TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.
|
|
|
- Isabel Fernández Silva
- hace 8 años
- Vistas:
Transcripción
1 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL DE UNA VARIABLE Connidos: Dfinición y significado d la ingral dfinida Propidads d la ingral dfinida Promdio ingral d una función n un inrvalo Torma dl valor mdio Torma fundamnal dl cálculo Rgla d Barrow Ingrals impropias d primra, sgunda y rcra spci Las funcions y d Eulr Propidads Ára d una rgión plana Longiud d un arco d curva Volumn d un curpo d rvolución Cálculo dl volumn d un curpo por sccions Rsulados d aprndizaj: Calcular ingrals dfinidas Aplicar rgla d Barrow Manjar las funcions Gamma y Ba y sus propidads Calcular áras d rcinos planos, longiuds d arcos d curva y volúmns d curpos sólidos como aplicación gomérica d la ingral Modlar problmas d la vida ral y d la ingniría con écnicas d cálculo ingral Bibliografía básica: Los connidos óricos d sos mas corrspondn al capíulo (cpo los pígrafs,, 6, 7, 8, y ), capíulo (pígrafs,, y capíulos y ) y capíulo (cpo l aparado ) dl libro Cálculo I: Toría y problmas d Análisis Mamáico n una variabl d Alfonsa García, F García, A Lópz d la Rica, A d la Villa y oros HOJA A Probar qu n d para odo n naural Hallar la mpraura mdia d una barra málica siuada n l j X, d rmos y, sindo la mpraura n cada puno d la misma T Log grados cnígrados San las funcions si f ( ) y F( ) f ( ) S pid: si, Esudiar la coninuidad y drivabilidad d F n l inrvalo b) Drminar F n forma no ingral
2 San las funcions si f ( ) y F ( ) f ( ) S pid: si, Esudiar la coninuidad y drivabilidad d F n l inrvalo b) Drminar F n forma no ingral Calcular la drivada d las siguins funcions F ( ) b) F ( ) c) F ( ) sn 6 Calcúls lim sn 6 Ln 7 Probar qu la función F ( ) in una sola raíz ral sn 8 Hallar l ordn y la par principal dl infiniésimo F ( ) n 9 Sa F f una función impar, drivabl y sricamn crcin n Sa f S pid: Drminar los inrvalos d crcimino y d dcrcimino d F b) Hallar, si isn, l máimo y l mínimo absoluo d F Calcular y sudiar la convrgncia d las siguins ingrals impropias: d b) d c) d, p p d ) d, p f) d p Calcular las siguins ingrals d b) d c) d d Calcular las siguins ingrals d b) sn d c) b p q ( ( b ) d sindo b a y p, q ) f) a 8 a d a d cog d para a Calcular l valor d la ingral para a para a
3 Hálls l ára ncrrada por la gráfica d y y l j X nr las rcas y b) Hálls l ára ncrrada por la curva y y su asínoa c) Hallar l ára ncrrada por una lips d smijs a y b 7 cos Calcúls d 6 7 Hallar l ára ncrrada por la asroid d cuacions paraméricas a cos,, ( a ) y asn b) Hallar l ára d la rgión inrior a la circunfrncia d cnro l orign y radio uno, y rior a la curva cuya prsión n coordnadas polars s r cos,, 6 Hallar la longiud d la circunfrncia y b) Hallar la longiud d la asroid d cuacions paraméricas a cos,, y asn c) Hallar la longiud dl arco d la spiral ( a ) r,, 7 Hallar l volumn dl oro obnido al girar l círculo d cuación y b a con b a, alrddor dl j OX 8 Calcular l volumn ncrrado por l lipsoid y z, sindo a, b, c a b c Como aplicación, dducir l volumn d una sfra d radio R HOJA B cos n Pruébs qu d Ln, n N Calcular la vlocidad mdia d un coch qu raliza l rayco Madrid-Barclona n horas, sindo V sn Km/h la vlocidad dl coch n cada insan d impo - San las funcions si f ( ) si y F ( ) f ( ) S pid: si, Esudiar la coninuidad y drivabilidad d F n l inrvalo b) Drminar F n forma no ingral
