente x tiende a x UNIDAD (Continuación).- Funcions rals. Límits y continuidad 9. LÍMITES. LÍMITES LATERALES Rcordamos dl año antrior qu una función y f () tin por it L cuando la variabl indpndint tind a, y s notaba por

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Análisis de Señales. Descripción matemática de señales

Análisis de Señales. Descripción matemática de señales Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

(Soluc: 1) 1/x 2) x 6 /36 3)

(Soluc: 1) 1/x 2) x 6 /36 3) INTEGRALES INDEFINIDAS º BACH.. Calcular las siguints intgrals potncials (y comprobar la sombrada: d d d 6 d t t dt d 7 t dt d 9 d 0 d t d d d + d ( t dt d (Soluc: / 6 /6 0 t 7 /7 t 6 /6 8 8 7 t / + 9

Más detalles

(Soluc: a) 1/x b) x 6 /36 c)

(Soluc: a) 1/x b) x 6 /36 c) EJERCICIOS d INTEGRAL INDEFINIDA º BACH.. Calcular las siguints intgrals potncials (s rcominda hacr la comprobación: a d b d c d d d t t dt d g t dt d i d j d t m d n d o d + d ( t dt l d (Soluc: a / b

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

Explicación de operaciones. fraccionarios

Explicación de operaciones. fraccionarios Eplicación d opracions d divisions con ponns fraccionarios Mamáicas I Ejrcicio :. Simplifica obén l rsulado d las siuins raícs. ( ) 8 Paso : s muliplica l ponn fura d cada parénsis por l ponn d cada variabl

Más detalles

TEMA 10: DERIVADAS. f = = x

TEMA 10: DERIVADAS. f = = x TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad

Más detalles

3.- a) [1,25 puntos] Prueba que f(x) = ex e x

3.- a) [1,25 puntos] Prueba que f(x) = ex e x EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA. F() s ua primitiva d f() si F ()= f(). Esto s prsa así: f() = F'() = F() La itgració s la opració ivrsa a la drivació, d modo qu: FUNCIONES

Más detalles

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL El méodo dirco d la rigidz. Méodo maricial MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL 1. SISTEMAS DE REERENCIA La sismaización dl méodo cuyos fundamnos s han prsnado anriormn rquir dl paso d unas caracrísicas

Más detalles

EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES. x y = 1. π 2 3. sen x cos xdx (Septiembre Ex. Or.)

EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES. x y = 1. π 2 3. sen x cos xdx (Septiembre Ex. Or.) TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mail: imozas@l.und.s hp://lfonica.n/wb/imm EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES.- Razon y obnga qu la ingral ulriana (p) (gamma d p) para p

Más detalles

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas MUESREO Y RECONSRUCCIÓN DE SEÑALES oría d circuios y sismas Inroducción Sabmos modlar sismas coninuos Laplac o sismas discros Z. Pro n muchos casos los sismas coninn ano bloqus coninuos como bloqus discros.

Más detalles

h t t e , halla la velocidad al cabo de 2 segundos. 4.- (1,5 puntos) Dada la función f( x), determina

h t t e , halla la velocidad al cabo de 2 segundos. 4.- (1,5 puntos) Dada la función f( x), determina Nmbr: Curs: 1º Bachillra B Eamn XII Fcha: 11 d juni d 018 Trcra Evaluación Anción: La n plicación clara y cncisa d cada jrcici implica una pnalización dl 5% d la na 1.- ( puns) Calcula la función plinómica,

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

(Soluc: a) 1/x b) x 6 /36 c)

(Soluc: a) 1/x b) x 6 /36 c) . Calcular las siguints intgrals potncials (s rcominda hacr la comprobación: a d b d c d d d t t dt f d g t dt h d i d j d t m d n d o d p + d ( t dt l d (Soluc: a / b / c j d t / l m t / f 8 8 n o g t

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto) ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

TEMA 6. INTEGRALES INDEFINIDAS

TEMA 6. INTEGRALES INDEFINIDAS TEM. INTEGRLES INDEFINIDS. Dfinición d Ingrl. Primiiv d un función.. Propidds d ls ingrls.. Ingrls inmdis. Méodos d ingrción.. Obnción d ingrls inmdis.. Cmbio d vribl.. Por prs.. Funcions rcionls Cono

Más detalles

TEMA 1: Los números reales. Tema 1: Los números reales 1

TEMA 1: Los números reales. Tema 1: Los números reales 1 TEMA 1: Los númros rals Tma 1: Los númros rals 1 ESQUEMA DE LA UNIDAD 1.- Númros naturals y ntros. 2.- Númros racionals. 3.- Númros irracionals. 4.- Númros rals. 5.- Jrarquía n las opracions combinadas.