4 - San las funcions si f ( ) y F ( ) f ( ) S pid: si, Esudiar la coninuidad y drivabilidad d F n l inrvalo b) Drminar F n forma no ingral Calcular la drivada d las siguins funcions cos F ( ) b) cos sn F ( ) c) F( ) sn 6 Calcular los siguins límis: g lim sn b) cos sn Log( ) lim ( sn g) 7 Hallar l ordn y la par principal dl infiniésimo n f sh sn Ln sn sn d arc sn 8 San f : una función drivabl n con f ( ) y f ( ) para odo y F ( ) rmos rlaivos d 9 Sa F f ( ) Esudiar l crcimino y dcrcimino y hallar los f una función par y drivabl n y al qu f ( ), f ( ), vrificando f ( ) S considra la función F Hallar los rmos absoluos (si isn) y las raícs d f '( ) para S pid: f n b) Hallar los inrvalos d crcimino y d dcrcimino, y los rmos rlaivos d F n c) Hallar las raícs d F n Sa f una función par y drivabl n al qu f vrifica lim f ( ) S considra la función F f Dmosrar qu la función F in a lo sumo rs raícs n b) Sabindo qu f númro d raícs d la función sólo in una raíz y qu S pid:, sindo un parámro ral, hallar razonadamn l F sgún los disinos valors d
5 Calcular y sudiar la convrgncia d las siguins ingrals impropias: d b) d c) d d ) d f) d g) d Calcular las siguins ingrals d b) 6 d c) d - d Hallar l valor d n para qu s vrifiqu la igualdad n d! Calcular las siguins ingrals d b) ( ) d c) ( ) ( ) d 8 cos d ) sn d f) d g) d 6 d i) h) d b b a sindo a, b Dígas, jusificando la rspusa, si s cira o falsa la proposición: En la gráfica d la función y B(, ) B(, ) cora al mnos una vz al j X 6 Hallar l ára dl rcino siuado n l primr cuadran, limiado por las parábolas y, y ( ) y l j d ordnadas b) Hallar l ára comprndida nr las gráficas d las funcions f ( ) y g ( ) ( sn ), 7 Calcular n l inrvalo g cos sn cos d 8 Hálls l ára ncrrada por la curva y y su asínoa b) Hallar l ára ncrrada por la curva y y l j OX 9 Hallar l ára ncrrada por una circunfrncia d radio R cuando sa vin dada n forma plícia, paramérica y polar
6 , Sa f una función drivabl n con f 6 S considra la función y f F f S pid: Drminar los inrvalos d crcimino y dcrcimino y los rmos rlaivos d F n b) Sabindo qu F, hallar l ára d la rgión ncrrada por las gráficas d 7 las funcions f y g nr y 7 9 c) Sabindo qu ( ) f, hallar l númro d raícs rals d la función F sgún los disinos valors dl parámro ral Hallar la cuación d la rca qu pasa por l orign d coordnadas y divid a la rgión dl primr cuadran limiada por la parábola y y l j X n dos rgions d igual ára Una vaca sá aada n un véric d un prado cuadrangular d lado L Si la longiud d la curda a la qu sá aada dicha vaca s R, hallar la suprfici d hirba qu pud comrs la vaca Hallar la longiud dl arco d canaria y a ch, a nr los punos d a abscisas a y a b) Hallar la longiud dl arco d cicloid d cuacions paraméricas a sn,, ( a ) y a cos c) Hallar la longiud dl arco d la spiral d Arquímds cuya cuación n coordnadas polars s r a, a con, Hallar la longiud dl arco d hélic d cuacions paraméricas cos y sn,, z Calcular l volumn dl cono d alura h y cuya bas in radio R d dos formas disinas Calcular l volumn d una pirámid d alura h y cuya bas s un cuadrado d lado a 6- Hallar l volumn d un casqu sférico siuado a una alura h n una sfra d radio R d dos formas disinas 7 Hálls l volumn dl sólido d rvolución obnido al girar alrddor dl j OX la rgión limiada por la curva y y su asínoa 8
f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,
CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo
EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES
IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y
si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x (
ANÁLISIS MATEMÁTICO Continuidad y drivabilidad d funcions si = 0 - Estudia la continuidad d la función f ( ) = si o sn si (, π / ) si π / < 0 - Dtrmina los valors d a y d b para qu sa continua la función:
SOLUCIONES A LOS EXÁMENES DE ANÁLISIS
SOLUCIONES A LOS EXÁMENES DE ANÁLISIS CURSO 0-0 º.- (,5 puntos) Dtrmina la función f : 0, R tal qu f '' gráfica tin una tangnt horizontal n l punto P,. f ( ) ln( ) y su º.- Sa f la función dfinida por