Más detalles

TEMA 1: Los números reales. Tema 1: Los números reales 1

TEMA 1: Los números reales. Tema 1: Los números reales 1 TEMA 1: Los númros rals Tma 1: Los númros rals 1 ESQUEMA DE LA UNIDAD 1.- Númros naturals y ntros. 2.- Númros racionals. 3.- Númros irracionals. 4.- Númros rals. 5.- Jrarquía n las opracions combinadas.

Más detalles

Unidad 11 Derivadas 4

Unidad 11 Derivadas 4 Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no

Más detalles

Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya

Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contnido: Intgral dfinida: (º) Aplicación:

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

xdx 10. e dx 2 x x.ln dx x dx 7. x.cosh 15. x.(ln x) dx 9 x *Ver soluciones de los números impares en el libro de Leithold

xdx 10. e dx 2 x x.ln dx x dx 7. x.cosh 15. x.(ln x) dx 9 x *Ver soluciones de los números impares en el libro de Leithold REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contnido: Intgrals impropias Primra spci-unidad

Más detalles

Técnicas de cálculo de derivadas: Derivadas de funciones elementales. Cálculo de la derivada de la función inversa. Derivación logarítmica

Técnicas de cálculo de derivadas: Derivadas de funciones elementales. Cálculo de la derivada de la función inversa. Derivación logarítmica BLOQUE a Para ralizar stos jrcicios dbs conocr: La rprsntación gráfica las propidads d las funcions lmntals. La dfinición d continuidad drivabilidad d una función n un punto la rlación ntr ambos concptos.

Más detalles

RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD

RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD. ACOTACIÓN DE FUNCIONES COTA SUPERIOR KR s cota suprior d f( ) D s f( ) K Cualquir nº mayor qu una cota suprior también s una cota suprior.

Más detalles

(Apuntes en revisión para orientar el aprendizaje) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL

(Apuntes en revisión para orientar el aprendizaje) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL (Apns n risión para orinar l aprndizaj) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL Fnción logarimo naral S sa q n+ n d + C ; n n + S comnzará con la dfinición d na ingral indfinida pariclar d

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

Definición. a) La transformada de Laplace (TL) de una función causal se define por medio de:

Definición. a) La transformada de Laplace (TL) de una función causal se define por medio de: a Tranformada d aplac Dfinición a) a ranformada d aplac (T) d una función caual dfin por mdio d: f F f d En odo lo valor para lo cual la ingral impropia anrior convrja f F dirmo qu la ranformada invra

Más detalles

,, 0 e (se excluyen los de la forma 1,

,, 0 e (se excluyen los de la forma 1, ocumno d orinación d Mamáicas II Profsor: José Guzmán Guzmán Pag. nº IRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS E ACCESO A LA UNVERSIA. Comnarios acrca dl programa dl sgundo curso dl Bachillrao,

Más detalles

EJERCICIOS RESUELTOS TEMA 1: PARTE 3

EJERCICIOS RESUELTOS TEMA 1: PARTE 3 Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:

Más detalles

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1 CURSO 7-8. Primra part. d mayo d 8. ) (p) Estudia las discontinuidads d la función: f() / - / + ) (p) Dada la siguint función, s pid: a) La drivada simplificada. b) La cuación d la tangnt d inflión: +

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions d ordn suprior Ecuacions homogénas d sgundo ordn con coficints constants Caso. Raícs rals distintas 6 Caso. Raícs compljas conjugadas 6 Caso. Raícs rals iguals 7 Rsumn