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la
105 EJERCICIOS de DERIVABILIDAD 2º BACH.
105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla
Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos
Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay
TEMA 11. La integral definida Problemas Resueltos
Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una
( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)
ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y
lm í d x = lm í ln x + x 1 H = lm í x + e x 2
Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg
6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular
MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos
98 EJERCICIOS de DERIVABILIDAD 2º BACH.
98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES. x y = 1. π 2 3. sen x cos xdx (Septiembre Ex. Or.)
TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mail: [email protected] hp://lfonica.n/wb/imm EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES.- Razon y obnga qu la ingral ulriana (p) (gamma d p) para p
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción
Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.
MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El
91 EJERCICIOS de DERIVABILIDAD 2º BACH.
9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
Definición de derivada
Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()
SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.
UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,
Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b
Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr
SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO
SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 016-17 Ejrcicio 1º. (,5 puntos) Sabindo qu l valor dl límit. a lim 1 1 Ln( ) s finito, calcula l valor d a y Ejrcicio º.- Considra la función
El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )
Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con
TABLA DE DERIVADAS. g f
TABLA DE DERIVADAS Funcions:, g (continn a la ) Númro: k ) y = k y = 0 ) y = y = ) y = ± g y = ± g ) y = k y = k ) y = g y = g + g 6) y = g ' g g' g y = 7) y = k k y = k 8) y = k y = k L k 9) y = y = 0)
2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4
º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
Ejercicios para aprender a integrar
Ejrcicios para aprndr a intgrar Propidads d las intgrals: af ) d = a f d b f ) d = Rglas d intgración: ad = a ( f ± g( ) d = f d ± g( ) d a a b [ F( ) ] = F( b) F( ) ( f d = a b Polinomios y sris d potncias
OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis
MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa
= = y x 1 3 = xsenx. cos. y x
Tallr cálculo ingral: Prparación sgundo quiz sgundo parcial. Profsor Jaim Andrés Jaramillo. [email protected]. ITM. - A. Drmin l ára d la rgión bajo la gráfica usando la fórmula n i i n f lím
2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:
Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada
3. [2014] [JUN-A] Calcule el área de la región plana limitada por la gráfica de la función f(x) = cos x, el eje OX y las rectas x = 0 y x = 2.
MasMats.com Colccions d jrcicios Intgrals Slctividad CCNN Extrmadura. [04] [ET-A] Calcul la siguint intgral dfinida d una función racional: + x- x -x+. [04] [ET-B] a) Dibuj l rcinto plano limitado por
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción
EJERCICIOS UNIDAD 2: DERIVACIÓN (II)
IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l
x. Determina las asíntotas de la gráfica de f.
Slctividad CCNN 008 ax +x si x. [ANDA] [SEP-A] Considra la función f: dfinida por: f(x) = x -bx-4 si x > a) Halla a y b sabindo qu f s drivabl n. b) Dtrmina la rcta tangnt y la rcta normal a la gráfica
SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO
SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 01-1 Ejrcicio 1º. (,5 puntos) Condra la función polinómica f : R R qu vin dada por la prón f ( ) a b c Dtrmina los valors d los parámtros a,
INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.
INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.
,, 0 e (se excluyen los de la forma 1,
ocumno d orinación d Mamáicas II Profsor: José Guzmán Guzmán Pag. nº IRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS E ACCESO A LA UNVERSIA. Comnarios acrca dl programa dl sgundo curso dl Bachillrao,
3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2
MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl
TEMA 7 APLICACIONES DE LA DERIVADA
Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f
Unidad 11 Derivadas 4
Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no
DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.
DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada
Representación de Funciones.
T 5 Rprsntación d Funcions EJERCICIOS DE DESARROLLO 1- Elmntos Fundamntals para la Construcción d Curvas 1 Halla l dominio d stas funcions: a 5 + 7 + b d y g + 5 5 + = ln + + 1 ln +1 = y ( ) f ( ) Halla
Hoja 1. Trigonometría.doc Hoja 2. Resolución de triángulos.doc Hoja 3. Geometría analítica.doc Hoja 4. Cónicas.doc Hoja 5. Funciones, límites y
Hoja Trigonomtríadoc Hoja Rsolución d triángulosdoc Hoja Gomtría analíticadoc Hoja Cónicasdoc Hoja Funcions, límits continuidaddoc Hoja 6 Drivadasdoc Hoja 7 Aplicacions d la drivadadoc Hoja 8 Optimizacióndoc
. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:
º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación
INTEGRALES Prueba de Evaluación Continua Grupo A1 10-XI Enunciar y demostrar el Teorema Fundamental del Cálculo Integral.
INTEGRALES Pruea de Evaluación Coninua Grupo A -XI-.- Enunciar y demosrar el Teorema Fundamenal del Cálculo Inegral. Ver eoría de la maeria..- Calcular las derivadas de las siguienes funciones: a) F()
n n ... = + : : : : : : : [ ]
Considérs l siguin sisma d cuacions difrncials linals d rimr ordn d coficins consans, n dond las incógnias son las funcions x x ( ), x x ( ),, x ( ) n xn / d a x ( ) a x ( ) a x ( ) f ( ) n n / d a x (
Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V
Apllidos Nombr: N.P. : Ejrcicio. (,5 puntos) Calcula l volumn dl cono circular rcto más grand qu stá inscrito n una sra d radio. D acurdo con la igura adjunta, s aprcia qu l radio d la bas dl cono s: La
TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)
TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu
Análisis de Señales. Descripción matemática de señales
Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación
La transformada de Laplace
CAPÍTULO 6 La ranformada d Laplac 6.3 Exincia d TL Lo rulado nconrado n la ccion anrior no podrían hacr pnar qu baará cuidar l rango d la variabl para agurar la xincia d la TL d una función; in mbargo,
I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez. Ejemplo 1. 3x 4x si x 2 f(x) en todos sus puntos. Estudiar la derivabilidad de la función
Los límits qu intrvinn n los problmas qu gun, s han rsulto con la calculadora cuando su compljidad lo ha rqurido. En las funcions dfinidas a trozos, cuando studimos la drivabilidad n un punto, la función
Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido.
La figura musra n forma squmáica un sisma d calnamino d líquidos conocido como pava lécrica. Un rsisor d masa dsprciabl calfacciona una placa málica cuya capacidad érmica la suponmos concnrada n C1 y su
OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto)
San Blas, 4, ntrplanta. 983 30 70 54 OPCIÓN A 4 E.- San A = 3 y B = a) Estudiar si A y B tinn invrsa y calcularla cuando sa posibl ( punto) 0 b) Dtrminar X tal qu AX = B I sindo I = 0 (.5 puntos) a) Una
FUNCIONES EULERIANAS
NOTAS PARA LOS ALUMNOS DEL CURSO DE ANALISIS MATEMATICO III FUNCIONES EULERIANAS Ing. Juan Sacrdoi Dparamno d Ingniría Univrsidad d Bunos Airs V. INDICE.- FUNCIÓN GAMMA: EULERIANA DE SEGUNDA ESPECIE..-