Más detalles

Sistemas Suavemente Variantes

Sistemas Suavemente Variantes Sismas Suavmn Varians Adriana Lópz, Alfrdo Rsrpo Laboraorio d Sñals, Dparamno d Elécrica y Elcrónica, Univrsidad d Los Ands, adriana_lopz5@homail.com, arsrp@uniands.du.co, Bogoa. Rsumn Normalmn, los sismas

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83 TEMA. ECUACIONES SOLUCIONES DE LAS ACTIVIDADES Págs. 6 a 8 Página 6. a) mcm (, ) ( ) + ( ) + 7 + / mcm (6, 0) 0 ( + ) ( ) 0 + 8 0 / c) mcm (7, ) 8 ( ) 7 ( + ) 8 (9 ) 8 97 / 9 d) mcm (8, ) 8 6 (0 ) 8 Página

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo

Más detalles

Las Expectativas CAPÍTULO 7. Profesor: Carlos R. Pitta. Macroeconomía General. Universidad Austral de Chile Escuela de Ingeniería Comercial

Las Expectativas CAPÍTULO 7. Profesor: Carlos R. Pitta. Macroeconomía General. Universidad Austral de Chile Escuela de Ingeniería Comercial Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 7 Las Expcaivas Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo 7: Las

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apllidos: Nombr: Curso: º Grupo: A Día: -II-16 CURSO 15-16 Instruccions: a) Duración: 1 HORA y 3 MINUTOS. b) Dbs lgir ntr ralizar únicamnt los cuatro jrcicios d la

Más detalles

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas ap. Ecuacions Difrncials d Primr ordn. Inroducción. Ecuacions Linals. Ecuacions d Brnoulli. Ecuacions sparabls.5 Ecuacions Homogénas.6 Ecuacions acas.7 Facor Ingran.8 Esabilidad dinámica dl quilibrio.9

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2 Eamn. ª valuación //8 Opción A Ejrcicio. Puntuación máima: puntos Obtnr l valor dl siguint límit: lim + t ln t dt 5 Aplicación dl torma fundamntal dl cálculo intgral: Si f s continua n [, ] f t dt s drivabl

Más detalles

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla. UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

UNIDAD 8: INTRODUCCIÓN A LAS DERIVADAS

UNIDAD 8: INTRODUCCIÓN A LAS DERIVADAS UNIDAD 8: INTRODUCCIÓN A LAS DERIVADAS Introducción Tasas d variación mdia instantána Drivada n un punto Ecuación d la rcta tangnt n un punto Función drivada. Drivadas sucsivas Tabla d drivadas y rglas

Más detalles

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 1. ACTIVIDADES 1.11 A 1.22

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 1. ACTIVIDADES 1.11 A 1.22 CALCULO GRADO EN INGEN INFORM DEL SOFTWARE - TEMA ACTIVIDADES A Sa ( 0 / 0 0 a Es drivabl por la drca n 0? Es drivabl por la izquirda n 0? Es drivabl n 0? Razonar las rspustas b Obtnr la unción drivada

Más detalles

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN UNIVERSIDD TECNOÓGIC DE JISCO DIVISIÓN EECTRÓNIC Y UTOMTIZCIÓN NO VERSIÓN: FECH: GOSTO TITUO DE PRCTIC: Tranformada invra d aplac SIGNTUR: Mamáica III HOJ: DE: UNIDD TEMTIC: Tranformada d aplac Invra FECH

Más detalles

INTEGRALES DEFINIDAS. APLICACIONES

INTEGRALES DEFINIDAS. APLICACIONES INTEGRLES DEINIDS. PLICCIONES. Ingrl dfinid. Propidds. unción ingrl. Torm fundmnl dl cálculo ingrl. Rgl d Brrow 5. Torm dl vlor mdio. Ár ncrrd jo un curv y l j. Ár ncrrd por dos curvs. INTEGRLES DEINIDS.

Más detalles

9 Aplicaciones de las derivadas

9 Aplicaciones de las derivadas 9 Aplicacions d las drivadas Página 69 Optimización B A P' Q' O Q T P Página 71 r a) y' = 0 x = 0 8 Punto ( 0 0) x = 1 8 Punto ( 1 1) En (0 0) hay un punto d inflxión. En (1 1) hay un máximo rlativo. b)

Más detalles